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Abstract

We introduce a task consisting in matching a
proof to a given mathematical statement. The
task fits well within current research on Math-
ematical Information Retrieval and, more gen-
erally, mathematical article analysis (Mathe-
matical Sciences, 2014). We present a dataset
for the task (the MATCH dataset) consisting
of over 180k statement-proof pairs extracted
from modern mathematical research articles.!
We find this dataset highly representative of
our task, as it consists of relatively new find-
ings useful to mathematicians. We propose
a bilinear similarity model and two decoding
methods to match statements to proofs effec-
tively. While the first decoding method matches
a proof to a statement without being aware of
other statements or proofs, the second method
treats the task as a global matching problem.
Through a symbol replacement procedure, we
analyze the “insights” that pre-trained language
models have in such mathematical article anal-
ysis and show that while these models per-
form well on this task with the best performing
mean reciprocal rank of 73.7, they follow a rela-
tively shallow symbolic analysis and matching
to achieve that performance.’

1 Introduction

Research-level mathematical discourse is a chal-
lenging domain for Natural Language Processing
(NLP). Mathematical articles frequently switch be-
tween natural language and mathematical formulae,
and a semantic analysis of mathematical text needs
to solve relationships (e.g. coreference) between
mathematical symbols and concepts. Moreover,
mathematical writing follows many conventions,

*Work mostly done at the University of Edinburgh.

'Our dataset and code are available at https://
github.com/waylonli/MATcH.

Like Bert, The Count (or Count von Count; @) is a
character from the television show Sesame Street. The Count
likes counting, and his main role in the show is to teach this
skill to children.

yftah.ziserf@ed.ac.uk

Statement. When m = 0 we have Ef,)g =0,
and when m # 0 we have E}?g = EY.

Proof. When m = 0, the image of r is {1}.
Hence E}, = (). When m # 0, the map r is a
surjective proper map. Hence Egg = E°.

Figure 1: Example of a statement-proof pair.

such as variable naming or typography that are
implicit, and may differ between subfields.

However, mathematical research can benefit
from NLP (Mathematical Sciences, 2014), in par-
ticular as concerns bibliographical research: re-
searchers need tools to find work relevant to their
research. Indeed, prior NLP work on mathemati-
cal research articles focused on Mathematical In-
formation Retrieval (MIR) and related tools or
data (Zanibbi et al., 2016; Stathopoulos and Teufel,
2016, 2015).

We introduce a task aimed at improving the pro-
cessing of research-level mathematical articles and
make a step towards the modeling of mathemat-
ical reasoning. Given a collection of mathemat-
ical statements and a collection of mathematical
proofs of the same size, the task consists in finding
and assigning a proof to each mathematical state-
ment. We construct and release a dataset for the
task (MATCH), by collecting over 180k statement-
proof pairs from mathematical research articles (an
example is given in Figure 1).

Related datasets, such as LEANSTEP (Han
et al., 2021) and the synthetic dataset of Polu and
Sutskever (2020) do not include natural language.
NaturalProofs (Welleck et al., 2021), another re-
lated dataset, only consists of 32k theorem-proof
pairs from ProofWiki,> some sub-topics in alge-
braic geometry and two textbooks. Our dataset is
over five times larger and contains pairs extracted

Shttps://proofwiki.org/xmldump/latest.
xml
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from advanced academic mathematical papers.

There are multiple motivations for the design of
the task and our dataset. We believe it may help
MIR by serving as a proxy for the search for the
existence of a mathematical result, or for theorems
and proofs related to one another (e.g. using the
same proof technique), an important search tool
for any digital mathematical library (Mathematical
Sciences, 2014). Learning to match statements and
proofs would also benefit computer-assisted theo-
rem proving, as it is akin to tasks such as premise
selection, also recently addressed with NLP meth-
ods (Piotrowski and Urban, 2019).

We provide first results on our proposed task
with an array of neural models, aimed at scoring
the likelihood of relationship between a statement
and its proof. An analysis through a symbol re-
placement procedure provides insight on what
such neural models are capable of learning about
mathematical equations and text.

We provide two methods for decoding, one is
local decoding, matching a proof to a theorem in
a greedy way, and one that provides a global bi-
partite matching based on a structured max-margin
objective. Such an architecture may have applica-
tions to other NLP problems that can be cast as
maximum bipartite matching problems (for a re-
cent similar use in a different context, see Shao
et al. 2023).

Our analysis shows that pre-trained language
models do not obtain significant “mathematical in-
sight” for performing this matching, but rather rely
on shallow matching. However, this does not pre-
vent them from performing the matching relatively
well in several carefully crafted scenarios, reaching
an MRR of 73.7.

2 Related Work

Most NLP work on mathematical discourse focuses
on improving Mathematical Information Retrieval
(Zanibbi et al., 2016, MIR) by establishing connec-
tions between mathematical formulae and natural
language text in order to improve the representation
of formulae.

