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Abstract

Data sparsity is one of the main challenges
posed by code-switching (CS), which is fur-
ther exacerbated in the case of morphologically
rich languages. For the task of machine trans-
lation (MT), morphological segmentation has
proven successful in alleviating data sparsity
in monolingual contexts; however, it has not
been investigated for CS settings. In this paper,
we study the effectiveness of different segmen-
tation approaches on MT performance, cov-
ering morphology-based and frequency-based
segmentation techniques. We experiment on
MT from code-switched Arabic-English to En-
glish. We provide detailed analysis, examining
a variety of conditions, such as data size and
sentences with different degrees of CS. Empir-
ical results show that morphology-aware seg-
menters perform the best in segmentation tasks
but under-perform in MT. Nevertheless, we find
that the choice of the segmentation setup to use
for MT is highly dependent on the data size.
For extreme low-resource scenarios, a combi-
nation of frequency and morphology-based seg-
mentations is shown to perform the best. For
more resourced settings, such a combination
does not bring significant improvements over
the use of frequency-based segmentation.

1 Introduction

Code-switching (CS), i.e. the alternation of lan-
guage in text or speech, has been gaining world-
wide popularity, due to several reasons, including
globalization and immigration. While this has been
met with a growing interest in the NLP field to
build systems that can handle such mixed input,
work on CS machine translation (MT) is still con-
sidered in its infancy, where only a few language
pairs have been investigated (Sinha and Thakur,
2005; Dhar et al., 2018; Menacer et al., 2019; Xu
and Yvon, 2021; Hamed et al., 2022c).

*Work done while at the University of Stuttgart.

it depends J ¢ (Juwsills 4a) yuas situation
it depends bSrAHp bAlnsbAly E Al situation
for me it honestly depends on the situation

CS Sentence

Translation

Word Translation Segmentation
it it it
depends depends depend#s
Aal ey hSrAHp honestly Aal yatio bHSrAHD
Suile bAlnsbAly for me il bHAInsbA#ly
¢ E on ¢ E
dr Al the JAal
situation situation situation

Figure 1: An example sentence with code-switching
(CS) between English and Egyptian Arabic. The words
are contrasted with their segmentations and English
translations. Arabic words are paired with their translit-
erations in the Buckwalter scheme (Habash et al., 2007).

In this work, we focus on the CS Egyptian Ara-
bic (EGY)-English (EN) language pair, as we ob-
serve its usage is becoming more common. Besides
being prevalent amongst Egyptian migrant com-
munities, it is also commonly used in Egypt due
to the increase in international schooling systems
and educational advancements. We identify three
main challenges for CS MT. First is data sparsity,
a challenge common to many CS language pairs
because of limited parallel corpora containing com-
missioned translations of CS text (Cetinoglu et al.,
2016; Srivastava and Singh, 2020; Tarunesh et al.,
2021; Hamed et al., 2022b; Chen et al., 2022). Sec-
ond is Egyptian Arabic morphological richness,
which further exacerbates the data sparsity situa-
tion (Habash et al., 2012a,b). Third, since the ma-
trix language (EGY) is morphologically rich, CS
occurs at three CS levels: on the boundaries of sen-
tences (inter-sentential CS), between words (intra-
sentential CS), and within words, i.e., morpholog-
ical code-switching (MCS). This mix of types of
CS raises the question of how to handle them all
in the same system. These challenges are further
illustrated in Figure 1.
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A common solution to handle data sparsity for
MT of morphologically rich languages is mor-
phological segmentation (Oudah et al., 2019; Ata-
man et al., 2017; Gronroos et al., 2020). How-
ever, this has not been investigated for CS. In this
paper, we explore a wide range of segmentation
approaches, covering unsupervised morphology-
based segmenters, unsupervised frequency-based
segmenters, and supervised morphology-based seg-
menters. This work aims to answer the following
research questions (RQs):

* RQ1: Which segmentation setup performs
the best in the downstream MT task across
different training sizes?

* RQ2: Does the effectiveness of the different
segmenters in the MT task differ according to
the CS type of the source sentence?

¢ RQ3: Is there a correlation between a more
morphologically correct segmentation and
MT performance?

While our results show that there is no correla-
tion between correct morphological segmentation
and MT performance, we find that the performance
ranking between the MT systems varies across dif-
ferent training data sizes and sentence types (mono-
lingual vs. code-switched). We show that apply-
ing a combination of supervised morphology-based
and unsupervised frequency-based segmentations
consistently gives best results, with statistical sig-
nificance under low data sizes. While common-
wisdom suggests that Byte-Pair Encoding (BPE) is
the best approach, our experiments highlight the
importance of integrating morphological knowl-
edge in the case of extreme low-resource settings.
We believe that the insights and methodology we
follow will be useful to researchers working with
low-resource languages. An additional contribution
of our research is the creation of a gold standard
morphologically annotated CS Egyptian Arabic-
English dataset which we make publicly available.!

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the dataset
we annotated. Section 4 describes and evaluates the
different segmenters used. Section 5 describes and
evaluates the various MT systems. In Section 6, we
answer our research questions.

