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Abstract

Most event extraction methods have tradition-
ally relied on an annotated set of event types.
However, creating event ontologies and anno-
tating supervised training data are expensive
and time-consuming. Previous work has pro-
posed semi-supervised approaches which lever-
age seen (annotated) types to learn how to au-
tomatically discover new event types. State-of-
the-art methods, both semi-supervised or fully
unsupervised, use a form of reconstruction loss
on specific tokens in a context. In contrast, we
present a novel approach to semi-supervised
new event type induction using a masked con-
trastive loss, which learns similarities between
event mentions by enforcing an attention mech-
anism over the data minibatch. We further dis-
entangle the discovered clusters by approxi-
mating the underlying manifolds in the data,
which allows us to achieve an adjusted rand
index score of 48.85%. Building on these clus-
tering results, we extend our approach to two
new tasks: predicting the type name of the dis-
covered clusters and linking them to FrameNet
frames.1

1 Introduction

Discovering new event types is an important step
for adapting information extraction (IE) methods
to unseen domains. Existing work (Ji and Grish-
man, 2008; McClosky et al., 2011; Li et al., 2013;
Chen et al., 2015; Du and Cardie, 2020; Li et al.,
2021a) traditionally uses a predefined list of event
types and their respective annotations to learn an
event extraction model. However, these annota-
tions are both expensive and time-consuming to
create. This problem is amplified when considering
specialization-intensive domains such as scientific
literature, which requires years of specialized ex-
perience to understand even a specific niche. For

1The programs and resources will be publicly available at
github.com/cnedwards/EventTypeBatchAttention for research
purposes.

example, there are a wide range of otherwise ob-
scure events in biomedical literature (Krallinger
et al., 2017), and better IE techniques can empower
life-changing breakthroughs in these domains. To
adapt IE to these specialized domains, it is critical
to discover new event types automatically.

There are two primary approaches in event type
induction. The first is completely unsupervised
induction. It includes recent neural techniques
(Huang et al., 2016; Shen et al., 2021), as well as
ad-hoc clustering techniques (Sekine, 2006; Cham-
bers and Jurafsky, 2011) and probabilistic gener-
ative methods (Cheung et al., 2013; Chambers,
2013; Nguyen et al., 2015). The second approach,
semi-supervised event type induction, was recently
introduced by Huang and Ji (2020). It proposes
leveraging annotations for existing types to learn to
discover new types; this enables taking advantage
of existing resources. In this work, we pursue the
second approach.

Current state-of-the-art work in event type in-
duction (Huang and Ji, 2020; Shen et al., 2021)
uses reconstruction-based losses to find clusters of
new types. Motivated by recent success in learning
representations with contrastive loss (Chen et al.,
2020a; Radford et al., 2021), we propose a novel
alternative approach using batch attention and con-
trastive loss, which achieves state-of-the-art results.
Essentially, we consider the attention weight be-
tween two event mentions as a learned similarity,
and we ensure that the attention mechanism learns
to align similar events using a semi-supervised con-
trastive loss. By doing this, we are able to lever-
age the large variety of semantic information in
pretrained language models for clustering unseen
types by using a trained attention head. This re-
veals our first key motivation: unlike (Huang and
Ji, 2020), we are able to separate clustering from
learning, allowing specific task-suited clustering
algorithms to be selected. This allows us to test
multiple clustering strategies after training once.
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Additionally, this easily allows the use of hierar-
chical clustering, which may be beneficial to some
downstream tasks.

Batch attention is an attention mechanism taken
over a minibatch of samples rather than a sequence.
Previous uses of batch attention have been limited.
Primarily, it has been used for image classification
(Cheng et al., 2021) and satellite imagery (Su et al.,
2019). In this work, we apply batch attention to
natural language instead, which we use for cluster-
ing, and we propose the novel idea of enforcing the
attention mechanism using contrastive loss.

To enable our discovered event types to be used
in larger IE systems, it is important to extract in-
formation regarding the clusters. Previous work
has looked to describe clusters—for a given clus-
ter, Huang et al. (2016) uses the nearest trigger
to the cluster centroid as its name. However, this
approach is nebulous and not easily measurable
(because the same trigger can correspond to dif-
ferent event types and there is not a quantitative
method to determine if the selected trigger defines
the cluster well). This is our second key motivation:
we instead introduce two new information retrieval-
styled tasks for describing the cluster – type name
prediction and FrameNet (Baker et al., 1998) frame
linking. Type prediction predicts a name for each
cluster and is a relatively easy task. FrameNet link-
ing builds on this by linking event types to relevant
frames, and is significantly more useful for down-
stream applications. Our attention-based approach
is especially useful here, since it uses the atten-
tion mechanism to produce “clustered” features
which can have auxiliary task-specific losses ap-
plied (prior work is not well-suited for this because
the loss is applied to individual data points). This
allows our method to build clusters which are more
amenable to downstream tasks.
The major novel contributions of this paper are:

• We propose a novel framework for new event
type induction which uses a novel masked
contrastive loss to enforce an attention mech-
anism over data minibatches. This frame-
work is also potentially applicable for semi-
supervised clustering and classification prob-
lems in other settings where a pretrained
model exists.

• We show that the base pretrained model se-
lected for event type induction plays a key
role in the types which are discovered, since

even un-finetuned models rival Huang and Ji
(2020).

• We use the “clustered” features produced by
our model to extend new event type induction
to two novel downstream tasks: type name
prediction and FrameNet linking. We show
our architecture design allows for auxiliary
losses which improve performance on these
tasks.

2 Task Descriptions

2.1 Semi-supervised Event Type Induction

We tackle the problem of semi-supervised event
type induction, first described by Huang and Ji
(2020). The task is defined as follows: Assume that
k event types from some dataset are known and that
the types of the other events are unknown. Using
the known types as example clusters, we seek to
discover type clusters for the unknown types. Es-
sentially, this is a semi-supervised clustering task
on event mentions. In this work, we follow Huang
et al. (2018) and set the 10 most common types
in the ACE 2005 dataset (Walker et al., 2005) as
known. Thus, given all ACE annotated event men-
tions, our goal is to automatically discover the other
23 unseen ACE types. This assumption is likely
to carry over to real-world datasets, since existing
‘seen’ type definitions are most likely to cover the
most common events. In many real-world cases,
there may be a few long-tail event types present in
the ‘seen’ types and one or two very common event
types may be ‘unseen’. Regardless, the distribution
of seen and unseen types is likely to be fairly simi-
lar to the distribution of setting the most popular k
types as known.

2.2 Downstream Clustering Tasks

Beyond clustering, we also introduce two new
downstream tasks on this problem: type predic-
tion and FrameNet (Baker et al., 1998) linking. We
structure both of these tasks as information retrieval
problems for evaluation. Essentially, given a clus-
ter, one should be able to predict its event type
name and to what frame it should be linked. For
each cluster, we calculate the most frequent type
and consider it to be the ground truth for the cluster.
Type Prediction: The goal is to retrieve the “name”
of the correct type for a cluster. Thus, we measure
Hits@n and mean reciprical rank (MRR), where the
corpus consists of the 23 new unseen type names.
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Figure 1: Architecture of the proposed approach. Best viewed in color. LN is layer normalization, R is ReLU, and
D is dropout. σ is softmax for the attention mechanism and sigmoid for the contrastive loss. F̂i is the clustered
features of mention i in the batch. ‘?’ are unseen event types.

In practice, we embed the names using our lan-
guage model and use cosine similarity to the cluster
centroid to rank them.
FrameNet Linking: FrameNet is the largest event
ontology that is publicly available. However, there
is not enough annotated training data to train super-
vised models directly on it. To alleviate this issue,
we propose a task linking our newly discovered
event types to FrameNet frames.