The interpretation of variables is highly depen-
dent on the context. For example, the symbol E
could denote an expectation in a statistics article,
or the energy in a physics article. Some studies
use the surrounding context of a formula to as-
sign a definition or a type to the whole formula, or
to specific variables. Nghiem Quoc et al. (2010)

focus on identifying coreferences between math-
ematical formulae and mathematical concepts in
Wikipedia articles. Kristianto et al. (2012) extract
definitions of mathematical expressions. Grigore
et al. (2009), Wolska et al. (2011) and Schubotz
et al. (2016) disambiguate mathematical identifiers,
such as variables, using the surrounding textual
context. Stathopoulos et al. (2018) infer the type of
a variable in a formula from the textual context of
the formula. Another line of work focused on iden-
tifying specialized terms or concepts to improve
MIR (Stathopoulos and Teufel, 2015, 2016).

Some work adapts standard NLP tools to the
specificity of mathematical discourse, e.g. POS
taggers (Schoneberg and Sperber, 2014), with the
objective of using linguistic features to improve
the search for definitions of mathematical expres-
sions (Pagel and Schubotz, 2014). More recent
work focuses on typing variables in mathematical
articles (Ferreira et al., 2022), modeling formulae
(Mansouri et al., 2019; Dadure et al., 2021), and se-
lecting premises (Ferreira and Freitas, 2020, 2021).

An earlier version of our work covers some of
the material in this paper (Coavoux and Cohen,
2021). The main differences between that version
and the current version are the introduction of the
symbol replacement evaluation (§5) and the use of
pre-trained language models rather than recurrent
neural networks.

3 Task Description

Given a collection of mathematical statements
{5s},<n, and a separate equal-size collection of
mathematical proofs {p(V};<, we are interested
in the problem of assigning a proof to each state-
ment.

Evaluation We use two evaluation metrics. As-
suming that a system predicts a ranking of proofs,
instead of providing only a single proof, we
evaluate its output with the Mean Reciprocal
Rank (MRR) measure: MRR({7;}icq1,. n}) =

1 .
+ SN | =, where N is the number of examples
Py

and 7; is the rank of the gold proof for statement
number ¢, as predicted by the system.

As a second evaluation metric, we use a simple
accuracy, i.e. the proportion of statements whose
first-ranked proof is correct.

By construction (see §4), it is possible though un-
likely that the same mathematical statement occurs
several times in the dataset. It is more unlikely that
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Number of articles in the MREC corpus 439,423
Extracted articles with statement-proof pairs 27,841
Total number of statement-proof pairs 184,094
Number of (primary) categories (120) 135
Average number of categories per article 1.7
Most represented primary categories # articles # pairs
math.AG Algebraic Geometry 2848 22029
math.DG Differential Geometry 2030 12440
math.CO Combinatorics 1705 10548
math.GT Geometric Topology 1539 9234
math.NT Number theory 1454 9521
math.PR Probability 1422 7660
math.AP Analysis of PDEs 1386 6981
math-ph Mathematical Physics 1249 6491
math.FA Functional Analysis 1143 8011
math.GR Group Theory 970 7806
math.DS Dynamical System 961 6424
math.QA Quantum Algebra 944 8074
math.OA Operator Algebras 923 8050

Table 1: Statistics about the dataset and categories of
mathematical articles.

several occurrences have exactly the same formula-
tion and use the same variable names. Therefore,
we consider a match to be correct if and only if it
is associated with its original proof.

4 Dataset Construction

This section describes the construction of the
MATCH dataset of statement-proof pairs (see Fig-
ure 1 for an example).

Source Corpus We use the MREC corpus*
(Liska et al., 2011) as a source. The MREC cor-
pus contains around 450k articles from ArxMLiV
(Stamerjohanns et al., 2010), an on-going project
aiming at converting the arXiv> repository from
IKTEX to XML, a format more suited to machine
processing. In this collection, mathematical for-
mulae are represented in the MathML® format, a
markup language.

Statistics We extract statement-proof pairs as de-
scribed in Appendix A. Our processing of MREC
includes the identification of statement-proof pairs
through meta tags and the linearization of the rep-
resentation of mathematical equations.

We report in Table 1 some statistics about the
dataset we collected. The extracted articles were
from a diverse set of mathematical subdomains,
and connected domains, such as computer science
(746 articles from 30 subcategories) and mathemat-
ical physics (2562 from 31 subcategories). There

4https://mir.fi.muni.cz/MREC/, version
2011.4.439.
Shttps://arxiv.org/

*https://www.w3.org/Math/

Statements Min Max Mean+SD
Text+math 20 500 80+£57
Text only 1 398 30+20
Math only 0 470 58+20
Math proportion 0% 99.5%  58%=+20
Proofs

Text+math 20 500 2104 127
Text only 1 467 81 £ 56
Math only 0 495 129+ 96
Math proportion 0% 99.6%  56%+ 21

Table 2: Number of tokens in the dataset. We report for
statements and proofs the minimum, maximum and av-
erage number of tokens broken down by type (‘math’ for
tokens extracted from formulae and ‘text’ for the others).
A value of 0 for, e.g. the ‘math only’ row, means that
the statement or proof does not contain mathematical
symbols or formulae.

are in average 6.6 statement-proof pairs per article.
We report statistics about the size of statements and
proofs in the number of tokens in Table 2. We re-
port the number of tokens in formulae (math), in the
text itself (text) and in both (text+math). On aver-
age, proofs are much longer than statements. State-
ments and proofs have approximately the same pro-
portion of text and math. Overall, the variation in
the number of tokens across statements and proofs
is extremely high, as illustrated by the standard
deviation (SD) of all presented metrics.