lhttp: //arzen.camel-1lab.com/

2 Related Work

Several researchers have investigated the effect
of applying different morphological and agnostic
segmentation approaches on the MT performance
for monolingual languages. Roest et al. (2020);
Saleva and Lignos (2021) show that unsupervised
morphology-based segmentation like Linguistically
Motivated Vocabulary Reduction (LMVR) (Ata-
man et al., 2017), Morfessor (Smit et al., 2014), and
FlatCat (Gronroos et al., 2014) for Nepali-English,
Sinhala—English, Kazakh—English, and Inuktitut—
English language pairs show either no improve-
ment or no significant improvement over the ag-
nostic BPE segmentation (Sennrich et al., 2016) in
translation tasks. Meanwhile, Mager et al. (2022)
and Ataman et al. (2017) show that for polysyn-
thetic and highly agglutinative languages, unsuper-
vised morphology-based segmentation outperforms
BPEs (Sennrich et al., 2016) in MT tasks in both
directions. Nevertheless, applying BPEs on top
of morphology-based segmentation for Turkish—
English, Uyghur—Chinese, and Arabic—English has
shown to bring improvements over solely using
BPEs or morphology-based segmentation for neu-
ral MT task (Pan et al., 2020; Tawfik et al., 2019). A
similar result was achieved by (Ortega et al., 2020),
using a morphological guided BPE for polysyn-
thetic languages. However, Oudah et al. (2019)
show that such an approach is beneficial in the
case of statistical machine translation (SMT), and
does not improve results for neural machine transla-
tion (NMT). For other natural language processing
(NLP) tasks, Al-Thubaity and Al-Subaie (2015)
show that utilizing word segmented Arabic dataset
leads to improvements in text classification task
over utilizing unsegmented dataset in terms of ac-
curacy, precision, recall, and F-measure.

As for work on CS MT, there are many efforts
(Sinha and Thakur, 2005; Dhar et al., 2018; Mahata
etal., 2019; Menacer et al., 2019; Song et al., 2019;
Tarunesh et al., 2021; Xu and Yvon, 2021; Chen
et al., 2022; Hamed et al., 2022c¢). To the best of
our knowledge, none of these efforts presented an
extensive comparison covering different segmen-
tation techniques. With regards to the languages
covered, only Menacer et al. (2019) worked on CS
Arabic-English. However, since they used care-
fully edited UN documents, the text only included
the Modern Standard Arabic variety, and contained
limited types of CS.

With regards to similar corpora, Balabel et al.
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Case Stem
Irregular | modified

Ending Example
Irregular: es monki+es
Irregular | modified |Regular: s,ed,ing,en|car+ing
Irregular | modified  |Irregular: <nil> went
Irregular | unmodified | Irregular: es church+es
Regular |unmodified |Regular: s,ed,ing,en |car+s

Table 1: The ordered list of rules we follow to segment
the English words.

(2020) annotated CS Egyptian Arabic-English data
(Hamed et al., 2018) with tokenization (canonical
segmentation), lemmatization, and POS tags. How-
ever, their corpus does not contain translations.

3 Data

3.1 Pre-existing Datasets

We use the ArzEn parallel corpus (Hamed et al.,
2020, 2022b), which consists of speech transcrip-
tions gathered through informal interviews with
bilingual Egyptian Arabic-English speakers, as
well as their English translations. The corpus
consists of 6,213 sentences, where 4,154 (66.9%)
are code-mixed, 1,865 (30.0%) are monolingual
Arabic, and 194 (3.1%) are monolingual En-
glish. Among the code-mixed sentences, there
are 1,781 (28.7%) sentences with morphological
code-switching. We follow the predefined dataset
splits, containing 3,341 (53.8%), 1,402 (22.6%),
and 1,470 (23.7%) sentences for train, dev, and test
sets, respectively. For training purposes, we also
use 308k monolingual parallel sentences obtained
from MADAR (Bouamor et al., 2018) and the fol-
lowing LDC corpora: (Gadalla et al., 1997; LDC,
2002b,a; Chen et al., 2017; Tracey et al., 2021;
BBN Technologies et al., 2012; Chen et al., 2019).
The preprocessing steps we apply are outlined in
Appendix A. We use ArzEn train set as well as the
monolingual parallel corpora to train both the seg-
menters and MT systems. For tuning and testing
the MT systems, we use the ArzEn dev and test
sets. For tuning and testing the segmenters, we
annotated a new dataset, discussed next.

3.2 A New Dataset: ArzEn Surface
Segmentation (ArzEnSEG) Corpus

To facilitate our research, we created a code-
switched Egyptian Arabic-English morphologi-
cally annotated dataset which we use for tuning
and testing. The dataset comprises the first 500
lines of ArzEn dev set. Unlike Balabel et al. (2020),
we opt for surface form segmentation to allow for

EGY EN
Test Words 3414 501
Dev Words 3,069 567
Total Words 6,483 1,068
Total Segmented Words 1,206 146
Total Morphs 7911 1,214
Total Unique Morphs 1,192 432
% of Total Segmented Words | 18.6% | 13.7%
Morphs/Word 1.220 1.137
Maximum Morphs per Word 5 2

Table 2: Statistics on ArzEnSEG corpus.

evaluating the segmenters. We also opt for extend-
ing ArzEn dataset as it contains translations and is
used in our MT experiments.

For Arabic word segmentation, we use the
Arabic Treebank (ATB) segmentation scheme
(Maamouri et al., 2004; Habash, 2010). We choose
this scheme as it is the standard tokenization
scheme used in different treebanks (Maamouri
et al., 2004, 2012; Taji et al., 2017; Habash et al.,
2022). It has also shown to be efficient in Oudah
et al. (2019) and has demonstrated its competitive-
ness in Habash et al. (2013).

For English word segmentation, we follow five
rules in sequential order depending on whether the
word has a regular or irregular stem and whether
the word has a regular or irregular ending. Table 1
exhibits the five English rules we follow in order.

All annotation decisions were made in context
by two bilingual speakers who collaborated on
initial annotations and quality checks. Figure 1
presents an annotation example. We divide the
sentences randomly into dev and test sets (250 sen-
tences each). In Table 2, we display statistics about
ArzEnSEG.

4 Segmentation Experiments

4.1 Experimental Setup

We explore three categories of segmenters:
unsupervised morphology-based, unsupervised
frequency-based, and supervised morphology-
based segmentation. For the unsupervised
morphology-based segmenters, we use MorphA-
Gram in addition to three segmenters from the Mor-
fessor family: Morfessor, LMVR, and FlatCat. For
unsupervised frequency-based segmenters, we use
BPE. Figure 2 summarizes the process of training
these segmenters. For the supervised morphology-
based segmenters, we use MADAMIRA (Pasha
et al., 2014), where we exploit the segmentation
schemes designed for Egyptian Arabic.
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Target Side

and how do you handle this ?
can you live without a mobile ?

