A simple but effective model for attachment in discourse parsing with
multi-task learning for relation labeling

Zineb Bennis
IRIT
zinebennisa@gmail.com

Abstract

We present a discourse parsing model for conver-
sation trained on the STAC corpus (Asher et al.,
2016). We fine-tune a BERT-based model to en-
code pairs of discourse units and use a simple lin-
ear layer to predict discourse attachments. We then
exploit a multi-task setting to predict relation la-
bels, which effectively aids in the difficult task of
relation type prediction; our F1-score equals or sur-
passes the state of the art in the approaches we have
reimplemented using code from the authors with no
loss in performance for attachment, confirming the
intuitive interdependence of these two tasks. Our
method also improves over other discourse parsing
models in the literature in permitting attachments in
which one node has multiple parents, an important
feature of multiparty conversation.

1 Introduction

Discourse parsing, the task of predicting graphs
that represent semantic relations (arcs) between
elementary discourse units or EDUs (nodes), is
a hard problem in NLP due to the complexity of
discourse graphs and the frequent lack of surface
cues provided by EDUs, which forces parsers to
rely on deep, semantic information. Multiparty,
spontaneous conversation is especially tricky as the
structure often meanders and a single participant
can respond to multiple discourse moves at once,
yielding non-tree-like structures that challenge ex-
istent parsing techniques (Afantenos et al., 2015).
While it is tempting to attack a complex problem
with complex machinery, as recent research on dis-
course parsing has done (see Section 6), we show
that a simple model can achieve or surpass state of
the art results for discourse relation labeling with a
little inspiration from human discourse processing.
First, because a decision about whether two
EDUs are attached by a semantic relation generally
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requires reasoning about their contents together,
our transformer-based model encodes embeddings
of EDU pairs, exploiting a form of message pass-
ing simpler than graph neural net models (Wang
et al., 2021) while achieving better results. Next,
we draw on the fact that for human annotators, the
tasks of discourse attachment and relation label-
ing are often interdependent: sometimes one sees
how to attach two EDUs but only later how to de-
termine the relation that links them; sometimes, a
clue, e.g. an explicit marker like because, makes
the relation clear, and the task is to find the second
argument to the relation. Our model exploits this
interdependence with a multi-task architecture for
attachment prediction and relation labeling. Finally,
our model allows for the non-tree-like structures.
In Section 2, we provide background on dis-
course structure and data sets. In Sections 3 and
4, we describe our model and results. Section 6
presents related work in discourse parsing.

2 Discourse parsing theories and data sets

Just as a sentence is not a bag of words but comes
with a structure that serves to compute its mean-
ing from that of its constituent words, so too a
discourse or conversation is not a bag of dialogue
moves but comes with a structure that enables an
interpreter to compute an overall meaning from its
constituents. EDUs are clauses or subclausal units
that serve as the minimal, linguistic constituents
upon which discourse structures are built (Marcu,
1999), and discourse parsing involves finding the
recursive structure over EDUs that exploits their
semantic content together with various contextual
features.

There are two main theories that have investi-
gated complete discourse structures for texts: RST
(Mann and Thompson, 1987) and SDRT (Asher,
1993; Asher and Lascarides, 2003). Only SDRT
has been applied to multi party conversation as in
the STAC and Molweni datasets (Asher et al., 2016;
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Li et al., 2020). Given our interest in multiparty
conversation, we use SDRT and three versions of
the STAC corpus, a set of multi-party chats from
an online version of the game Settlers of Catan, in
which players trade or otherwise acquire resources
in order to build roads and settlements and thereby
score victory points. The standard version, S, con-
tains only linguistic (chat) moves made by players;
the situated version, S-Sit, integrates descriptions of
nonlinguistic events (game moves), represented as
elementary event units (EEUs). In S-Sit, both EEUs
and EDUs are integrated into discourse structure.
We present the third version in Section 2.1.

In SDRT a conversation provides a number of
EDUs linked together to form a weakly connected,
Directed Acyclic Graph (DAG). Each EDU apart
from the head has at least one incoming link. Back-
wards links (where an EDU attaches to another
EDU that comes after it in the dialogue) are prohib-
ited if the EDUs are produced by different speakers
(Perret et al., 2016). Each edge of the DAG is la-
beled with one of 16 different types of discourse
relation, such as Explanation (Exp), Question-
Answer-Pair (QAP), or Acknowledgement (Ack).