5 Symbol Replacements

With our current dataset setup, we implicitly make
the assumption that both the theorem and the proof
are authored by the same authors. This assump-
tion is incongruent with the MIR-flavor of our task.
First, it is not useful for researchers to match proofs
they authored. Second, each person has a unique
writing style expressed by unique mathematical jar-
gon and notations. To relieve of this assumption,
we introduce several symbol replacement levels for
changing the names of the proof variables. Then,
we train and test our models using these altered
datasets. These replacement levels also provide
insight on the ability of our models to semantically
analyze the input statement-proof pairs.

Symbol Replacement Levels We propose dif-
ferent levels of symbol replacement, focusing on
mathematical notation. More precisely, we aim to
replace the proof variable names if they appear in
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the statement without damaging the proof seman-
tics. To do that, we change symbols that appear
both in the proof and the statement. We do not
change constant symbols such as 7, as they often
carry semantic meaning outside of the proof scope.

We experiment with four levels of symbol re-
placement (examples in parenthesis):

* Symbol conservation - all symbols remain in-
tact, so the theorem and the proof overlap. All
previous work uses that. (a, = ap—1 + an—2)

* Partial symbol replacement - A fraction of «
of all the symbols in the proof remain the same,
and the rest are changed. In our experiments, we
use o = 0.5. (X, = Tp_1+ Tn_2)

* Full symbol replacement - all symbol names
are changed (o = 1.0 as above).

(r; =21+ xi-2)

* Symbol transposition - We permute the vari-
ables’ names such that no symbol remains the
same, thus changing their original functionality.
(ng = ng—1 +Ng—2)

More details about this appear in Appendix C.

6 Bilinear Similarity Model

We propose a model based on an encoder (§8)
that constructs fixed-size vector representations for
statements and proofs, and a similarity function that
scores the relatedness of a statement-proof pair.

Trainable Bilinear Similarity Function Given
the encoded representations of a statement s =
enc(s) and a proof p = enc(p), we compute an
association score with the following bilinear form:

score(s, p) = s' - W-p+b,

where W and b are parameters that are learned
together with a self-attentive encoder parameters

(88).

Local Decoding For a collection of n statements
and proofs, we first score all possible pairs (s, p),
and construct a matrix M = (m;;) € R™*", with

mij = score(s, pl9)),

where s() and pU) are the encoded representations
of, respectively, the i statement and the j** proof.
Then we can straightforwardly sort each row by de-
creasing order and assign the proof ranking to the
corresponding statement. The best ranking proof

p for statement ¢ satisfies p(¥) = arg max; 1mi;.
We call this decoding method ‘local’, since it does
not take into account dependencies between assign-
ments. In particular, several statements may have

the same highest-ranking proof.

Global Decoding The local decoding method
overlooks a crucial piece of information: a proof
should correspond to a single statement. In a worst-
case situation, a small number of proofs may score
high with most statements and be systematically
assigned as highest-ranking proof by the local de-
coding method.

In preliminary experiments, we analyzed the out-
put of our system with local decoding on the de-
velopment set, focusing on the distribution of the
single highest-ranking proof for each statement.
We found that 23% of the proofs were assigned
to at least two different statements, whereas more
than 40% of proofs were assigned to no statement.
See also Appendix B.’

We propose a second decoding method based
on a global constraint on the output: a proof can
be assigned only to a single statement. Intuitively,
the constraint models the fact that if a proof is as-
signed by the system to a certain statement with
high confidence, we can rule it out as a candidate
for other statements. Under this constraint, the de-
coding problem reduces to a classical maximum
weighted bipartite matching problem, or equiva-
lently, a Linear Assignment Problem (LAP). In
more realistic scenarios (e.g. if the input sets of
statements and proofs do not have the same size),
the method would require some adaptation.

Formally, we define an assignment A as a
Boolean matrix A = (a;;) € {0,1}"*" with the
following constraints:

WVj,Zaij == Zai]‘ = 1,
J %

i.e. each row and each column of A contains a
single non-zero coefficient. The score of an assign-
ment A is the sum of scores of the chosen edges:

score(A, M) = Z Zaijmij.
g

Finally, global decoding consists in solving the

"We used a simple encoder for these experiments, which
we describe in §8 (NPT).

3584



following LAP:

AM) = score(A, M).

arg max
A€{071}nx n
SLVVAYS; aij=3, aig=1

The LAP is solved in polynomial time by
the Hungarian algorithm (Kuhn, 1955), the LAP-
Jonker-Volgenant algorithm (LAP-JV; Jonker and
Volgenant, 1987), or the push-relabel algorithm
(Goldberg and Kennedy, 1995). These methods
have a O(n3) time complexity where n is the num-
ber of pairs, and O(n?) memory complexity. This
is too expensive in our case, due to our dataset size.

To remedy this limitation, when we perform de-
coding on a large set, we only consider the k best-
scoring proofs (i.e. outgoing edges in the bipartite
graph) for each statement, which makes the number
of edges linear in the number of pairs n (consid-
ering k fixed). Moreover, we use a modification
of the LAP-JV algorithm specifically designed for
sparse matrices (LAP-MOD; Volgenant, 1996).