CS Source Side
P € o3 stthandle+<w 1)) 5
( Drop 5 | ¢mobile s ie okl s
\English ./
LLMVR ﬁ\/IORF W LFC {LMVR WLMorphA ’ [LMVR.. LBPE.. LMORF
srclegy src src src src joint ‘joint tgt

Figure 2: The unsupervised segmentation models we study in this paper and their training data dependencies. We
use four systems: Morfessor (MORF), FlatCat (FC), LMVR, and MorphAGram (MorphA). The subscripts specify
the training data: source (src), target (tgt), source+target (joint), and source without English, i.e., Egyptian, (src/egy).

4.2 Segmentation Systems

In this section, we introduce the segmentation sys-
tems used for the study. Details about the hyperpa-
rameter tuning for each system family can be found
in Appendix B. The different segmentation models
and their training dataset are displayed in Figure 2.

Morfessor Family We exploit three Morfessor
family tools for unsupervised morphology-based
segmentation in this research: Morfessor, (Smit
et al., 2014), FlatCat (Gronroos et al., 2014), and
LMVR (Ataman et al., 2017).

Morfessor is a morphological-based segmenta-
tion model which we train in an unsupervised man-
ner. Three components form the system: the model,
the cost function, and the training and decoding
algorithms (Virpioja et al., 2013). The model is
mainly concerned with the grammar and lexicon
where the latter holds the attributes of the subwords
and the grammar controls how these subwords are
combined to form the word. Morfessor’s grammar
assumes that the subwords that form the word are
independent of each other and that a word has at
least one subword.

FlatCat is a variant of Morfessor which we also
train in an unsupervised manner. Even though Flat-
Cat builds on Morfessor and shares the same model
component, they differ in their morphotactics (the
set of rules that determine how the word’s mor-
phemes are arranged). FlatCat morphotactics is
based on the Hidden Markov model (Baum and
Petrie, 1966) which considers context. On the con-
trary, Morfessor’s morphotactics algorithm is based
on a unigram model which is not context-sensitive.

LMVR is a morphology-based segmenter that is
built upon FlatCat and we train in an unsupervised
manner. Nonetheless, LM VR takes into consider-
ation the desired segmentation output vocabulary
size during training.

For each tool, two models are generated; one
trained on the source side; thus capable of segment-
ing CS data, and the other trained on the target side
of the training data; thus capable of segmenting
English data only. We add a src and tgt subscript to
the segmenters’ names to distinguish between both
settings. Hence, MORF4;.., FCj,.., and LMVR,..
resemble Morfessor, FlatCat, and LM VR respec-
tively, where the segmenters are trained on the
source side. MORF;4;, FC;4t, and LMVR;; re-
semble the segmenters trained on the target side.

MorphAGram We also include in this study
the unsupervised morphology segmenter MorphA-
Gram (Eskander et al., 2020) which is based on
Adaptor Grammars. We use the PrStSu+SM gram-
mar, which represents a word as a sequence of
prefixes followed by a stem then a sequence of suf-
fixes, in the unsupervised Standard learning setting
to train the segmenters.

BPE The SentencePiece (Kudo and Richardson,
2018) implementation of BPE (Gage, 1994; Sen-
nrich et al., 2016) is a frequency-based unsuper-
vised segmenter. We train the BPE model jointly,
on the concatenation of the source and target sides
of the training parallel corpus. Previous work has
shown that this approach is better suited for low
resource settings (Guzman et al., 2019). We refer
to our joint BPE segmenter as BPE ;.

MADAMIRA For supervised morphology-based
segmenters, we use MADAMIRA’s Egyptian
Arabic model (Pasha et al., 2014), which
was trained on the Egyptian Arabic Tree-
bank (parts 1 through 6) (Maamouri et al.,
2012).  Specifically, we use MADAMIRA’s
ATB_BWFORM and D3_BWFORM schemes,
henceforth MDMR 475 and MDMR p3, respec-
tively. Both schemes apply Alif/Ya normaliza-
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EMMA F1 Score

[ Segmenter [ EGY | EN [ Al

[ raw [ 0806 ] 0953 [ 0.838 |
MorphAsre 0.682 | 0.942 | 0.737
MORF;,.. 0.814 | 0.888 | 0.832
FCsre 0.821 | 0.961 | 0.851
LMVR;,. 0.836 | 0.961 | 0.863
LMVR,,./cq, | 0.838 | 0.953 | 0.863
MorphA; 4 0.806 | 0.953 | 0.838
MORF; ¢ 0.147 | 0.951 | 0.327
FCigt 0.806 | 0.952 | 0.838
LMVR; 4 0.806 | 0.966 | 0.842
LMVR;oint 0.841 | 0.963 | 0.868

[ BPEjou: | 0678 | 0.814 | 0.707 |
MDMR a1 5 0.935 | 0.953 | 0.939
MDMR p3 0.868 | 0.953 | 0.887

Table 3: EMMA F1 score calculated on ArzEnSEG test
set for the raw data as well as the segmented data using
the different segmenters. The Arabic gold segmentation
is based on the ATB segmentation scheme. We show the
overall score (All) and language-specific scores calcu-
lated on the Egyptian Arabic (EGY) and English (EN)
words separately. Segmenter names with a src, tgf, and
Jjoint subscripts represent segmenters that are trained on
the source, target, and source+target sides respectively.
The best performing segmenters from each category are
highlighted in bold.

tion and segment the Arabic clitics. MDMRp3
splits the Arabic definite article J! Al (the), while

MDMR 475 does not.

4.3 Segmentation Results

To evaluate the performance of the segmenters, we
use EMMA F1 score (Spiegler and Monson, 2010).
Results in Table 3, reported on ArzEnSEG test set,
show overall and language-specific scores.