For the FrameNet linking, we consider a setup
similar to name prediction, where we link clusters
to the 1,221 frames in FrameNet 1.7 (Ruppenhofer
et al., 2016). Instead of using the type names, we
follow Huang et al. (2018) and manually map the
ACE types to one or more frames to create a ground
truth (see Appendix C for details). All child frames
of the mapped frames are also considered valid tar-
gets. Given an ACE type, we can now link to a
set of valid frames. In practice, we take the cor-
pus of frame definitions and embed them using our
language model. We then rank them using cosine
similarity by comparing to the given cluster cen-
troid. We consider the best rank of the valid frames
to be the rank of a cluster. Thus, this task is also
measured with Hits@n and MRR.

3 Methods

3.1 Overall Architecture

Overall, our method, shown in Figure 1, consists
of a language model, such as BERT (Devlin et al.,
2019), which produces contextualized represen-
tations, followed by a “clusterer”. Unlike previ-
ous work which used specific token representations
(Huang and Ji, 2020), we use mean pooling over
the entire mention where an event occurs as our
input. The language model produces an event rep-

resentation, which is then input into the “clusterer”
layer. The clusterer layer then produces “clustered”
features using the attentions (see Section 3.3).

3.2 Back-translation for Data Augmentation

Contrastive loss has recently been applied for deep
clustering (Li et al., 2021b; Zhong et al., 2020) and
for representation learning (Chen et al., 2020a; Gao
et al., 2021; Zhang et al., 2021a; Liu and Liu, 2021).
However, this requires data augmentation to create
positive example pairs. For text, some augmenta-
tions use back-translation (Cao and Wang, 2021;
Zhang et al., 2021b). Taking inspiration from these
clustering and representation learning techniques,
we employ back-translation as data augmentation
to create more positive pairs, improving the learn-
ing of attention weights between event mentions.

3.3 Batch Attention “Clusterer” Mechanism

To learn similarities between unseen event men-
tions, we propose learning an attention mechanism
over the stochastic gradient descent minibatch. We
enforce this attention mechanism using a masked
contrastive loss (described in Section 3.4). This
allows the attention mechanism’s behavior to be
learned from the seen classes.

We follow Vaswani et al. (2017) in implement-
ing a scaled dot product attention, although over
the batch instead. Since our “clusterer” needs to
learn similarities for clustering and then be used for
cluster features, we use nonlinear transformations
for the query (Q) and key (K) vectors instead of
the linear transformations in (Vaswani et al., 2017).
This nonlinear transformation for Q and K is im-
plemented as a two hidden layer neural network,
which is shown in Figure 1.

Using this attention mechanism, we produce
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“clustered features”, which are a convex combina-
tion of the different samples from the batch. This
allows us to apply an auxiliary loss to the clus-
tered features. We consider this as being analogous
to learning on cluster centroids. Specific auxiliary
losses can be applied for specific downstream tasks.

We note that this approach can also be inter-
preted as a type of feature smoothing, an inner
product graph generator, and metric learning.

3.4 Masked Semi-supervised Contrastive Loss
Recent work, such as CLIP (Radford et al., 2021)
and Text2Mol (Edwards et al., 2021), has found
great success using contrastive losses between pairs
of representations Q and K, each n× d matrices
where n is the number of samples of d dimensions.
They obtain the loss L by comparing the product
of these matrices (QKT ) to a label matrix Y ∈
{0, 1}n×n (which in their case is Y = In), using
cross entropy loss CE.

L(Q,K) = CE(QKT , In) + CE(KQT , In)

We modify these existing contrastive losses to
enforce our batch attention mechanism. We calcu-
late the label matrix as follows (see Appendix B
for an example). Given a pair of samples (event
mentions) xi and xj , we consider the pair to be a
positive if they are from the same seen event type.
We consider the pair to be negative if they are from
different seen event types or if one is seen and one
unseen. If both are unseen they are masked. In
practice, the labels can be computed using one-hot
vectors of the c seen types (the unseen types are
zero-hot vectors). These vectors are stacked into a
n× c matrix O. The label matrix is computed

Y = OOT ∨ In

where ∨ is the elementwise logical-or operation.
Following (Edwards et al., 2021), we use binary
cross-entropy as the loss between the labels Y

and the scaled attention dot products QKT
√
d

from
(Vaswani et al., 2017). This gives the following
contrastive loss:

Lss(Q,K) = CE(
QKT

√
d

, Y )

This loss, however, values negative samples much
more than positive samples (due to the imbalance).
Noticing that once vectors of a negative pair are
orthogonal they don’t need to be further separated,
we introduce a margin m. Essentially, we mask out

pairs whose dot product is “too negative” (in addi-
tion to unknown relations between unseen types).
This is because the loss would rather optimize the
already well-separated negatives instead of the rel-
atively fewer positives. Let pi,j ∈ {0, 1} be the
label of a pair and ui,j ∈ {0, 1} indicate that both
i and j are unseen. Our mask, M , is calculated

Mi,j =

[
pi,j ∧

(
σ(

QKT

√
d

)i,j < m

)]
∨ ui,j

where ∧ is elementwise logical-and, σ is the
sigmoid function, and z̄ denotes logical negation
of z. This is similarly motivated to the margins
used in knowledge graph embedding losses, such
as TransE (Bordes et al., 2013). Thus, our loss is:

Lm(Q,K) = M · Lss(Q,K)

where in this case we treat Lss(Q,K) as an unre-
duced loss (so it is a matrix), and · is elementwise
multiplication.

We apply this loss to the query (Q) and key (K)
matrices in the clusterer’s batch attention mecha-
nism. We also include the augmented data (Q′ and
K ′), giving us a final loss:

Lc(Q,K,Q′,K ′) =
∑

Q̂,K̂∈{Q,Q′}×{K,K′}
Lm(Q̂, K̂)

3.5 Auxiliary Loss
For our downstream tasks, we employ a regression-
based auxiliary loss. For each seen instance xi, we
maximize the cosine similarity between the clus-
tered features F̂i and the pretrained language model
embedding Bti of the ground truth type ti (e.g. the
name ‘attack’). Thus, we get the loss:

La(F̂i, Bti , ti) = 1− cos(F̂i, Bti)1seen(ti)

where 1seen(ti) indicates whether ti is a seen type.

3.6 Stopping Criterion
For this task, it is not reasonable to use a validation
set for stopping. This is because the loss depends
only on seen types and their relationships to unseen
types. Since the unseen classes are unlabeled and
the losses between pairs of unseen are unknown,
the model can overfit to the seen data, pushing to-
gether clusters of unseen types. To deal with this
issue, we employ unsupervised clustering metrics
to decide when to stop training. In particular, we
use cosine distance-based silhouette scores to mea-
sure the quality of clustering. Further details are
given in Appendix F.
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3.7 Clustering

Any algorithm which can compute clusters from
a precomputed distance function can be applied
to the learned similarities between event mentions.
Additionally, we find that the finetuning of the lan-
guage model by our loss modifies its representa-
tions to better form clusters. Thus, this representa-
tion can be used in many clustering algorithms as
well.