7 Local and Global Training

We propose two training methods for the similarity
model above: a local training method that only
considers statements in isolation (§7.1) and a global
model trained to predict a bipartite matching (§7.2),
with a hybrid global-local objective.

7.1 Local Training

We would like to train our model to assign a high
similarity to the gold statement-proof pair, and a
low similarity to all other statement-proof pairs.
This corresponds to the following objective, for a
single statement s and its gold proof p:

Lioc(s,p, P;0) = —logP(p|s; 0)

exp(score(s, p))

>_ exp(score(s, p’))
p'eP

= —log

)

where P is the set of proofs, and 6 are the param-
eters of the model. Directly optimizing this loss
function requires the computation of p = enc(p)
for every proof in the dataset, for a single optimiza-
tion step. This is not realistic considering memory
limitations, the size of the train set, and the fact
that our self-attentive encoder is the most computa-
tionally expensive part of the network.

Instead, we sample minibatches of b pairs and
optimize the following proxy loss for the sequence

S" = (s1,...,sp) of statements and the sequence
P' = (p1,...,py) of corresponding proofs:®

ELOCS/P/ P’G)

Z ‘CLOC

In practice, we sample uniformly and without re-
placement b pairs from the training set at each
stochastic step.

7.2 Hybrid Local and Global Training

The local training method only considers state-
ments in isolation. Even though we expect a locally
trained model to perform better with global decod-
ing, we hypothesize that a model that is trained to
predict the full structure (a bipartite matching) will
be even better.

For a collection of n proofs and n statements, the
size of the search space (i.e. the number of bipartite
matchings) is n!, since each matching corresponds
to a permutation of proofs. As a result, the use of
a globally normalized model is impractical. We
turn to a max-margin model that does not require
normalization over the full search space.

We use the following max-margin objective, for
a set B of n pairs corresponding to matrix M:

A

max (0, A(A I)
+ score(A, M) —

LaLos(B; 0) =
score(I, M)),

where 6 is the set of all parameters A is the pre-
dicted assignment and [ is the gold assignment, i.e.
the identity matrix. The structured cost

Zmax —1)ij)

aims at enforcing a margin for each individual as-
signment.

The computation of this loss requires exact de-
coding for each optimization step. Since exact
decoding is only feasible for a small n, and since
we need to keep track of all intermediary vectors
to compute the backpropagation step,” we perform
each stochastic optimization step on a minibatch
of pairs of size b. Since this global objective had a
slow convergence rate (§8), in practice, we use a
hybrid local-global objective: £’ oc + LsLos.
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Symbol Replacement Level

Conservation Partial Full Transposition
Encoder-Decoder MRR Acc MRR Acc MRR Acc MRR Acc
NPT-Local-Local 63.22 56.08 47.19 39.24 4036 32.52 56.17 48.30
NPT-Local-Global - 61.89 - 42.55 - 35.43 - 53.49
NPT-Global-Global - 62.14 - 43.68 - 35.85 - 55.28
SCRATCHBERT-Local-Local 73.73 67.12 64.79 5720 60.67 52.54 73.17 66.51
SCRATCHBERT-Local-Global - 74.68 - 62.80 - 57.69 - 74.03
SCRATCHBERT-Global-Global - 71.38 - 58.06 - 52.31 - 70.32
MATHBERT-Local-Local 5451 4645 4431 36.10 3891 30.62 52.57 44.52
MATHBERT-Local-Global - 49.77 - 37.92 - 32.03 - 47.43
MATHBERT-Global-Global - 45.38 - 33.64 - 28.47 - 43.41

Table 3: The MRR and accuracy scores for different combinations of encoders, decoders, and symbol replacement
levels. All the models are trained and tested on the same replacement level. Best result in each column is in bold.
Following the model name, we include its encoder and decoder type (both being either Local or Global). We do not
include MRR scores for global inference, as there matching is done for all theorems together without ranking.

8 Experimental setup

Dataset We use the dataset whose construc-
tion is described in §4. We shuffle the collec-
tion of statement-proof pairs before performing
a 80%/10%/10% train-development-test split, cor-
responding to 147278 pairs for the training sets and
18408 pairs for the development and tests. We ex-
periment with a default, Mixed, split and a harder
Unmixed split (see §9.3).

Encoders We experiment with several encoders
to obtain neural representations of the theorem and
proof pairs. Our first encoder is a simple self-
attentive encoder. We use ¢ = 2 self-attentive
layers with 4 heads to obtain contextualized em-
beddings of dimension d = 300. The query and key
vectors have size d;, = 128. We construct a vec-
tor representation for the text with a max-pooling
layer over the contextualized embeddings of the
last self-attention layer. We do not use any form of
pre-training for this encoder and hence name it “no
pre-training encoder” (NPT). In addition, we exper-
iment with a BERT model (Devlin et al., 2019) as
an encoder. We do not use the pre-trained version
provided by Devlin et al., but rather pre-train the
base version from scratch (SCRATCHBERT), but
we do compare our results against a math-tailored
pre-trained version of BERT (Peng et al. 2021; see
below). Both the NPT and SCRATCHBERT vocab-

8We also experimented with a Noise-Contrastive Estima-
tion approach (Gutmann and Hyvirinen, 2012). However, it
exhibited a much slower convergence rate.