Unsupervised morphology-based segmentation
Results show that LM VR outperforms the other un-
supervised morphology-based segmenters in terms
of segmenting Arabic and English words. We per-
form further experiments where we train 2 addi-
tional models: 1) a model trained jointly on the con-
catenation of the source and target sides of the par-
allel corpus, and ii) a model trained on the Arabic
words only in the source side (where English words
are dropped). Therefore, the former model is capa-
ble of segmenting both languages, while the latter
is only tailored for segmenting Arabic words. We
perform these experiments using LMVR, given that
it outperforms the other segmenters. We refer to
these models as LMVRjoint and LMVR ./, TE-
spectively, as outlined in Figure 2. Results show
that joint training provides best EMMA scores.

Supervised morphology-based segmentation
As shown in Table 3, both supervised morphology-
based segmenters MDMR 475 and MDMR p3 out-
perform all other segmenters. Their superiority in
segmenting Arabic is expected, as they are trained
on human-annotated data and hence are capable
of generating infrequent morphemes. Additionally,
MADAMIRA has a morphological analyzer em-
bedded in it, which in turn enriches the inspection
of Arabic words prior to segmentation. Higher
EMMA scores are reported for MDMR 475 over
MDMR p3, which is also expected, as ArzEnSEG
is segmented following the ATB scheme.

Unsupervised frequency-based segmentation
As expected, BPE;,;,; performs the worst in the
morphology-based segmentation task, as it is de-
signed for agnostic segmentation for the purpose
of improving downstream tasks.

Further analysis We surprisingly find that
MorphA;y; outperforms MorphAg,.. on Arabic
words and FCg,.. outperforms FC;y; on English
words. Therefore, we conduct an internal anal-
ysis where we look into the percentage of over
and under segmentations.”> In Appendix C, we
present the number of under and over segmented
words for each segmentation approach. Our anal-
ysis shows that MorphA;,. over segments 25%
of the Arabic words. We observe that in 20%
of these over segmentation cases, the Arabic def-
inite article is segmented. For example, the word
SV Alkb “the books’ is segmented to _SH# !

Al#ktb which is considered valid in segmentation
schemes like D3. However, since we use the ATB
scheme in ArzEnSEG annotation, the EMMA sys-
tem penalizes the MorphAg,. segmenter and re-
wards the MorphA;,; segmenter which leaves most
of the Arabic words and the definite article un-
segmented. Another case is the segmentation of
affixes, which is not done in ATB. For example,
16% of the over segmentation cases are separation
of the Ta-Marbuta (feminine nominal ending) in
Arabic words. The rest of the cases are grammati-
cally incorrect segmentations. FC;; is also shown
to under segment around 17% more English words
compared to FCg,.. which can contribute to worse
scores. We also observe that MORF;,; performs

2Qver segmentation is a term we use to indicate that the
word gets segmented to more morphemes compared to the
gold standard segmentation. Meanwhile, under segmentation
is a term we use to convey that the word is segmented into
fewer morphemes than the gold standard segmentation.
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significantly worse than the other segmenters when
segmenting Arabic words, despite the fact that 81%
of the Arabic words do not require segmentation.
Internal analysis shows that MORF;,; over seg-
ments the Arabic words to the character level in an
attempt to extract the underlying morphology of
Egyptian Arabic, which it was not trained on.

5 Machine Translation Experiments

Since no previous research investigates the best seg-
mentation technique for NMT of the code-switched
Egyptian Arabic—English language pair, we explore
training NMT models using the various segmenta-
tion setups discussed in Section 4 to answer RQ1.
Moreover, we analyze the performance of the top-
performing MT systems on different types of CS
sentences to answer RQ2. Afterward, we compare
the MT scores against the EMMA F1 scores dis-
cussed in Section 4.3 to answer RQ3.

5.1 Experimental Setup

We train Transformer models for our MT systems
using Fairseq (Ott et al., 2019) on a single GeForce
RTX 3090 GPU. We use the hyperparameters from
the FLORES? benchmark for low-resource MT
Guzmén et al. (2019), which we list in Appendix D.
Afterwards, we evaluate the MT models on ArzEn’s
dev and test sets using chrF2 (Popovié, 2015).* We
choose chrF2 over BLEU (Papineni et al., 2002)
as it rewards partially correct translations which
makes it a convenient choice for our research, and
because chrF has shown to have higher correlation
with human judgments over BLEU (Kocmi et al.,
2021).

5.2 Machine Translation Systems

We experiment with different categories of segmen-
tation setups. Table 4 shows all the different setups
that we explore. See Table 10 in Appendix D for
training time.

For the unsupervised morphology-based seg-
mentations, we use MorphAGram, Morfessor,
FlatCat, and LM VR to segment the source/target
sides of the parallel corpus, where the segmenters
were trained on each side separately (see Figure 2).
For the best performing segmenter, we further in-
vestigate the best training setting, where we in-
vestigate using segmenters trained only on Arabic

3FLORES hyperparameters outperform Vaswani et al.
(2017) for our code-switched pair by +0.4 chrF2 points.

“We use sacreBLEU’s (Post, 2018) implementation of
chrF2.

Segmentation chrk2
Source Target
EGY | EN EN dev test
[ raw [ raw  [47.1[49.9]

Unsupervised Morphology-based Segmenters

MorphAg,. MorphA;g4;: |47.0(49.7
MORF;¢ MORF;g4: [47.4/50.8

FCspe FCi4: |47.2/50.6
LMVR,rc LMVR;,; |48.3|51.7
LMVRsint LMVR;5int[48.8]52.5
LMVR,;c/cgy LMVR;4:| LMVR;g; (48.9/52.9

LMVR,. LMVR,y:| LMVR,,, [48.8/52.9
LMVR,,c/cqy  |LMVR,,..] LMVR;,; 48.5/52.0

Frequency-based Segmenters

BPE;oint BPE;oint [50.1{53.7

BPEoint raw 47.450.8

raw BPEoin: [44.3|146.9
Supervised Morphology-based Segmenters

MDMRaTB raw raw 48.8(52.1

MDMR p3 raw raw 47.9|51.1

Combination Segmenters
MDMRATB+BPE]'O¢»,“5 BPE]'oint raw 46.5|50.1
MDMR a1 B+BPEjsint| BPEjoint | BPEjoint |50.2|53.8

MDMR p3+BPEoint | BPE;joint raw 46.9|50.7
MDMR p3+BPE;oint | BPEjoint | BPEjoint |49.8/53.3

Table 4: The chrF2 results of our NMT systems with
different segmentation combinations on ArzEn’s dev
and test sets. Numbers highlighted in bold show the
best performing system in each category.

words on the source side as well as segmenters that
are trained jointly on both sides.