3.7.1 Manifold Approximation
Inspired by recent work (Ros et al., 2021) which
uses manifold approximation to interpret large lan-
guage model-based sentence representations for
information retrieval, we incorporate manifold ap-
proximation into our clustering approach. To do
so, we follow the UMAP (McInnes et al., 2018)
algorithm to create approximate weights based on
estimating neighborhood densities within the data.
We calculate these weights using cosine distance
as an input, as it has traditionally been effective for
language modeling (Manning et al., 2008; Reimers
and Gurevych, 2019). UMAP attempts to estimate
the density by comparing the distance to the k-
nearest neighbors. This is used to calculate weights
between each pair of data points. Details are given
in Appendix H. Following this, we use agglomera-
tive clustering on the UMAP weights as before.

In our approach, we want to better understand
the global clustering landscape, so we use a high
value of k. In practice, to avoid hyperparameter
selection, we set k equal to the size of the data.

4 Experimental Results

Generally, we used default hyperparameters. We
split the learning rates into BERT and non-BERT
parameters following (Edwards et al., 2021) with
2e-5 for BERT as in (Devlin et al., 2019) and 1e-4
for other parameters as in (Vaswani et al., 2017).
For the margin parameter, we examined silhouette
scores to select 0.5.

For back-translation, we used four languages,
German, French, Spanish, and Chinese, and ran-
domly sampled which language to use for each data
point every epoch. We obtained back-translations
using the MarianMT translation models (Junczys-
Dowmunt et al., 2018). Ablations are shown in
Section J.

For our main experiments, we only use the con-
trastive loss. We take the average of 5 runs to show
that our method consistently outperforms (Huang

and Ji, 2020). We also calculate clusters using an
ensemble of the 5 runs which shows slightly in-
creased performance, which is an expected result
in deep neural networks (Allen-Zhu and Li, 2020).

Huang and Ji (2020) evaluate these clusters using
Geometric NMI, Fowlkes Mallows (Fowlkes and
Mallows, 1983), Completeness, Homogeneity, and
V-Measure (Rosenberg and Hirschberg, 2007). We
additionally consider adjusted Rand index (ARI)
(Hubert and Arabie, 1985). In the downstream
tasks, given a clustering we also report the average
cluster purity and type representation. Given a clus-
ter i of size ni with most frequent type numbering
nfi , purity pi =

ni
nfi

(Manning et al., 2008). Note
that this average cluster purity is slightly different
than traditional purity; it weights small clusters
more which is desirable in our case (like macro vs.
micro F1 score). Type representation is the number
of unique frequent subtypes, nt, divided by total
types, in this case 23.

4.1 Language Model

We select Sentence BERT (SBERT) (Reimers and
Gurevych, 2019) as a language model because its
pretraining tasks are better suited for clustering
than BERT. This is shown in Table 1, since the
clustering from SBERT embeddings can even out-
perform (Huang and Ji, 2020) without any semi-
supervision. We use a small version of the model2

from HuggingFace (Wolf et al., 2020), which al-
lows us to use a larger minibatch size of 10. Using
larger minibatch sizes is desirable for contrastive
loss since the number of negatives scales quadrat-
ically with the size. The performance of mini
SBERT is notable, as Huang and Ji (2020) used
BERT-large, a considerably larger model.

4.2 Clustering Algorithms

For clustering, we consider two algorithms which
work on precomputed metrics. First, we use ag-
glomerative clustering with average linkage, as it
tends to be less sensitive to outliers and noisy data
(Han et al., 2011). Noise is present in the dataset,
often in the form of transcripts (see Section 4.4).

We report results following existing clustering
literature by using the true number of classes as
the cluster number (Huang et al., 2020; Li et al.,
2021b). In practice it is generally difficult to select
the correct number of clusters to use. Due to this,
using extra clusters is typically done by previous

2paraphrase-MiniLM-L12-v2
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Method Clusters Geometric NMI Fowlkes Mallows Completeness Homogeneity V-Measure ARI
One Cluster 1 0.00 25.58 100.00 0.00 0.00 0.00

SS-VQ-VAE w/o VAE (Huang and Ji, 2020) 500 33.45 25.54 42.76 26.17 32.47 -
SS-VQ-VAE (Huang and Ji, 2020) 500 40.88 31.46 53.57 31.19 39.43 -

SS-VQ-VAE + SBERT 3 33 19.08 19.45 25.80 15.13 19.08 7.54
SBERT Agglo 23 50.71 34.35 57.05 45.07 50.36 24.02
SBERT Manifold 23 48.75 36.02 51.32 46.30 48.68 30.21

Attn-Cosine Agglo 23 46.40 34.60 49.82 43.24 46.27 26.69
Attn-DotProduct Agglo 23 50.17 37.48 53.50 47.06 50.06 30.13

Attn Manifold 23 54.83 42.77 55.00 54.67 54.82 38.74
FT-SBERT Manifold 23 60.28 50.63 60.19 60.37 60.28 47.24

Attn-DotProduct Affinity 49-68 56.87 35.64 49.58 65.26 56.33 30.02
Attn-Cosine Affinity 50-69 56.54 33.00 48.72 65.62 55.91 27.04

E-Attn-DotProduct Agglo 23 56.50 43.26 59.62 53.54 56.41 37.02
E-Attn Agglo 23 59.00 46.19 58.36 59.66 59.00 42.56

E-FT-SBERT Manifold 23 63.56 52.10 63.11 64.01 63.56 48.85
E-Attn-DotProduct Affinity 63 60.00 38.41 51.32 70.15 59.28 31.78

Table 1: New event type induction results (%)4. The first subcolumn is the input for clustering and the second is the
clustering algorithm used. SBERT indicates the (unfinetuned) SBERT representations were used rather than our
learned attentions (Attn). FT-SBERT representations are finetuned by our method. E stands for ensemble. Values
are the average of 5 runs. Agglo is agglomerative clustering, Affinity is (Frey and Dueck, 2007), and Manifold is as
described in Section 3.7.1. For affinity, each run can produce a slightly different number of clusters.

work (Huang and Ji, 2020; Shen et al., 2021). How-
ever, this can inflate the NMI score (Nguyen et al.,
2009) and benefit qualitative evaluation because
of the unbalanced classes in the dataset. As an ex-
ample, given only 23 clusters (the ground truth),
a large class such as ‘Injure’ splits into multiple
smaller clusters, which causes rare event types to
be merged. Results show that 19 / 23 types are rep-
resented by a cluster in the 50 cluster case versus
only 16 / 23 in the 23 cluster case. This makes
results appear better for more clusters. Silhouette
scores are higher for 23 clusters, however.

Unlike existing work (Huang and Ji, 2020), the
number of clusters is unimportant for our learning
process and can be selected afterwords, such as
by selecting a high number as in (Huang and Ji,
2020; Shen et al., 2021) or automatically with affin-
ity propagation (Frey and Dueck, 2007). Affinity
propagation selects exemplars to automatically de-
termine the number of clusters. Our approach is
especially useful here, since affinity propagation
does not complete when applied to default SBERT
representations but does when using our contrastive
loss-enforced attentions.

4.3 Results
We compare our results with Huang and Ji (2020),
who first introduced this task, in Table 1. We find
that just our choice of language model outperforms
the baseline. Also, using dot products is more ef-
fective for our learned attention metric than cosine
distance, since dot product without normalization,
as in our attention mechanism, indicates confidence

of clustering a pair of samples together (This is be-
cause the contrastive loss uses sigmoid).

4.3.1 Manifold Approximation
We find manifold approximation to be very ef-
fective in our experiments. Intuitively, we under-
stand this manifold approximation as untangling
the cluster manifolds from each other in the high-
dimensional representation space. Interestingly,
the results using the finetuned SBERT representa-
tions perform better than the results on the learned
similarities. We find this to be quite interesting,
especially because the representations change an
average of 0.6 cosine distance from their start-
ing points, as shown in Appendix A. Our method
causes SBERT to inherently learn representations
more amenable for clustering.