°In particular, the computation graph needs to conserve all
encoding layers for the 2n texts involved.

ularies are customized for our dataset, as prelim-
inary experiments revealed the importance of the
model-task vocabulary match.'”

To further demonstrate how crucial this vocab-
ulary match is, we experiment with math-BERT
(MATHBERT; Shen et al. 2021), a state-of-the-art
pre-trained model for mathematical formula under-
standing. This model is pre-trained on a large math-
ematical corpus ranging from pre-kindergarten, to
high-school, to college graduate level mathemati-
cal content, including professional mathematical
papers, using the BERT masked language model-
ing (MLM) task. We use the pre-trained version
provided by the authors, without vocabulary cus-
tomization. All of our encoders are fine-tuned on
the matching task. In addition, we experiment with
a naive token-matching system that computes co-
sine similarities between TF-IDF representations
of statements and proofs. We discovered that their
performance was very low, ranging from 11.4 to
29.8 (MRR), so we did not experiment with them
further.

Hyperparameters For pretraining SCRATCH-
BERT, we first train a new word piece tokenizer'!.
Next, we train the SCRATCHBERT model on the
MLM task for 60 epochs (around 3 days) using four
NVIDIA V100 GPUs. We evaluate the language
model every 500 steps, where one step stands for

training on one example, and choose the one with

!0This supports the findings of Chalkidis et al. (2020), for
example, in a different domain.

"nttps://huggingface.co/docs/
transformers/tokenizer_summary#wordpiece
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the best performance on the validation set.

We perform local and global training / finetuning
respectively for the NPT model, MATHBERT, and
SCRATCHBERT. NPT has 15M parameters while
MATHBERT and SCRATCHBERT have 110M pa-
rameters. We observed in initial experiments that
training only with the global objective required a
long time to converge. Therefore, we used the fol-
lowing global-local objective: L'\ oc + LLos, that
we optimized by alternating one stochastic step for
each loss.

We train the NPT model for 400 epochs (around
1 day with two GPUs) over the whole training set
for local and global training. We use batches of
size b = 60 and set learning rate | = 5 x 10~3 with
the Averaged Stochastic Gradient Descent (ASGD;
Polyak and Juditsky 1992) optimizer. We use an
exponential learning rate scheduler (the learning
rate multiplied by 0.996 after each epoch) to stabi-
lize the optimizer in the latter training procedure
(after 300 epochs). We evaluate the performance
of the model on the validation set every 20 epochs
during training and select the best one among these
intermediate models.

We use four NVIDIA V100 GPUs to fine-tune
MATHBERT and SCRATCHBERT on the training
set for 60 epochs (around 2 days) with a learning
rate of | = 2 x 103, an ASGD optimizer, batches
of size b = 16, and a scheduler that multiplies the
learning rate by 0.99 after each epoch. We choose
the best model on the validation set, evaluating the
models every five epochs.

Global Decoding Recall that exact global decod-
ing is only feasible for a small subset of pairs. Dur-
ing global training, we chose a batch size small
enough to perform exact decoding. However, it
is not feasible to perform exact decoding on the
whole development and test corpora. Therefore,
we prune the search space by keeping only the 500-
best candidate proofs for each statement, and use
the LAP-MOD algorithm designed for sparse ma-
trices. In practice, we used the implementations
of the LAP-JV and LAP-MOD algorithms from
the 1ap Python package,'? for respectively exact
decoding on mini-batches during global training
and decoding on whole datasets during evaluation.

Pnttps://github.com/gatagat/lap

9 Results

First, we assess the task difficulty under different
replacement levels using different encoders and
schemes (global or local training, global or local
decoding). In particular, we are interested in as-
sessing whether global decoding improves accu-
racy when training is only local, and how the more
complex global training method fares with respect
to local training. We then measure the informative-
ness of different types of input: text, mathematical
formulae, or both. The comparison of these set-
tings is meant to provide insight into which type
of information is crucial to the task. Finally, we
experiment with a cross replacement levels setup,
i.e., when a model is tested on a different symbol
replacement level from the one that was used dur-
ing training. We hope this experiment will shed
some light on the importance of training models on
real-world datasets.

9.1 Main Results

Table 3 presents our results. We report MRR (if
relevant) and accuracy scores across different levels
of symbol replacement.

Encoders While MATHBERT is pre-trained on
millions of examples curated from mathematical
contents, it performs worse than the less complex
NPT encoder, which is trained solely on the down-
stream task across all symbol replacement levels
and decoders.'> SCRATCHBERT, which shares
MATHBERT architecture and NPT customized vo-
cabulary, is outperforming both consistently. These
results demonstrate the vocabulary importance for
learning from mathematical texts.

Symbol Replacement Levels Difficulty Best
performance is achieved when no symbol is re-
placed (Conservation), as the models can match
identical symbols across theorem-proof pairs. The
models achieve similar performance with Trans-
position replacement. These results suggest that
the symbols’ order, context, and function within
the mathematical text do not play a significant role
when the theorem and proof share the same sym-
bols. In contrast, when the symbol names are
changed (Partial and Full replacements), we ob-
serve a sharp decline in results.