For the supervised morphology-based segmen-
tations, we only follow one approach and that is
segmenting the source side using MDMR 475 or
MDMR p3 segmenters. This causes the English
words to be left unsegmented.

For the unsupervised frequency-based seg-
mentations, we exploit the jointly trained model,
BPEyint, to segment the source side only, target
side only, or both sides of the parallel corpus.

Finally, inspired by the work of Oudah et al.
(2019), we explore combinations between BPE
and supervised morphology-based segmenters. As
shown in Table 4, for the source side, we apply
BPEj i, on top of segmentations provided by ei-
ther MDMR 475 or MDMRp3. For the target
side, we either leave it in the raw format or apply
BPEjoint .

5.3 Machine Translation Results

Table 4 shows the different MT systems and their
performance on ArzEn’s dev and test sets.
Amongst the unsupervised morphology-based
segmenters, LMVR outperforms the other seg-
menters. We find that training language-specific
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segmenters (using LMVRg;,.. /¢, for Arabic words
and LMVR;; for English words) outperforms train-
ing the segmenter jointly (LMVR j,;p,¢). This setup
gives the best performing model, referred to as
MT v R.

Amongst the supervised morphology-based
segmenters, the setup with MDMR 475 is the
best, which we refer to as MT 47 5. The finding is
consistent with Oudah et al. (2019)’s results.

For wunsupervised frequency-based seg-
menters, using BPE;,;,; to segment both source
and target sides outperforms MT v g by +0.8
chrF2 points and MT 475 by +1.6 chrF2 points,
which we refer to as MT gpg. We observe that the
ranking of these segmenters in MT performance
is in reverse order compared to their ranking in
segmentation task performance. We discuss this
later in Section 6.

Most interestingly, contrary to (Oudah et al.,
2019), we find that applying BPE;,;,: on top of
MDMR 475, which we refer to as MT arp+BPE,
slightly improves over MTppg but without sta-
tistical significance. However, MT o754+ gpE out-
performs MT 475 and MTp sy g with statistical
significance.> We further investigate the effective-
ness and statistical significance achieved by this
approach in a learning curve with varying the train-
ing data size in Section 5.4.

Finally, we note that segmenting English words
on the source and target sides consistently, while
controlling all other conditions, is always advanta-
geous, as shown in Table 4.

5.4 Analysis

We further analyze the performance of the
top MT systems from each segmentation
setup MTarBrBPE, MTBpE, MTLNMVR, and
MT4rp). We first look into the number of
Out-of-Vocabulary (OOV) tokens associated with
each of the top-performing MT systems to examine
whether it has an impact on their final ranking.
Secondly, we investigate whether the ranking
of the systems is consistent across the different
types of sentences. We evaluate the systems
against varying morphological richness, English
percentages, and CS types. Thirdly, we further
investigate the effectiveness of applying BPE over
ATB compared to using each segmenter on its own.

>We use Paired Significance Tests for Multi Sys-
tem Evaluation provided by SacreBLEU for the sig-
nificance tests https://github.com/mjpost/sacrebleu#
paired-bootstrap-resampling---paired-bs.
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Figure 3: The percentage of the OOV words generated
from each of the top-performing MT systems from each
segmentation setup on ArzEn’s dev set.

We conduct this analysis across different CS types
and sizes of training data.

OOV To further study the reason behind
MTppg and MT o7+ ppE top performance, we
observe if the top-performing MT systems’ ranking
is linked with the percentage of OOV in the differ-
ent MT systems. As shown in Figure 3, we find that
for MT o7+ ppE and MTppg , the OOV percent-
age is 0%. However, for MTp v g and MT 475,
the percentage rises to 4.90% and 9.70%, respec-
tively, which we believe contributes to worsening
the MT systems.

Evaluating Systems Under Different Sentence
Categories We evaluate the performance of the
MT systems for sentences falling under different
ranges of (i) morphological richness, (ii) percent-
age of CS English words, and (iii) sentence CS
types. Morphological richness of a sentence is cal-
culated as the quotient of the number of tokens in
the segmented sentence and unsegmented original
sentence. As expected, the performance of all the
MT models decreases as the morphological rich-
ness increases and there is a boost in performance
across all systems when the percentage of English
words increases (see Appendix E). We observe that
the MT srp+BpE and MTppgp perform the best
across all ranges for the first two features. We then
evaluate the performance of the MT systems across
sentences according to CS types: purely mono-
lingual Arabic, CS, and CS having MCS (Hamed
et al., 2022a; Mager et al., 2019). We observe
that for all systems, the performance across CS
sentences is higher than across monolingual Ara-
bic sentences. We also observe that among CS
sentences, the performance is reduced in the case
of morphologically code-switched sentences. We
believe that the following two factors can be con-
tributing to these results. Firstly, the complex MCS
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constructions might impose challenges to the MT
system. Secondly, we observe that the average
length of MCS sentences is higher than that of CS
sentences in general. This is partially due to the fact
that the tokens in MCS words are space-separated
during the data preprocessing step. We report that
on average, CS sentences contain 21.1 words (21.4
tokens), while MCS sentences contain 25.0 words
(26.3 tokens).

Further Investigating the Effectiveness of
MTATB+BPE over MTBPE and MTATB
We study whether the ranking of MT Aorp+BPE,
MTgpEg, and MT 475 is altered when going from
a low-resource to an extreme low-resource setting
across different sentence types. We achieve this by
varying the MT training data to 25% and 50% of
its original size. The results are shown in Table 5.