While manifold approximation works well for
clustering here, we note that using UMAP for clus-
tering is considered controversial.5 While it works
well in many cases, there are potential issues with
artifacts or false tearing of clusters. We leave anal-
ysis of the interaction between high-dimensional
semantic spaces obtained from language models
and manifold approximation to future work.

3(Huang and Ji, 2020) did not release their code, and we
were unable to reproduce their results. Nonetheless, we apply
their method to the SBERT representations based on the de-
scription in their paper. We also use an equivalent number of
clusters to the ground truth, unlike their paper, which enables
comparability to our method.

4(Huang and Ji, 2020) appears to have used the former
scikit-learn default of geometric NMI, which is why their
v-score doesn’t equal arithmetic NMI.

5https://umap-learn.readthedocs.io/en/latest/clustering.html
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• Injure: If those weren't gunshot wounds to 

cause the broken bones, do they know what 

caused the fractures 

• Injure:  More than 40 were injured

• Injure:  There was no information on the 

identity of the injured person

• Injure: Sergeant Chuck Hagel was 

seriously wounded twice in Vietnam

• Declare-Bankruptcy: You need to speak 

to a bankruptcy attorney pronto; this is a 

bankruptcy matter, not a tax matter

• Declare-Bankruptcy:  despite operating 

under bankruptcy laws, united posted the 

best on time performance 

• Declare-Bankruptcy:  That means that he 

received the shares while he was still in 

bankruptcy, which means that the shares 

were potentially assets that the trustee 

could use to pay off creditors

• Start-Org: Kiichiro Toyoda founded the 

automaker in 1937, transforming the loom 

manufacturer started by his father into an 

automaker

• Merge-Org: I believe any neutral management 

consultant worth his or her salt would 

recommend a merger of the two organizations 

• End-Org: It's a dying organization, and this will 

be just the jolt it needs for another couple 

decades of somnambulant staggering before 

being ultimately replaced by far more efficient 

companies

• Marry: My wife and I were guests at a wedding 

on the Carnival Legend on New Years Eve 2003

• Marry and Divorce: Giuliani, 58, proposed to 

Nathan, a former nurse, during a November 

business trip to Paris - five months after he 

finalized his divorce from Donna Hanover after 

20 years of marriage 

• Merge-org: So Oracle and Peoplesoft , who 

spent the last 18 months insulting one another in 

every imaginable way, are finally tying the knot

• Marry: Either its bad or good

• End-Org: i felt t7ire was something else too, 

much history behind silver cross to end is now 

• Trial-Hearing: Yeah, we're a pretty small town, 

so our newspaper covers it a lot

• Trial-Hearing: Yeah, because I was really -- I 

wasn't really following it that much because I was

• Start-Position: then when they're ready to breed 

they go to the wb

• Charge-Indict: 56-year-old forry drake has 

been charged with interstate transport of a minor

• Charge-Indict: Ocalan, being tried in absentia, 

was indicted for entering the country illegally, a 

• Convict and Charge-Indict: convicted 

oklahoma city bombing conspirator terry nichols

will stand trial again on state murder charges

• Appeal: in the african nation of nigeria, an 

islamic court delayed the appeal of a woman 

condemned to death by stoning

Figure 2: Cluster Examples: Injure, Charge-Indict, Marry, Bankruptcy, Start-Org, and Bad Data, respectively.

Cluster Strength Clusters
Very Strong

(> 80% Purity)
Injure, Sue, Phone-Write,

Declare-Bankruptcy, Demonstrate, Trial-Hearing

Strong
(60-80% Purity)

Be-Born, Start-Position,
Charge-Indict, Marry

Ok
(40-60% Purity) Release-Parole, Appeal, Injure

Mixed
(20-40% Purity)

Convict, Fine, Trial-Hearing,
Start-Org, Start-Position, Charge-Indict

Small Clusters
(< 2 samples)

Trial-Hearing, Nominate,
Start-Position, Phone-Write

Table 2: Clusters sorted into purity classes.

4.4 Qualitative Cluster Analysis

We analyze the clusters produced by our best re-
sult, the ensemble. We classify the clusters ac-
cording to purity in Table 2. We show examples
from numbered clusters in Figure 2. Certain types
of clusters, such as Injure 1 and Demonstrate
4 , form very strong clusters. We believe this

is likely related to their size and lack of overlap
with other types. There are two common sources
of error: the first is semantic overlap. Start-org,
merge-org, and end-org tend to overlap 5 . Marry
and divorce also slightly overlap 3 —in the 23
cluster case they merge into one cluster, but in
the 50 cluster case they are separate. Most types
of courtroom related events—Charge-Indict, Trial-
Hearing, Convict, Release-Parole, Appeal, Execute,
Acquit, Extradite—have some degree of overlap
2 . Second, the other main source of errors is “du-

plicates”. This occurs in our method because two
or more events can occur in the same event mention
2 , 3 . Since our method does not account for

triggers, it cannot distinguish between duplicate

mentions with multiple triggers. Future work can
address this issue by combining our method with
an existing trigger-based method such as (Huang
and Ji, 2020). We also find that our method clus-
ters “junk” data together 6 , which are usually
from transcripts. Errors occasionally occur from
metaphorical language, such as when companies
are “married” 3 . We show more detailed exam-
ples of these observations in Appendix E.

4.5 Downstream Tasks

For the downstream tasks, we use different clus-
terings and try to discover information about the
clusters. As a baseline, we compare against default
(not finetuned) SBERT clustering (Base-23) and
ground truth (perfect) clusters. We compare these
to our ensemble clustering. For type prediction, we
use SBERT embeddings to compute cluster cen-
troids and compare to the SBERT representation of
the type name (e.g. ‘injure’). For FrameNet link-
ing, we use the frame definition instead of the name
(e.g. “The words [...] describe situations in which
an Agent or a Cause injures a Victim [...]”). We
also use an auxiliary loss, La, which we apply to
a 1-layer neural network on the clustered features
F̂ . This extra layer is employed to allow multiple
auxilliary losses: we leave those experiments for
future work. We compare using these finetuned rep-
resentations in addition to default SBERT. Results
are shown in Tables 3 and 4.

We find that our ensemble clustering outper-
forms the default SBERT clustering, and that we
are able to recover the event type 60% of the time.
For the ground truth clusters, our finetuning with
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Clustering Representation Mean Rank Hits@1 Hits@3 Hits@5 Hits@10 Hits@15 MRR Average Purity Type Representation
Base-23 Untuned 5.17 34.8% 47.8% 60.9% 82.6% 100% 0.477 25% 47.8%

FT-Base-23 Finetuned 4.43 56.5% 65.2% 78.2% 82.6% 91.3% 0.660 58.9% 65.2%
Ensemble-23 Untuned 3.65 60.9% 69.6% 69.6% 95.7% 100% 0.679 68.6% 69.6%
Ensemble-23 Finetuned 5.13 56.5% 65.2% 69.6% 87.0% 87.0% 0.650 68.6% 69.6%
Ensemble-50 Untuned 4.40 56.0% 60.0% 68.0% 90.0% 96.0% 0.630 69.3% 82.6%

Perfect-23 Untuned 2.30 69.6% 73.9% 82.6% 95.7% 100% 0.758 100% 100%
Perfect-23 Finetuned 2.83 73.9% 82.6% 91.3% 91.3% 95.7% 0.800 100% 100%

Table 3: Results for cluster to name prediction task with different representations and clusterings. Finetuned
indicates finetuned SBERT representations from our contrastive + auxiliary loss are used (otherwise default SBERT).
“-x” at the end is the number of clusters. Perfect indicates the ground truth clustering, Base/FT-Base is SBERT
clusterings (default or finetuned with our auxiliary loss), and Ensemble is the clustering of our ensemble result.
Type representation shows what percent of unseen types represent the majority of a cluster.