3We observe similar trends when fine-tuning the out-of-
the-box BERT model on the matching task.
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Target - Syl.nbol Replacement N
m Conservation Partial Full Transposition
MRR Acc MRR Acc MRR Acc MRR Acc

- Conservation 7373 67.12 43.87 36.36 29.74 2536 69.56 62.23
S Partial 7421 67.96 64.79 57.20 53.77 4540 72.13 65.42
S Full 65.26 57.63 63.01 55.13 60.67 52.54 64.59 56.92
Transposition 73.78 67.40 43.67 36.02 29.76 2547 73.17 66.51

= Conservation 67.62 57.54 2126 1383 7.09 3.68 59.54 48.61
% Partial 61.19 50.73 55.26 4445 50.68 3994 59.63 49.01
g Full 55.68 45.18 5492 4434 54.62 44.22 5538 44091
- Transposition 67.5 57.76 2331 1526 898 497 66.25 59.29

Table 4: Cross-replacement levels performance for the SCRATCHBERT-Local-Local model for both splits: Mixed

and Unmixed.

Symbol Replacement
Conservation ‘ Full
Input | MRR Acc MRR Acc
NPT
Text | 22.51 16.68 22.51 16.68
Math | 65.08 58.47 3455 27.30
Both | 63.22 56.08 40.36 32.52
SCRATCHBERT
Text | 36.85 29.18 36.85 29.18
Math | 63.10 5592 41.64 34.01
Both | 73.73 67.12 60.67 52.54

Table 5: SCRATCHBERT-Local-Local and NPT-Local-
Local performance for different input types. Both stand
for the original and complete input.

Training and Decoding Effects In all settings,
global decoding substantially improves accuracy.
These improvements are more noticeable for the
NPT and SCRATCHBERT encoders. For NPT,
we observe better performance when using global
training, but not for SCRATCHBERT and MATH-
BERT. Due to the lack of computational resources,
we can not reach the global training full poten-
tial when using highly expressive encoders such
as SCRATCHBERT and MATHBERT, which share
BERT-base architecture.

9.2 Effect of Input Type Analysis

To better understand the importance of each input
type, we examine SCRATCHBERT-Local-Local
and NPT-Local-Local performance when fed with
text, mathematical formulae, or both (Table 5). We
test them on the Conservation and Full symbol
replacement levels. The mathematical formulae
input plays a more significant role for both models

than the textual input. When trained and tested
on the Conservation replacement level, NPT-Local-
Local makes better use of the mathematical for-
mulae input than the more expressive, pre-trained
SCRATCHBERT-Local-Local. When trained and
tested with Full replacement, where the models
cannot rely on simple token-matching, NPT-Local-
Local suffers from a sharper performance decline
than SCRATCHBERT-Local-Local when fed with
mathematical formulae input. These results sug-
gest that when applied to the Conservation data, a
less expressive model can get high results by har-
nessing simple token matching. SCRATCHBERT-
Local-Local performs better for both replacement
levels when fed with text and complete input.

9.3 Cross Replacement Setup

Table 4 shows the effect of testing a model on dif-
ferent symbol replacements than the one the model
was trained on. We use the SCRATCHBERT-Local-
Local model for all of our experiments. We observe
a sharp decline in results when SCRATCHBERT-
Local-Local is trained with Conservation and tested
on Partial or Full. These drops in performance
suggest the model developed a strong dependency
on exact symbol name matching. In addition, the
replacement shift from Conservation to Transposi-
tion and vice versa resulted in a minor performance
drop. These results provide additional evidence for
the lack of importance of mathematical function-
ality, order, and context of symbols’ names shared
across theorem and proof pairs. The model trained
on the Partial symbol replacement level demon-
strated significant resilience when tested with other
symbol replacement levels. It outperforms the rest
of the models when applied to out-of-domain re-
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placement levels and the Conservation replacement
level in-domain model.

In addition, we experimented with theorem-
proof pairs split where pairs from the same paper
could not appear in the same set: train, validation
or test (Unmixed). All models exhibited a reduc-
tion in performance when trained and tested under
these conditions. Particularly noteworthy was the
decrease in performance observed in models that
were trained using the Conservation and Transposi-
tion symbol replacement methods and evaluated on
data using the Partial or Full replacement methods.
These sharp declines highlight the dependence of
the model on simple symbol matching rather than
deeper inferential analysis.

9.4 Protected Symbols

Insofar, we overlooked that some symbols carry
a default meaning over a whole mathematical do-
main (protected symbols, e.g. P(z) for proba-
bility). Replacing them locally may result in a
detrimental impact on semantic mathematical con-
tent. We test the impact of substituting protected
symbols in a controlled setting by comparing mod-
els trained with symbol replacement methods that
preserve protected symbols versus methods that
treat all symbols equally. The test set preserves the
protected symbols. We follow the Unmixed setup,
where theorem-proof pairs from the same paper
must appear in the same split.