We observe that the effectiveness of the
MTarp+ppE Vvaries under constrained condi-
tions. For monolingual Arabic sentences, when
training the MT systems on 100% of data, we
see that MT o7p+ppE 1S not statistically sig-
nificant over MTgpr and MT47p. Moreover,
MTarp+pprE Was outperformed by MTgpg.
However, when training with 25% and 50% of
data, MT orpyppEe outperforms MTgppr and
MT 47 p with statistical significance across all sen-
tence types. We further exhibit this in Figure
4 when all sentence categories are considered
during analysis under different data sizes. This
finding highlights the importance of combining
morphology-based and frequency-based segmenta-
tions in extremely low-resource scenarios.

We also observe that across all data sizes,
MT 27 p performs the worst on CS sentences. Our
first hypothesis is that this is due to English words
left unsegmented. However, results in Table 3 con-
tradict this hypothesis. Our second hypothesis is
that since MDMR 47 p takes into consideration the
context of the word prior to segmentation, the En-
glish words in the CS sentences might break the
flow of the sentence, hence negatively impacting
the context of the word, thus worsening the score.

System Selection As per our findings,
MTarB+BPE is always the best choice
across all sentence types in extreme low-resource
settings.  However, when training on 100%
of the data, MTppr improves slightly over
MT s7p+ppE on monolingual Arabic sentences.
Therefore, we create a system selection setup

Size |MT System All EGY CS MCS
25% |MTars+apE|39.8(1)36.6 (1)[40.6 (1)]40.0 (1)
MTgprE 38.4(2)]35.6(3)|39.1(2)|38.5(2)
MTarp 36.9 (3)]35.9(2)|37.0(3)|36.0 (3)
MTars+BprE 459 (1)[42.1 (1)[46.8 (1) |46.4 (1)
MTgprE 44.5(2)|40.7 (3)|45.5 (2)|44.8 (2)
MTars 44.0 (3)|41.4 (2)|44.7 (3)|44.0 (3)
100% [MT ar5+5r5|50.2 (1) 44.4 (2)[51.5 (1)|51.3 (1)
MTzpE 50.1(2)|44.6 (1)|51.3 (2)|51.1 (2)
MT 1B 48.8 (3)|44.2 (3)(49.8 (3)|49.4 (3)

50%

Table 5: We compare the results of the best performing
MT system (MT o7 5+ ppE) Which utilizes BPE on top
of ATB segmentation against the MT systems that uti-
lize BPE (MTppg) or ATB (MT 47 p) only on ArzEn’s
dev set. We report chrF2 results when training on 25%,
50%, and 100% of the training data. Results are shown
for different types of sentences: monolingual Egyptian
Arabic (EGY), code-switched (CS), and morphologi-
cally code-switched (MCS), as well as all sentences
(All). The ranking of the MT systems with respect to
each other is represented by the numbers between paren-
theses, where (1) is the best rank and (3) is the worst.

which uses both, MT gs7p4+ppE and MTppg, to
investigate if it would lead to further improvements.
In this setup, the CS and monolingual English
sentences are translated using MTarpiBPE,
while monolingual Arabic sentences are translated
using MTgpg. Despite the hybrid system showing
an overall improvement of +0.1 chrF2 points over
MT aTB+BPE, the improvement is not statistically
significant.

6 Discussion

We revisit the RQs we outlined in our introduction.
RQ1 - Which segmentation setup performs
the best in the downstream MT task across dif-
ferent training sizes? Results show that frequency-
based segmentation applied on top of morphology-
based segmentation outperforms the other segmen-
tation techniques, with statistical significance on
lower resource settings. The superiority of this ap-
proach is seen across sentences with varying mor-
phological richness, percentage of English words,
and across sentences with different CS types. We
believe the strength of the combination is because it
exploits complementarity of both methods. On one
hand, supervised morphology-based segmenters
bring in high correctness; however, they are not al-
ways robust, having high OOV rates. On the other
hand, while BPE segmentation is not necessarily
morphologically correct, it achieves high robust-
ness. The robustness of BPE is consistent with the
findings in Banerjee and Bhattacharyya (2018).
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Figure 4: Demonstrates the effectiveness of apply-
ing BPE on top of ATB segmentation MTarp+5pE)
as opposed to using either approaches separately
(MTgpr and MT 47R), which is confirmed when re-
ducing the amount of training data. Results are reported
on ArzEn’s dev set.

RQ2 - Does the effectiveness of the different
segmenters in the MT task differ according to
the CS type of the source sentence? We observe
that the effectiveness of the different segmenters
on MT performance is consistent across two cat-
egories of CS sentences; those with and without
MCS. However, when comparing their effective-
ness on monolingual Arabic vs. CS sentences, we
observe that the rankings between segmenters are
not consistent. In the case of constrained data size
settings (25% and 50% of data), we observe a clear
pattern where MT 475 outperforms MTppr on
monolingual sentences, while MTppgr outper-
forms MT 47 on CS. In the case of using 100%
of the training data, MT gs7pppE outperforms
MTgpr on CS sentences; however, MT gpg out-
performs MT 4rp4+ppEr on monolingual Arabic
sentences. Since our test and dev sets are domi-
nated by CS sentences (61.5% and 63.8%, respec-
tively), we believe that the overall ranking is more
greatly affected by the systems’ performance on CS
sentences, thus reflecting the same ranking on the
overall evaluation set as that across CS sentences.