Clustering Representation Mean Rank Hits@1 Hits@5 Hits@10 Hits@50 Hits@100 MRR Average Purity Type Representation
Base-23 Untuned 95.9 4.3% 21.7% 26.1% 30.4% 34.8% 0.128 25% 47.8%

FT-Base-23 Finetuned 156.9 30.4% 30.4% 34.8% 43.5% 47.8% 0.336 57.4% 65.2%
Ensemble-23 Untuned 72.7 17.4% 30.4% 39.1% 47.8% 65.2% 0.264 68.6% 69.6%
Ensemble-23 Finetuned 115.7 21.7% 34.8% 34.8% 43.5% 52.2% 0.308 68.6% 69.6%

Perfect-23 Untuned 15.9 26.1% 39.1% 52.2% 65.2% 73.9% 0.374 100% 100%
Perfect-23 Finetuned 42.7 47.8% 56.5% 60.9% 69.6% 69.6% 0.539 100% 100%

Table 4: Results for cluster to frame linking task. See Table 3 for notation.

an auxiliary loss improves MRR and Hits@1 over
the default SBERT representations. Frame link-
ing is much more difficult, since there are 1,221
frames, but we are able to recover the correct frame
for 30% of clusters, while default SBERT only
achieves 4%. Notably, the auxiliary loss clustering
(FT-Base-23) even outperforms our ensemble clus-
tering, demonstrating the flexibility of our model ar-
chitecture. Using perfect clustering, our finetuned
model achieves nearly 50% Hits@1, doubling the
performance of the default SBERT model. The
finetuning loss allows the model to train on the
combined cluster features, which approximates the
centroid of a cluster. This promotes the potential
cluster to be shaped so that its centroid is better
suited for the downstream tasks–being most similar
to the correct type name or frame representation.

5 Related Work

Although event extraction has long been studied
(Grishman, 1997; Ji and Grishman, 2008; Mc-
Closky et al., 2011; Li et al., 2013; Chen et al.,
2015; Du and Cardie, 2020; Li et al., 2021a), re-
cent focus has turned towards discovering events
without annotations. It includes recent neural
techniques (Huang et al., 2016; Liu et al., 2019;
Shen et al., 2021), as well as ad-hoc clustering
techniques (Sekine, 2006; Chambers and Jurafsky,
2011; Yuan et al., 2018) and probabalistic gen-
erative methods (Cheung et al., 2013; Chambers,
2013; Nguyen et al., 2015). Semi-supervised event

type induction was recently introduced by Huang
and Ji (2020). Zero-shot event extraction frame-
works, such as (Huang et al., 2018), can be used to
perform event extraction on the newly discovered
types. Recent work by Gao et al. (2022) uses a
weakly-supervised contrastive learning-based clus-
tering approach for event representation learning.

Several new unsupervised deep clustering ap-
proaches use contrastive loss for clustering im-
ages (Li et al., 2021b; Zhong et al., 2020) and
text (Zhang et al., 2021b). These methods require
data augmentation to create positive example pairs.
Contrastive loss has also been applied to learn rep-
resentations. SimCLR (Chen et al., 2020a,b) uses
image augmentations for unsupervised representa-
tion learning. Follow-up work has applied this loss
to natural language (Gao et al., 2021; Zhang et al.,
2021a; Liu and Liu, 2021), with some augmenta-
tions being back-translated text (Cao and Wang,
2021). Gunel et al. (2021) use fully supervised
contrastive loss to finetune language models.

Batch attention has been investigated a little in
the literature, such as for satellite imagery predic-
tion (Su et al., 2019) or image classification (Cheng
et al., 2021); however, it has not been used to learn
clustered features. Seidenschwarz et al. (2021)
recently proposed a related idea for a message-
passing network weighted by attention for cluster-
ing images. We instead directly use (contrastive
loss-enforced) attention weights for clustering.
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6 Conclusion and Future Work

In this work, we present an exciting new approach
for event type induction, where we use contrastive
loss to control the learning of a batch attention
mechanism for both finding and learning about
new cluster types. We also consider manifold ap-
proximation for clustering, and we introduce two
new downstream tasks: type name prediction and
FrameNet linking. This new approach opens sev-
eral interesting problems for future work. First,
this method can potentially be incorporated with
reconstruction loss-based approaches, which might
improve results or obviate the early stopping cri-
terion. Alternatively, the stopping criterion can
be integrated into a loss function for better stop-
ping control. Notably, this would enable a two-step
process of learning clusters and then performing
knowledge distillation using those clusters (or an
ensemble) while learning other desired losses. Fu-
ture work can investigate the interaction of man-
ifold approximation with large language models
and integrate it directly into the clusterer subnet-
work. It may be possible to use a heirarchy of event
types for knowledge transfer from data-rich types
to long-tail types. Finally, FrameNet linking can
be extended to Wikidata Q-Node linking, which
contains millions of nodes. Our approach may also
be applicable in other modalities with strong pre-
trained models.

7 Limitations

In this work, we present a contrastive loss-based
batch attention method for new event type induc-
tion. Like most modern event type induction meth-
ods, this relies on strong existing representations
(which are typically pretrained in a self-supervised
manner). Our additional testing on the much larger
MAVEN dataset (Appendix K) indicates that se-
lecting an appropriate representation is an impor-
tant factor. In that case, SBERT representations
are inappropriate for the event mentions in the
dataset, but trigger representations are effective,
and our method further improves those results. Fu-
ture research on identifying pretraining methods
for initializing representations will be useful for
this method and task (along with many other mod-
els such as retrieval-based large language models
(Guu et al., 2020; Borgeaud et al., 2021).

Requiring early stopping is a limitation to our
newly proposed event type induction method which
does not occur in existing reconstruction-based

methods (those methods instead require a predeter-
mined cluster number along with other limitations).
While an early stopping method is required, our
method is effective, and we believe that our new ap-
proach is still valuable because it offers a different
approach for new event type induction. Addition-
ally, future work should be able to build upon our
work to remove early stopping. Doing so may also
help obviate the dependence on the initial represen-
tation. In Section 6 we detail several possibilities
for future work to further improve upon this work.
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A How much do SBERT representations
change?

Figure 3: Change in SBERT representations from origi-
nal representation of inputs. This shows that the repre-
sentations change significantly from their starting point
during finetuning. Shaded area is one standard devia-
tion.

B Label Matrix Example

Figure 4: Best viewed in color. Visualization of the
label matrix Y used in the loss. Blue is positive, white
is negative, and red is masked. Note that the mask for
the negatives less than the margin is not shown. The
event types and corresponding “seen” boolean vector are
also shown, and are used to construct the label matrix.
Q and K are corresponding queries and keys to the
labels, while Q′ and K ′ are augmented data.