The DAGs postulated by SDRT allow one child
to have multiple parents in the structure. Figure 1
provides a representative example from the STAC
corpus: with his ‘kk’ William acknowledges both
refusals to his offer and signals that he is moving
on before ending his turn.

William : does someone have clay for me?
l QAP

QAP . .
: gwis : [ am afraid I'm about to use mine

ljay : 1 need mine sorry
Ack
William : kk A

Figure 1: Example from the STAC corpus S illustrating
an EDU (‘kk’) with multiple parents

In multiparty dialogue, coordination and nego-
tiation over content is key. EDUs with multiple
parents typically mark moves that signal such a co-
ordination or end of negotiation. Multi-parent links
can thus have a major impact on conversational
structure and its effects on downstream tasks, de-
spite their statistical infrequency. An important ad-
vantage of our model over alternative neural parsers
is that it is the only one to take these links into ac-
count in both model design and evaluation.

2.1 A new STAC dataset: STAC-Squished

Like other recent work in discourse parsing, we
develop a model trained on § and detail our results
on S in Section 4. But S is not ideal for two reasons.

First, we discovered that it contains duplicated
data points due to a mistake in the data extraction
script. There are 488 duplicated EDUs, correspond-
ing to 60 duplicated dialogues.

Second, and more seriously, there are rhetori-
cal incoherences in S. When we examined relation
labels, we found, with Badene et al. (2019), that
some were not coherently used, because S lacks
essential nonlinguistic (game) information (Asher
et al., 2016). Figure 2 provides an example. The
exchange on the right, taken from S, is somewhat
incoherent; the Continuations (dark green) from
282-283 and 283-289 make little sense, but were
included in order to make a complete DAG. On the
left, we see the full exchange, from S-Sit, with a
far more intuitive discourse structure lacking the
Continuations.

There are 300 such cases out of 1116 Contin-
uation instances in the training set and 45 out of
113 such cases in the test set. Indeed, dialogue
moves and speaker interactions in the conversa-
tions often depend on nonlinguistic actions taken
by players, but we can only see this dependence
once we move to S-Sit, where the EEUs provide
such actions and other important information on
game evolution. We must take account of those
EEUs to accurately reflect the discourse structure.

S-Sit builds graphs over EDUs and EEUs and
so includes information essential to properly un-
derstanding many linguistic interactions. For this
reason, we consider S-Sir an overall better data
source for correct discourse structures.

However, S-Sit also has certain drawbacks for
training discourse parsing models. It contains mul-
tiple, long chains of EEUs connected to their im-
mediate predecessors. The number of EEU-EEU
adjacent attachments is very high and highly pre-
dictable, artificially inflating F-scores on attach-
ment and relation labeling. Moreover, long se-
quences of EEUs often induce longer distances be-
tween EDUs that need to be attached. Our model,
like most, is biased towards predicting closer at-
tachments due to their abundance in the training
set. S-Sit exacerbates this situation and makes our
model actually perform worse on EDU-only attach-
ments (see Section 4).
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|284 : gotwood4sheep :[I am # iraid I'm about to use mine||

285 : ljaybrad123 :[i need :;.E_soﬂ

|282 : gotwood4sheep :[waiting fo reap now the robber has sauntered off with it

|283 : william :[does someone hge clay %or mxej

[284 : gotwood4sheep :[Tam 2ithid I'm about to use mine

285 : ljaybrad123 i n@:‘;u_; om
286 : william :[kk

286.0.1 : UI :[wil 15 enag their turn |

289 : gotwood4sheep :[now i wﬁ

“?86.0.2 : Server :[It's gotw

287 : Server :[gotwood4sheep rolled a 6 and a 4.

sheep's turn to roll the dice.|

|2ss:ServerMgotwood4shwpgees-ma§aymm;;ge«s4eh@ goi-Zolayl]

Figure 2: An example from STAC. On the left, we see the full interaction, from S-Sit, that contains both chat and
game moves. On the right, we see the version from S that contains only the chat moves.