RQ3 - Is there a correlation between a more
morphologically correct segmentation and MT
performance? For unsupervised morphology-
based segmenters, a segmenter with a better seg-
mentation EMMA F1 score also scores better in
the downstream MT task. However, we cannot
hypothesize that a better segmentation score im-
plies a better translation system, as counter ex-
amples exist. For example, while we notice that

MDMR 475 gives the best segmentation in terms
of EMMA F1 score, it does not outperform any of
the top-performing MT systems. We hypothesize
that despite MDMR 47 p’s capability of generat-
ing morphologically correct segmentations, it can
generate infrequent morphemes due to the out-of-
domain data which it is trained on. This may not
only increase the sentence length which worsens
MT performance as shown in Mager et al. (2022),
but may also be one of the contributing factors to
the 9.70% OOV percentage found in MT 47 5. On
the contrary, BPE ;¢ performs the worst in the
segmentation task as we expect, since it is desig-
nated for agnostic-based segmentations; however,
it surpasses the top-performing MT models. We
believe this is due to its capability to generate semi-
correct segmentation and to reduce OOV rates.

7 Conclusion and Future Work

In this paper, we study the impact of a compre-
hensive set of morphological and frequency-based
segmentation methods on MT, where the source
is a code-switched text. The experiments are per-
formed on code-switched Arabic-English to En-
glish. We found that the supervised morphologi-
cal segmenter achieved the best performance on
the segmentation task, followed by unsupervised
morphological methods, and finally, unsupervised
frequency-based. Afterward, we train 18 differ-
ent MT systems with different source and target
side segmentations. We find that the rank of the
segmenters is reversed, as BPE’s could not be out-
performed (significantly) by any morphological-
inspired segmentation method. However, combin-
ing morphology-based and frequency-based seg-
mentations has shown to give improvements, which
are statistically significant in lower resource set-
tings, where the training data size is reduced to
25% and 50%. For future work, we plan to ap-
ply our different MT setups on other low resource
and code-switched language pairs. Specifically, we
plan to explore languages with different typolo-
gies, to study whether or not the relation between
the data size and choice of the segmentation setup
(frequency-based, morphology-based, or a mix)
is based on morphological features and data size
rather than the language itself. Moreover, we plan
to extend our annotated dataset, ArzEnSEG, by
adding further details to allow evaluating different
schemes.

3531



Limitations

The first challenge we face in this work is the com-
putational power needed to tune the Morfessor fam-
ily segmenters. Therefore, in an attempt to over-
come this challenge, for the Morfessor family, the
choice of the optimal hyperparameters is depen-
dent on the parent tool. For instance, the optimal
hyperparameters for Morfessor are directly used
in its FlatCat variant and the hyperparameters spe-
cific to FlatCat are then tuned. The same applies
for LMVR which is a variant of FlatCat. More-
over, we cannot verify whether or not our results
will hold for languages with different typologies,
specifically those that are low resource and code-
switched. Therefore, the results of this research
must be seen in light of these limitations.
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A Data Preprocessing

We use the same preprocessing pipeline for all the
corpora, where we start by removing any corpus-
related annotations. Afterward, we remove URLSs
and emoticons, through tweet-preprocessor,® re-
move trailing and leading spaces, and tokenize
numbers. Finally, Moses Tokenizer’ is applied for
tokenization and empty lines are removed from the
parallel corpora. For LDC2017T07 (Chen et al.,
2017) and LDC2019TO01 (Chen et al., 2019), some
sentences have literal and intended translations for
some words. Hence, we opt for one translation
having all literal translations and another having
all intended translations. Once all the preprocess-
ing steps are done, we concatenate the nine cor-
pora collectively and pass the resulting training
corpus to MADAMIRA (Pasha et al., 2014) to ob-
tain two different supervised morphological seg-
mentations of the corpus, namely ATB_BWFORM
and D3_BWFORM which we discuss in Section 4.2.
Additionally, we obtain a raw training corpus by
further tokenizing punctuation and removing emo-
jis using MADAMIRA'’s DO scheme (Zalmout and
Habash, 2017). Nonetheless, we normalize the Ara-

bic letters ¢ and i to _s and | respectively through

CAMeL Tools (Obeid et al., 2020) since DO’s out-
put is not normalized.

B Segmenters’ Hyperparameters

Morfessor family Since all Morfessor family
segmenters are morphology inspired, the hyperpa-
rameters are tuned on ArzEnSEG’s dev set. For
LMVR,;. and LMVRy; setting the vocabulary
sizes to 64k and 16k respectively outperform 3k,
5k, 8k, 16k, 32k, 100k. For LMVR g, set-
ting the vocabulary size to 32k outperforms 3k,
5k, 8k, 16k, 64k, and 100k. Meanwhile, For
LMVR;,../cqy setting the vocabulary size to 64k
outperforms 3k, 5k, 8k, 16k, 32k, and 100k.
Table 6 shows the possible values used during
the optimal hyperparameter search for each Mor-
fessor tool. For Morfessor, FlatCat, and LM VR 18,
360, and 7 different segmentation models are gen-
erated. These are a result of the combination of the
possible hyperparameter values. The hyperparame-
ter combination which yields the highest EMMA
score on ArzEnSEG’s dev set for each Morfessor

6https ://pypi.org/project/tweet-preprocessor/
"https://github.com/moses-smt/mosesdecoder/
blob/master/scripts/tokenizer/tokenizer.perl

Segmenters Hyperparameters
Hyperparameter | Values Bound
Morfessor
-F [0.003, 0.005, 0.007]
-d [log, ones, none]
-a [recursive, viterbi]
FlatCat
- [50, 60, 70, 80, 90, 100, 200, 300]
—min-perplexity-length [1,2,3,4,5]
—min-shift-remainder [1,2,3]
—length-threshold [2, 3, 4]
LMVR
—lexicon-size [ [3k, 5k, 8k, 16k, 32k, 64k, 100k]

Table 6: The values bound we use during the best hyper-
parameter combination search for the Morfessor tools.

tool is used to segment the MT training data. The
best combination values are reported in Table 7.