C Manual ACE05 to FrameNet Linking

ACE Type Frame
Appeal Appeal

Be-Born Birth_scenario
Charge-Indict Notification_of_charges

Convict Verdict
Declare-Bankruptcy Wealthiness

Demonstrate Protest
Divorce Personal_relationship
End-Org Organization | Process_end
Extradite Extradition

Fine Fining
Injure Cause_harm | Experience_bodily_harm
Marry Forming_relationships

Nominate Appointing
Phone-Write Contacting

Release-Parole Releasing_from_custody
Start-Org Organization | Process_start

Start-Position Being_employed | Process_start
Sue Judgment_communication

Trial-Hearing Trial
Pardon Pardon

Merge-Org Organization | Amalgamation
Acquit Verdict
Execute Execution
Attack Attack

Transport Transportation_status
Die Death

Meet Make_acquaintance | Meet_with | Come_together
Arrest-Jail Arrest | Prison | Imprisonment | Being_incarcerated
Sentence Sentencing

Transfer-Money Commerce_money-transfer
Elect Change_of_leadership | Choosing

Transfer-Ownership Commerce_goods-transfer
End-Position Being_employed | Process_end

Table 5: Mapping from ACE types to FrameNet frames.
Some ACE types required multiple frames to be cor-
rectly mapped, which is indicated by “ | ”.

D Visualization

We visualize unseen event mentions using UMAP
(McInnes et al., 2018) given a precomputed dis-
tance matrix of the cosine distance between Q and
K. Following (Huang and Ji, 2020), we show the
results on six unseen types in Figure 6. Sentence
and convict overlap significantly, which makes in-
tuitive sense as they are semantically very similar.
Unlike (Huang and Ji, 2020), trial-hearing forms
its own cluster.

6Note that there is a mistake in (Huang and Ji, 2020), since
“sentence” is a seen type in (Huang et al., 2018)
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Figure 5: Visualization of all unseen types as seen by manifold approximation. Note that dimensionality reduction
to 2D renders it difficult to understand with this high number of clusters, but the overall semantics of the space are
interesting.

Figure 6: Visualization following (Huang and Ji, 2020) for one of the runs.6 Note that our clusters have much less
errors.
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E Cluster Examples

We show extensive examples of our noted observa-
tions in Tables 6 and 7. Namely, start-org, merge-
org, and end-org tend to overlap. Marry and divorce
slightly overlap in the 23 cluster case. Most types
of courtroom related events—Charge-Indict, Trial-
Hearing, Convict, Release-Parole, Appeal, Execute,
Acquit, Extradite—have some degree of overlap.
There are “duplicates” when two or more events
can occur in the same event mention. We also note
the cluster of “junk” data, where the label isn’t
obvious from the event mention.
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Cluster Type Purity Cluster Member Example Types and Inputs

Injure 98.3%

• Injure: According to other reports reaching here, five Syrian bus passen-
gers were killed and 10 others were injured on Sunday morning when a
US missile hit the bus they were traveling in near the Iraqi border

• Injure: More than 40 were injured

• Injure: There was no information on the identity of the injured person

Declare-Bankruptcy 95.0%

• Declare-Bankruptcy: You need to speak to a bankruptcy attorney pronto;
this is a bankruptcy matter, not a tax matter

• Declare-Bankruptcy: despite operating under bankruptcy laws, united
posted the best on time performance

• Declare-Bankruptcy: That means that he received the shares while he
was still in bankruptcy, which means that the shares were potentially assets
that the trustee could use to pay off creditors

Demonstrate 95.0%

• Demonstrate: The protest follows a string of others involving tens of
thousands of peace activists across Japan since January

• Demonstrate: No, I don’t demonstrate against anybody during a war

• Demonstrate: Several thousand demonstrators also gathered outside the
White House in Washington, accompanied by a major security presence

Charge-Indict 64.4%

• Charge-Indict: 56-year-old forry drake has been charged with interstate
transport of a minor

• Charge-Indict: Ocalan, being tried in absentia, was indicted for entering
the country illegally, a misdemeanor

• Convict and Charge-Indict: convicted oklahoma city bombing conspira-
tor terry nichols will stand trial again on state murder charges

• Appeal: in the african nation of nigeria, an islamic court delayed the
appeal of a woman condemned to death by stoning

Start-Position 64.4%

• Start-Position: Many Iraqis boycotted the meeting in opposition to U.S.
plans to install Garner atop an interim administration

• Start-Position: The meeting was Shalom’s first encounter with an Arab
counterpart since he took office as Israel’s foreign minister on February 27

• Start-Org: Meeting in the biblical birthplace of the prophet Abraham,
delegates from Iraq’s many factions discussed the role of religion in the
future government and ways to rebuild the country

Table 6: Examples of discovered clusters. Charge-Indict shows an example of a duplicate—an input with multiple
event types. It also shows how courtroom related events can overlap. For Start-Position, there are some errors
related to the Middle East, which occurs frequently in the Start-Position mentions.
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Cluster Type Purity Cluster Member Example Types and Inputs

Marry 70.2%

• Marry: My wife and I were guests at a wedding on the Carnival Legend
on New Years Eve 2003

• Marry and Divorce: Giuliani, 58, proposed to Nathan, a former nurse,
during a November business trip to Paris - five months after he finalized
his divorce from Donna Hanover after 20 years of marriage

• Phone-Write: All the guests were folks who had met the bride and groom
(an attractive young couple who were sailing alone) virtually on cruisecritic

Start-Org 34.7%

• Start-Org: Kiichiro Toyoda founded the automaker in 1937, transforming
the loom manufacturer started by his father into an automaker

• Merge-Org: I believe any neutral management consultant worth his or
her salt would recommend a merger of the two organizations

• End-Org: It’s a dying organization, and this will be just the jolt it needs
for another couple decades of somnambulant staggering before being
ultimately replaced by far more efficient companies

Bad Data -

• Marry: Either its bad or good

• End-Org: i felt t7ire was something else too, much history behind silver
cross to end is now

• Trial-Hearing: Yeah, we’re a pretty small town, so our newspaper covers
it a lot

Phone-Write 86.2%

• Phone-Write: Let’s see, my first call I got was from Russia

• Phone-Write: I’m chewing gum and talking on the phone while writing
this note

• Phone-Write: He wants to call his mom in Houston

Sue 92.5%

• Sue: Buyers and sellers also would have to agree not to pursue further
cases in foreign courts

• Sue: The cost of class actions is factored into the cost of everything you
buy

• Sue: The average number of suits against a neurosurgeon is five in South
Florida

Table 7: More examples of discovered clusters. Start-Org shows the semantic overlap between the organization-
related clusters. Bad Data shows a cluster which mostly contains unclear input.
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F Early Stopping

For this task, it is not reasonable to use a validation
set for stopping. This is because the loss depends
only on seen types and their relationships to unseen
types. Since the unseen classes are unlabeled and
the losses between pairs of unseen are unknown,
the model can overfit to the seen data, pushing
together clusters of unseen types. We partially ad-
dress this issue by implementing a margin on nega-
tive values, which prevents the model from forcing
together unseen clusters as strongly to separate
them from seen type events. Because of this, our
method requires strong pretrained representations
to build on, which have luckily become common
in recent years. To deal with this issue, we employ
unsupervised clustering metrics to decide when to
stop training. In particular, we use cosine distance-
based silhouette scores to measure the quality of
clustering. This increases the required compute
up to 2x (in practice roughly 1.5x because back-
propagation isn’t required), but training is already
relatively quick, with 10 or less epochs being suf-
ficient. We note that this approach can have some
variance. To address this issue, we employ a sliding
window running average approximation to create
a smooth curve of the initial increase and then de-
crease of the silhouette score. We consider a hybrid
approach—we select the window with the highest
silhouette score, and then we select the epoch with
the highest silhouette score in that window as our
stopping point, as shown in Figure 7.