We focus on the probability theory domain. Fo-
cusing on a single domain enables us to construct
a list of protected symbols more precisely. Our
list consists of the P (probability measure), £ (ex-
pected value), V' (variance), o (standard deviation
and covariance), and p (correlation) symbols.14
Table 6 shows that training the SCRATCHBERT-
Local-Local model using the Partial+P replacement
method results in slightly better results. We present
only a subset of our results for brevity; the pattern
re-occurs with all symbol replacement methods.

9.5 Qualitative Analysis

To study which tokens affect our model predic-
tions, we use LIME (Ribeiro et al., 2016), a
method for calculating feature importance. We ex-
amine SCRATCHBERT-Local-Local trained with
the Conservation setup and with Full replacement.
Both are applied to original test examples. We

“We relied on Wikipedia, https://tinyurl.com/
2c3kwstx, for creating the protected symbols list.

Target Sym‘t?ol Replacemqnt
m Conservation |  Partial+P
MRR Acc MRR  Acc
Conservation 69.26 59.59 279 18.29
Partial 61.36 51.72 54.06 42.67
Partial+P 62.1 5192 5592 4523
Full 53.63 42.08 5285 414
Full+P 56.27 45.13 55.92 44.84

Table 6: Controlled cross-replacement levels perfor-
mance for the SCRATCHBERT-Local-Local model.
Both train and test sets are curated from the probabil-
ity theory domain. +P next to a symbol replacement
method means that Protected symbols are not being re-
placed.

observe that the Conservation SCRATCHBERT-
Local-Local model heavily relies on the mathemati-
cal tokens and barely benefits from the text ones. In
contrast, the SCRATCHBERT-Local-Local model
that was trained in the full symbol replacement
setup strongly relies on textual tokens with mathe-
matical meaning, such as module, supplement, and
semistable. We visualize that in Figure 2.

10 Conclusion

We developed a bilinear similarity model and a
large dataset (MATCH) for a task focusing on the
domain of mathematical research articles. The task
consists in matching a proof to a mathematical
statement. We proposed two ways to train and
inference with our model and dataset: local match-
ing and global matching. We assessed the diffi-
culty of the task with several pre-trained encoders,
demonstrating the importance of the vocabulary
support for these models. Further assessment relies
on using a symbol replacement procedure, which
helps test the type of mathematical reasoning the
encoders can perform. While our model performs
well on this task, we observe through the symbol
replacement procedure that the model makes a rela-
tively shallow use of the text and formulae to obtain
this performance.

Limitations

Our work has three main limitations. First, we aim
to simulate a setup where the same author did not
write both a theorem and its corresponding proof.
We reduce the intersection size of symbols between
the statement and the proof, which leads to more
challenging setups. In practice, authors and mathe-
matical communities within fields differ in their use
of notation and their writing style (creating math-
ematical language dialects). Such overall dialect
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cannot be altered using simple rule-based methods.
We leave it for future work to explore a full MIR
setup for our task that takes this into consideration.

Second, due to computational limitations, we
could not explore the full potential of our global
training method. Our GPUs cannot handle large
batch sizes for large models such as MATHBERT
and SCRATCHBERT. We use NVIDIA V100
GPUs that allow us to experiment with a batch
size of 16 for MATHBERT and SCRATCHBERT,
compared to 60 with NPT.

Third, while our symbol replacement method
provides a coarse way to test the language model
use of the symbols and text in mathematical articles,
it presents cases in which the replacement is not
precise. These cases arise because the use of sym-
bols in mathematical language is rich and context-
dependent (for example, while 7 often refers to the
pie constant, it might also refer to a tuple-projection
function or a permutation). We partially address
that in §9.4.
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A Details on Dataset Construction

As mentioned in §4, we use the MREC corpus to
extract statement-proof pairs.

Statement-proof Identification For each XML
article (corresponding to a single arXiv article),
we extract pairs of consecutive <div> tags such
that: (i) the class attribute of the first div node
contains the string "theorem"; (ii) the class
attribute of the second div node is the string
"proof". Articles that do not contain such pairs
of tags are discarded, as well as articles that are
not written in English (representing 143 articles
in French, 11 in Russian, 5 in German, 2 in Por-
tuguese and 1 in Ukrainian), as identified by the
polyglot Python package.!?

In the remaining collection of pairs of statements
and proofs, we filter out pairs for which either the
statement or the proof is too short.!® Indeed, the
short texts were often empty (only consisting of a
title, e.g. “5.26 Lemma.”), which we attribute to
the noise inherent to the conversion to XML, or not
self-contained. In particular, we identified several
prototypical cases:

* Omitted (or easy) proofs contain usually a sin-
gle word (‘omitted’, ‘straightforward’, ‘well-
known’, ‘trivial’, ‘evident’), but are some-
times more verbose (‘This is obvious and will
be left to the readers’).

* Proofs that consist of a single reference to

— An appendix (‘See Appendix A’);

— Another theorem (“This follows immedi-
ately from Proposition 4.4 (ii).”);

— The proof method of another theorem
(‘Similar to proof of Lemma 6.17)

— Another article (‘See [BK3, Theorem
4.8].);

— Another part of the article (‘The proof
will appear elsewhere.”, ‘See above.,
‘Will be given in section 5.%).