MorphAGram Akin to the Morfessor family, we
tune the hyperparameters on ArzEnSEG’s dev set
and train two models: one on the source side and
the other on the target side of the training paral-
lel corpus which we refer to as MorphAg,.. and
MorphA;y;, respectively (see Figure 2). Tuning
results show that setting the vocabulary size to 3k
for MorphA ;.. outperforms 5k, 8k, 16k, 32k, and
50k, while setting the vocabulary size to 50k for
MorphA;,; outperforms 5k, 3k, 8k, 16k, and 32k.
Nevertheless, it is worth noting that the vocabulary
size on the target side is < 50k which shows that
MorphA;,; performs the best when no segmenta-
tions are applied on the English words.

BPE Since BPE is a segmentation technique that
is designated for agnostic segmentation for MT
tasks, we tune the vocabulary size on ArzEn’s dev
set in an NMT task. We apply a vocabulary size of
8k, which outperforms 5k, 16k, 32k, 64k.

C Segmenters Performance Analysis

Table 8 shows the error analysis we perform on the
segmenters with regards to over segmentation, un-
der segmentation, or generating the correct number
of segmentations per word.

D MT Hyperparameters

The MT hyperparameters are shown in Table 9.
We follow the FLORES hyperparameters for low-
resource language pairs. The full train command
can be found on FLORES GitHub.® The training

8https://github.com/facebookresearch/flores/
blob/6641ec0e23d173906dd2e01551a430884b1dba31/
floresv1/README.md#train-a-baseline-transformer-
model
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Morfessor FlatCat LMVR

Data -F -d -a -min —-min —length —lexicon
-perplexity -shift -threshold -size

-length -remainder

src 0.003 | log | recursive | 200 1 1 4 64k
tgt 0.003 | log | recursive | 100 4 2 4 16k
src/egy | 0.007 | log | recursive | 300 1 1 2 64k
joint 0.007 | log | recursive | 300 4 2 4 32k

Table 7: The different hyperparameters used for each Morfessor family segmenter depending on whether the model
is trained on the source (src), target (tgt), source without English, i.e., Egyptian, (src/egy), or source+target (joint)

side(s).
EGY EN
Segmenter | under over correct seg. unseg. | under over correct seg. unseg.
raw 634 0 2,780 0 2,780 71 0 430 0 430
MorphAsrc 249 855 2,310 385 1,925 70 45 386 1 385
MORPF;,-. 466 299 2,649 148 2,501 15 103 383 42 341
FCs,c 592 8 2,814 42 2,772 56 7 438 15 423
LMVRg,. 520 47 2,847 111 2,736 43 7 451 28 423
MorphA;4¢ 634 35 2,745 0 2,745 6 148 347 65 282
MORF; ¢ 0 3,150 264 3 261 21 37 443 49 394
FCig¢ 634 0 2,780 0 2,780 66 8 427 5 422
LMVR;g4: 634 0 2,780 0 2,780 23 19 459 48 411
LMVRjoint 485 79 2,850 144 2,706 20 32 449 51 398
[ BPEjoine | 338 368 2,708 230 2478 | 28 132 341 30 311 |
MDMR aTB 38 62 3,314 581 2,733 71 0 430 0 430
MDMR p3 38 293 3,083 561 2,522 71 0 430 0 430
Table 8: The table shows the number of under segmented words (under), over segmented words (over), and the

number of cases where the segmenter generates the correct count of morphemes (correct) for English (EN) and
Arabic (EGY) words in ArzEnSEG test set. Additionally, out of the correct count of morphemes (correct), we report
the words which originally require segmentation (seg.) and those which do not (unseg.).

time for MT model the training time is exhibited in
Table 10.

Hyperparameter Value
encoder-layers 5
decoder-layer 5
encoder-embed-dim 512
decoder-embed-dim 512
encoder-ffn-embed-dim 2
decoder-ffn-embed-dim 2
dropout 0.4
attention-dropout 0.2
relu-dropout 0.2
weight-decay 0.0001
label-smoothing 0.2
warmup-updates 4000
warmup-init-Ir le-9

Table 9: FLORES hyperparameters for low-resource
language pairs.

E Evaluating Systems Under Different
Sentence Categories

Figure 5 shows the performance of the top MT
systems from each segmentation setup across sen-
tences of different morphological richness ratios
and different percentages of English words in

ArzEn’s dev set. Results show that there is a gen-
eral decrease in performance as the morphological
richness increases. However, as the percentage
of English words in the sentences increases, the
performance of the systems generally improves.
It is also shown that MT srp+ppE and MTgppE
achieve overall comparable performances and out-
perform the other systems.
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Figure 5: The average chrF2 scores for the top performing MT systems from each segmentation setup across
sentences with various (a) morphological richness ratios and (b) percentage of English words in ArzEn’s dev set.
Morphological richness of a sentence is calculated as the quotient of the number of tokens in the segmented sentence
and unsegmented original sentence. The bar width is indicative of the number of sentences in each bin.

Segmentation Training
Source Target Time
EGY [ EN EN (seconds)
\ raw [ raw [ 13,527
Unsupervised Morphology-based Segmenters
MorphAs,c MorphA; 4 24,731
MORF;;¢ MORF,g4¢ 18,916
FCsrc FCig¢ 18,225
LMVR;,c LMVR; 4,476
LMVRsint LMVRjoint| 18,019
LMVR,,c/egy LMVR;4:| LMVRg¢ 22,462
LMVR;,c LMVR¢g:| LMVR,g¢ 4,181
LMVRrc/egy LMVRg,.| LMVR4: 4,526
Frequency-based Segmenters
BPE;sint BPE;oint 18,279
BPE;sint raw 23,193
raw BPE;oint 17,905
Supervised Morphology-based Segmenters
MDMR a7 5 raw raw 18,280
MDMR p3 raw raw 18,519
Combination Segmenters
MDMRATB-f—BPEjDint BPEjm‘nt raw 17,629
MDMR a1 B+BPE;sint| BPEjoint | BPEjoint 27,088
MDMRD3+BPEjm‘nt BPEjoint raw 24,256
MDMR p3+BPE;oint | BPEjoint | BPEjoint 23,611

Table 10: The training time in seconds of our different

NMT systems.
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