G Evaluation Metrics

For the information retrieval metrics, given a list of
rankings R,

MeanRank =
1

n

n∑

i=1

Ri

MRR =
1

n

n∑

i=1

1

Ri

Hits@m =
1

n

n∑

i=1

1Ri≤m

G.1 Clustering Evaluation Metrics
Assume there are two clusterings: a set of (ground
truth) classes C and a set of (predicted) clusters K.
Each have N samples. Denote TP as true positives,
the number of data point pairs that are in the same
cluster in C and K. FP is the false positives, the

Figure 7: Bold lines are sliding window averages of size
5 over silhouette scores. Dotted lines are unsmoothed
scores. Legend shows number of clusters. Note that
the silhouette scores initially increase and then decay
as overfitting occurs, resulting in the need for early
stopping. Here, for 23 clusters, epoch 8 has the high-
est average score. The blue region shows the window
around it, and epoch 9 (the black dot) is selected for
stopping.

number of data point pairs that belong in the same
cluster in C but are not in K. FN is false negatives,
the number of data point pairs that are in the same
cluster K but not in the same ground truth cluster
in C. TN is the number of data point pairs that are
in different clusters in both C and K. scikit-learn
(Pedregosa et al., 2011) is used to compute scores.

• Geometric NMI is the normalized mutual
information between two cluster assignments.
It is defined:

NMI =
I(C,K)

mean(H(C), H(K))

where I is the mutual information and H is
entropy. In this case, mean is the geometric
mean.

mean(x1, ..., xn) =

(
n∏

i=1

xn

) 1
n

We note that arithmetic NMI using the arith-
metic mean is often reported, but that it is
equivalent to V-Measure.

• Fowlkes Mallows (Fowlkes and Mallows,
1983) is used to evaluate the similarity be-
tween a clustering and the ground truth. It is
the geometric mean of pairwise precision and
recall.
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FM =
TP√

(TP + FP )(TP + FN)

• Completeness (Rosenberg and Hirschberg,
2007) Completeness measures whether all of
the data points assigned to a single class are
assigned to a single cluster. It is defined:

c =

{
1 if H(K,C) = 0

1− H(K|C)
H(K) else

• Homogeneity (Rosenberg and Hirschberg,
2007) measures whether data points in a clus-
ter are all assigned the the same class. It is
symmetric to completeness:

h =

{
1 if H(C,K) = 0

1− H(C|K)
H(C) else

• V-Measure (Rosenberg and Hirschberg,
2007) (standing for validity) is the harmonic
mean between homogeneity and complete-
ness:

v =
(1 + β)hc

βh+ c

In practice, β = 1 is used to weight h and c
equally.

• Adjusted Rand Index (Hubert and Arabie,
1985) is a version of the Rand index, a mea-
sure of cluster similarity, which is adjusted for
chance.

ARI =
RI − E [RI]

maxRI − E [RI]

where the Rand index, RI , is

RI =
TP + TN(

n
2

)

and E [RI] is expected value of random clus-
terings.

H UMAP Weights

UMAP (McInnes et al., 2018) attempts to estimate
the density by comparing the distance to the k-
nearest neighbors as follows:

ρi = min{d(xi, xij )|1 ≤ j ≤ k, d(xi, xij ) > 0}

k∑

j=1

exp(
−max(0, d(xi, xij )− ρi)

σi
) = log2(k)

Here, d(xi, xij ) is the distance between xi and
xij . ρi is the minimum distance to xi’s closest
neighbor. σi, which smooths and normalizes the
distances to the nearest neighbors, is calculated
for each data point. Next, UMAP calculates the
following weights between data points:

w((xi, xj)) = exp(
−max(0, d(xi, xij )− ρi)

σi
)

We use 1− w((xi, xj)) for agglomerative clus-
tering.

I Reproducibility

The SBERT model we used, along with the size
of the Q and K layers use a dimension of size
384. Our total model has 34,839,937 parameters,
of which 1,479,937 do not belong to SBERT. Input
uses the ‘ldc_scope’ part of the ACE event men-
tion. Our model takes roughly 2 hours to train
on one V100 GPU, including the early stopping
calculations which are done with the model set to
‘evaluation’ mode. We used batch size 10, which
is the most that would fit in memory. For learn-
ing rates, we considered the suggestions in (Devlin
et al., 2019). Datasets used are in English. ACE05
contains 5,349 mentions which fall into 33 event
types. Data artifacts in this work were used for
research purposes consistent with their licensing
agreements and intended use. Artifacts we create
(e.g. code and manual linking) are in line with this
intended use.

J Ablations
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Ablation Method Clusters Geometric
NMI

Fowlkes
Mallows Completeness Homogeneity V-Measure ARI

Original

Attn-Cosine Agglo 23 46.40 34.60 49.82 43.24 46.27 26.69
Attn-DotProduct Agglo 23 50.17 37.48 53.50 47.06 50.06 30.13

Attn Manifold 23 54.83 42.77 55.00 54.67 54.82 38.74
FT-SBERT Manifold 23 60.28 50.63 60.19 60.37 60.28 47.24

Attn-DotProduct Affinity 49-68 56.87 35.64 49.58 65.26 56.33 30.02
Attn-Cosine Affinity 50-69 56.54 33.00 48.72 65.62 55.91 27.04

No
Augmentation

Attn-Cosine Agglo 23 47.69 33.21 49.57 45.88 47.66 26.43
Attn-DotProduct Agglo 23 48.14 34.02 49.73 46.59 48.11 27.53

Attn Manifold 23 48.72 37.91 49.99 47.49 48.71 33.11
FT-SBERT Manifold 23 57.04 45.61 57.20 56.89 57.04 41.86

Attn-DotProduct Affinity 53 51.84 30.32 45.41 59.19 51.39 25.00
Attn-Cosine Affinity 56 52.88 31.93 45.83 61.02 52.35 26.19

BERT
Pooled Token

Representation

Attn-Cosine Agglo 23 29.27 19.71 32.04 26.74 29.15 10.36
Attn-DotProduct Agglo 23 27.81 21.30 33.37 23.17 27.35 8.31

Attn Manifold 23 28.07 16.89 28.06 28.08 28.07 10.88
FT-BERT Manifold 23 29.72 16.17 28.95 30.52 29.71 10.89

Attn-DotProduct Affinity 23 27.99 16.26 27.89 28.09 27.99 10.41
Attn-Cosine Affinity DNC

BERT
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 52.61 36.98 74.74 37.04 49.53 18.12
Attn-DotProduct Agglo 23 45.17 33.33 71.03 28.72 40.91 12.64

FT-BERT Agglo 23 51.67 35.05 76.18 35.04 48.00 14.92
Attn Manifold 23 60.018 44.09 73.70 48.88 58.77 31.21

FT-BERT Manifold 23 81.20 73.27 82.96 79.48 81.19 71.05
Attn-DotProduct Affinity 58 61.07 37.14 27.89 69.05 60.61 24.83

Attn-Cosine Affinity 32 61.97 37.02 68.50 56.06 61.66 25.40

BERT
Untrained

Untuned Agglo 23 61.19 45.36 70.73 52.94 60.56 34.51
Untuned Manifold 23 75.49 64.61 77.69 73.34 75.46 61.54

RoBERTa-base
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 49.37 33.48 69.54 35.05 46.61 13.57
Attn-DotProduct Agglo 23 43.62 31.33 66.27 28.71 40.06 10.24

FT-RoBERTa Agglo 23 57.32 36.68 75.69 43.41 55.18 18.17
Attn Manifold 23 57.14 44.30 69.72 46.84 56.03 33.01

FT-RoBERTa Manifold 23 83.44 78.12 84.37 82.52 83.44 76.56
Attn-DotProduct Affinity 44 57.76 39.86 64.06 52.08 57.45 29.17