Filtering on the number of tokens also excludes
self-contained short proofs, such as ‘Take Q' =
ph; — p;. However, such proofs were very infre-
quent on manual inspection of the discarded pairs
(2 in a manually inspected random sample of 100
discarded proofs).
Bwww.github.com/aboSamoor/polyglot/
'*We used a minimum length of 20 tokens for both state-
ments and proofs, based on a manual inspection of the shortest

examples. We also exclude proofs and statements longer than
500 tokens.

Preprocessing: Linearizing Equations Mathe-
matical formulae in the XML articles are enclosed
in a <math> markup tag, that materializes the
switch to the MathML format, and whose inter-
nal structure represents the formula as an XML
tree. As a preprocessing step, we linearize each
formula to a raw sequence of strings.

In MathML, an equation can be encoded in a
content-based (semantic) way or in a presenta-
tional way, using different sets of markup tags. We
first convert all MathML trees to presentational
MathML using the XSL stylesheet from the Con-
tent MathML Polyfill repository.!” Then we per-
form a depth-first search on each tree rooted in a
<math> tag to extract the text content of the whole
tree.

During this preprocessing, we tested several pro-
cessing choices:

* Font information. In mathematical dis-
courses, fonts play an important role. Their
semantics depend on conventions shared by re-
searchers. If both z and x appear in the same
article, they are most likely to represent differ-
ent mathematical objects, e.g. a scalar and a
vector. Therefore, we use distinct symbols for
tokens that are in distinct fonts.

* Math-English ambiguity. Some symbols can
be used both in natural language text and in
formulae. For example, ‘a’ can be a deter-
miner in English, or a variable name in a for-
mula. To avoid increasing ambiguity when
linearizing formula, we type each symbol (as
math or text) to make the mathematical vocab-
ulary completely disjoint from the text vocab-
ulary.

Both these preprocessing steps had a beneficial
effect on the baselines in preliminary experiments.

B Distribution of Proof-Statement
Assignments

Table 7 depicts the cumulative distribution of
proofs and the number of statements they are as-
signed to.

C Symbol Replacement Details

We follow the following rules when replacing sym-
bols:

"https://github.com/fred-wang/
webextension-content-mathml-polyfill
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Lemma 3.2. Let M be a module and H
a local submodule of M . Then H 'is a
supplement of each proper submodule K < M
with H + K = M .

Proof. Since K is 'a proper submodule of M
and K + H = M ,|j8 have K N H is
a proper submodule of H . Therefore K N H
< H ,since 'H 1is local. That is, H is a
supplement of K in M .
(https://arxiv.org/pdf/0810.0041.pdf)

Lemma 3.2. Let M be a module and H a local
submodule of M. Then H |is| a supplement| of

each proper submodule K < M with H + K =
M.

Proof. Since K |is a proper [submodule of M
and K +H = M, i8] have K NH is aproper
submodule of H. _ KNH < H,since
H 'is local . That is, H is a supplement| of
Kin M.
(https://arxiv.org/pdf/0810.0041.pdf)

(a) Example statement/proof 1 - Symbol conservation

(b) Example statement/proof 1 - Full symbol replacement

Lemma 4.1.9. If % is a [ - semistable 2 -

twisted sheaf of rank r then dim Hom ( . # ,
Z ) <r

Proof. Any endomorphism of % | must preserve
the socle (see Lemma 1.5.5ff of [4]); moreover,
the quotient [ Z / Soc([# ) is also semistable .
The result follows by induction from the polystable
case, which itself follows immediately from the
fact that stable sheaves are simple.
(https://arxiv.org/pdf/0803.3332.pdf)

Lemma 4.1.9. If .% |is a u- semistable .2 -
twisted sheaf of rank 7 then dim Hom ( .%# ,
F) <@

Proof. Any endomorphism of .# must preserve
the socle (see Lemma 1.5.5ff 'of [ 4 ]); moreover,
the quotient .# / Soc(.%) |is also |semistable .
The result follows by induction from the polystable
case, which itself follows immediately from the
fact that stable sheaves are simple.
(https://arxiv.org/pdf/0803.3332.pdf)

(c) Example statement/proof 2 - Symbol conservation

(d) Example statement/proof 2 - Full symbol replacement

Figure 2: LIME visualizations for the model that was trained in the symbol conservation setup (a and c) and their
corresponding LIME visualizations for the model that was trained in the full symbol replacement setup (b and d).
The LIME “match” class supporting features are colored in orange, and the “mismatch” is in blue. The darker the
color, the higher (in absolute value) the feature importance.

Statements  Proofs %
> 20 7 00
> 10 80 0.2
>5 1027 1.9
>2 11949 22.6
=1 19531 37.0
<1 21275 40.3

Table 7: Cumulative distribution of proofs in the devel-
opment set, by number of statements to which they are
assigned with the local decoding method.

* Only the proof symbols are being replaced as
there is no need to replace both statement and
proof symbols.

* We replace symbols only if they appear in
both the statement and the proof.

* If the symbol a, for example, is mapped to b,
we will map A to B, and vice versa.

* We do not replace the double-struck letters,
e.g., R, since they usually represent fields and
constant. We do not replace standard constant
symbols such as 7.

D Prediction Visualization Examples

We provide a LIME visualization of several mathe-

matical statements in Figure 2.
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