Data EDU EEU R-E Mean
S 13054 0 0 2.04
S-Sit 12588 18576 16382 2.14
S-Sq 12588 12985 10790 2.04

Table 1: Data set stats

The shortcomings of S-Sit prompted us to mod-
ify it in order to ignore the highly predictable re-
lations and attachments between adjacent EEUs
that are not attached to any EDU. To do this, we
treated each sequence of EEUs as one block with-
out any internal structure. That is, we collapsed
the sequence into a single EEU. Table 1 reflects
differences between the various STAC corpora
in numbers of EDUs, EEUs, Relation instances
over only EEUs (R-E) and mean distances be-
tween attachments of linguistic units. We have
made available the new S-Sq (squished) corpus at
https://github.com/zineb198/LineBert.

3 Our Model

S contains a set of multi party dialogues, each con-
sisting of a set of n EDUs [eq, €2, .., €,,]. Our model
BERTLine, is a simple but efficient discourse pars-
ing model with two components: one for inferring
attachments and one for inferring relation labels.
Like Shi and Huang (2019) and Wang et al. (2021),
we compute a standard unlabeled attachment and
labeled attachment score for evaluation.
Attachment. BERTLine’s attachment module
has an encoder-decoder architecture. Encoding for
each EDU pair is obtained by finetuning a BERT
model on the task of predicting if two EDUs are
attached. We used BERT because it takes the po-
sition IDs of tokens as input, which is useful for
the pair encodings. BERTLine has access only to

the content and the speaker/emitter of the EDUs.
[C'LS] vectors furnish embeddings i of EDU pairs.

h(@j) = BERT(@Z‘, ej)

The encoder portion of BERTLine is finetuned us-
ing the loss L;, on .S;, the set of positive and neg-
ative attachments. Where 6 is the parameters to
be optimized, s,; ; refers to gold data and s; ; to
predictions:

Ll1 (Sl, 9) = —EgllOgP(S*Z‘J = Si,j‘hi,j) (1)

We concatenate h with a vector struct ;) =
[t(i,4)> d(i,7)] that represents information useful for
computing attachments (Perret et al., 2016), namely
speaker change and EDU distance (i.e., how many
EDUs occurred between ¢ and j in the natural order
of the dialogue). The function ¢; ; returns 1/0 if i
and j have the same/different speaker; d; ; returns
the distance. Our final pair embeddings are:

H(z,]) = h(z,j) D struct(iyj)

The decoder part of BERTLine’s attachment
model is a linear neural network. Like previous
work, this layer predicts for each EDU e;, which of
the preceding EDUs e;, with 5 > ¢ > 5 — 10 (i.e.,
up to a certain limit) are likely parents of e;. Itis a
binary classification on each pair embedding.

Pj = Linear(Hj—1 j), H(j—2,5), - H(j-10,))

Our loss function is a binary cross entropy over
possible attachments for each dialogue d in training
set D. Below l,; j indicates if e; and e; are attached
in the gold data, and /; ; is a predicted link:

Liink(d, 0) = —Eﬂlzgzologp(l*i,j = lij|Hi;)
(2)
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lenk’(e) = 2dEDLlink(da 9) 3)

The set of predicted attachments £ contains all
pairs /; ; whose link probability exceeds a given
threshold «, optimized at 0.8 through experiments
on the validation set; i.e., [; ; € L iff P(l;;) >
a = 0.8. We trained the linear layer for 15 epochs.

This set up allows us to predict multiple parents
for a given EDU. Of the 77 multi-parent structures
(8 with more than 3 parents) in the test set, we
captured about 20%.

Relation labeling. To test the interdependence
of link and relation prediction, we built a BERT
model with two classification heads. The first head
learns to predict links between EDUs and the sec-
ond head learns to classify EDU pairs in terms of
SDRT’s 16 relation labels. We compute the loss
of each head independently, average the results,
and back-propagate the average back to the BERT
encoder. At inference time, only the relation classi-
fication head is used for predictions.

We fine-tuned the BERT model over S; over
3 epochs, together with training over S,., the set
of relation label instances. r(,; ;) refers to gold
relation data, r(; ;) to predictions.