Attn-Cosine Affinity 32 62.53 45.00 66.17 59.09 62.43 37.39

RoBERTa-base
Untrained

Untuned Agglo 23 17.53 23.66 39.62 7.76 12.98 0.35
Untuned Manifold 23 72.38 62.79 71.73 73.03 72.38 60.24

ELECTRA-base
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 21.07 23.36 37.36 11.89 18.03 1.36
Attn-DotProduct Agglo 23 21.52 23.11 36.23 12.78 18.89 1.63
FT-ELECTRA Agglo 23 30.02 25.74 47.36 19.03 27.15 4.87

Attn Manifold 23 32.45 28.89 54.54 19.30 28.51 8.67
FT-ELECTRA Manifold 23 62.41 47.05 63.92 60.93 62.39 42.65

Attn-DotProduct Affinity 278 45.76 22.35 44.28 47.29 45.74 12.35
Attn-Cosine Affinity 154 45.83 23.86 46.88 44.81 45.82 12.32

ELECTRA-base
Untrained

Untuned Agglo 23 12.82 21.14 22.91 7.17 10.93 0.49
Untuned Manifold 23 30.31 20.18 33.08 27.79 30.20 12.08

ALBERT-base
Trigger

Representation
————–

No
Augmentation

Attn-Cosine Agglo 23 48.55 35.22 61.79 38.14 47.17 19.94
Attn-DotProduct Agglo 23 40.38 31.29 56.43 28.90 38.22 13.75

FT-ALBERT Agglo 23 38.41 27.64 59.44 24.82 35.02 6.34
Attn Manifold 23 56.80 43.26 70.72 45.61 55.46 30.69

FT-ALBERT Manifold 23 74.67 65.42 74.48 74.87 74.67 63.03
Attn-DotProduct Affinity 33 57.99 38.48 58.14 57.84 57.99 32.85

Attn-Cosine Affinity 40 60.27 34.81 60.01 60.53 60.27 26.71

ALBERT-base
Untrained

Untuned Agglo 23 47.00 31.21 54.09 40.83 46.53 21.29
Untuned Manifold 23 56.85 39.43 57.30 56.41 56.85 35.02

Table 8: New event type induction ablation results (%). The first ‘Method’ subcolumn is the input for clustering and
the second is the clustering algorithm used. FT stands for finetuned. SBERT indicates the SBERT representations
were used rather than our learned attentions (Attn). DNC indicates did not converge. Agglo is agglomerative
clustering, Affinity is (Frey and Dueck, 2007), and Manifold is as described in Section 3.7.1. For affinity, each run
can produce a slightly different number of clusters. BERT models use ‘bert-base-uncased’. The BERT pooled
used a batch size of 8 because it takes up more VRAM. 15 epochs were used for each model. The BERT trigger
representations use the ground truth triggers, which allows the duplicate problem to be avoided and helps clue in the
network. The version trained with our method and without training is shown.
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K Experiments on MAVEN

To further evaluate our method, we conduct exper-
iments on the Maven dataset (Wang et al., 2020),
which contains 118,732 event mentions and 168
event types. This provides an excellent example of
a large dataset which may have a number of unan-
notated event types (or event types which need to
converted to finer-grained typing). Since this semi-
supervised task has not been done on MAVEN, we
select the most common 150 types as seen and the
remaining 18 types as unseen. To adapt early stop-
ping to such a large dataset, we adapt our early
stopping by calculating the silhouette score every
250 steps, which is roughly the same computation
as a single ACE2005 epoch. We train our method
for 8 epochs with other hyperparameters the same
as the ACE2005 experiments. For Manifold clus-
tering, we select an arbitrarily large k = 3, 000 for
computational reasons.

We experiment on using trigger representations
from the event mentions. Unfortunately, these are
specified by the dataset in terms of the its tokeniza-
tion scheme, so converting to BERT tokenization
incurs a small error rate (for example, some words
are tokenized as ’unk’ in MAVEN). We find that
these errors do not prevent the representation from
performing well.

Results are shown in Table 9. They show that
SBERT representations do not work well for the
mentions in the MAVEN dataset (we believe this
is due to differences in the scope of what is consid-
ered an event mention). Training with our method
still improves clustering on the SBERT represen-
tations from 9.06 ARI to 10.51. However, the
attention mechanisms learned are less effective
along with our manifold clustering approach. The
bert-base-uncased representations using the trigger
words perform much better as expected. Addi-
tionally, our method, using both learned attention
and trained trigger representations, increases per-
formance significantly. For manifold, this is from
44.84 ARI to as high as 67.01. As noted in the
conclusion, the interaction here between manifold
approximation and large language model represen-
tations is an interesting future research direction
for better understanding these results. It may also
be interesting to think about how to obtain a desir-
able representation for starting the training of our
model. Another example that would benefit from
this is using a neural dense retriever to retrieve
frozen embeddings in a retrieval large language

model, such as (Borgeaud et al., 2021).
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Representation Method Clusters Geometric NMI Fowlkes Mallows Completeness Homogeneity V-Measure ARI
SBERT Untuned Agglo 18 33.33 18.98 37.25 29.81 33.12 9.06
SBERT Untuned Manifold 18 37.07 19.61 37.82 36.33 37.06 13.14

bert-base-uncased Untuned Agglo 18 66.95 42.46 75.14 59.66 66.51 32.47
bert-base-uncased Untuned Manifold 18 69.05 48.71 69.54 68.56 69.05 44.83

SBERT Attn-Cosine Agglo 18 30.14 14.08 30.82 29.48 30.13 6.86
SBERT Attn-DotProduct Agglo 18 29.92 13.90 30.06 29.77 29.92 7.49
SBERT Finetuned Agglo 18 34.23 16.48 34.05 34.41 34.22 10.51
SBERT Attn-Cosine Manifold 18 32.54 14.91 32.60 32.48 32.54 8.68
SBERT Finetuned Manifold 18 33.61 16.26 34.10 33.13 33.61 9.67

bert-base-uncased Attn-Cosine Agglo 18 73.77 60.25 75.01 72.56 73.76 57.11
bert-base-uncased Attn-DotProduct Agglo 18 73.52 58.19 73.84 73.21 73.52 55.07
bert-base-uncased Finetuned Agglo 18 74.54 59.67 78.41 70.86 74.44 55.30
bert-base-uncased Attn-Cosine Manifold 18 76.48 64.08 76.82 76.14 76.48 61.43
bert-base-uncased Finetuned Manifold 18 79.93 69.49 81.35 78.54 79.92 67.01
bert-base-uncased Attn-DotProduct Affinity 37 74.47 49.70 66.07 83.95 73.94 43.79
bert-base-uncased Attn-Cosine Affinity 41 74.37 48.54 65.20 84.83 73.73 42.14

SBERT Attn-DotProduct Affinity 40 40.87 11.53 35.48 47.08 40.47 6.81
SBERT Attn-Cosine Affinity 38 40.46 11.52 35.39 46.26 40.10 6.79

Table 9: New event type induction results (%) on MAVEN (Wang et al., 2020). The first two sections are baseline
representations without our method. The bert-base-uncased representation uses trigger representations. The first
subcolumn of ‘method’ is the input for clustering and the second is the clustering algorithm used. ‘Finetuned’
indicates the finetuned model representations from our method were used and ‘untuned’ indicates our method was
not used. Attn-score indicates our learned attention scores were used and the method for computing these scores
from the query and key vectors. E stands for ensemble. Agglo is agglomerative clustering, Affinity is (Frey and
Dueck, 2007), and Manifold is as described in Section 3.7.1. For affinity, each run can produce a slightly different
number of clusters.
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