Lyei(Sy,0) = =X5,l0ogP(r4ij = rijlhij) (4

Lpuiti(S1 U Sy, 0) = mean(Ly, + Lye))  (5)

All previous work apart from Wang et al. (2021)
defines the task of relation prediction as following
that of link prediction in a pipeline architecture.
Our multitask setup allows us to have an embed-
ding containing information about both tasks and
improves the relation F1-score by one point over a
pipeline relation prediction task.

Attachment
e " head
Transformer o y
encoder ‘
Relations Relation
head classification

e/

Shared layer

Task specific layers
Figure 3: Structure of the multi-task model
Evaluation Metric: We used a micro averaged

F1-metric over all gold data attachments and rela-
tion label instances for the scores in Table 2.

4 Results

Table 2 shows that BERTLine is competitive on
S with the most advanced model of Wang et al.
(2021) and even beats its relation labeling score.
We provide both the reported scores of Shi and
Huang (2019), Liu and Chen (2021) and Wang
etal. (2021) and the scores that we got by rerunning
their code using the same gold input from .S with
our evaluation metric, which explicitly considers
EDUs with multiple parents.! Discrepancies in
reported scores, also noted in Wang et al. (2021),
may depend on choices of what and how to evaluate
but also on machine hardware.

With regard to the different versions of STAC,
BERTLine’s overall scores improve between S and
and S-Sit in Table 3, although there is a dramatic
drop in linguistic only attachments (A-L) for S-
Sit. This is due to the presence of many easy
to predict attachments and relation instances be-
tween adjacent EEUs, which drown out perfor-
mance on harder, longer distance EDU attachments.
Interestingly, our score also improves considerably
with S-Sg¢, and linguistic-only attachment suffers
a much smaller drop. We hypothesize that this is
because we have lowered the median distance be-
tween EDUs and rectified the imbalance between
EDU and EEUs by deleting long series of EEUs.

BERTLine has a far simpler architecture than the
neural models whose code we were able to rerun.
It is essentially a local model that uses a minimal
amount of message passing from nodes to poten-
tial neighbors, a technique from graph neural nets
also used to encode entire graphs in Wang et al.
(2021). BERTLine’s main advantage comes from
the explicit pair encoding of EDUs. While broader
contextual information and structural constraints
on DAGs like those in Perret et al. (2016) can un-
doubtedly improve scores for discourse attachment
and relation labeling, we have sought to show that
the efforts of complex architectures to harness this
extra information have failed to lead to substantial
gains. How to more successfully exploit it is our
main research topic for the future.

5 Ablation study

We evaluated the efficiency of two key parts of our
model, the multitask set up and the local structural
information that we add to the EDU encodings. We

'We ran all experiments on a Dell T630 bi pro machine
with Nvidia GTX1080Ti GPU cards
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Model DAG DS-S Hier-S GNN-S BL-S BL-S-Sq
Attachments 69.0 [73.2/72.5] [75.1/68.61] [73.4/73.2] 73.1 79.49
Relation labeling 53.1 [55.7/54.8] [57.1/50.48] [57.3/555] 56.25 71.15

Table 2: We provide both the original, reported F1-scores for Perret et al. (2016) (DAG), Shi and Huang (2019)
(DS), Liu and Chen (2021) (Hier) and Wang et al. (2021) (GNN) on the standard STAC dataset .S, as well as
the scores we were able to obtain using their models or retraining from their code using our evaluation metric
(reported/recomputed). BERTLine (BL) beats the state of the art for relation label prediction on S with a score of
56.25. We also provide BL’s results on the squished STAC dataset S-Sq with great performance on relation labeling.

F1 Attach Relns A-L
S 73.06 56.25 73.06
S-Sit  76.94 69.6 62
S-Sq 79.93 71.64 68.7

Table 3: F1 score for STAC data sets.

compared BERTLine with two baselines: (i) BL-
Simple: simple BERT is finetuned to predict the
relation of a predicted attachment; (ii) BL.-Noinfo:
H; ; without struct; ;. We train each variation 10
times and compare the scores to the average over 10
runs for BERTLine. Table 4 shows how structural
information and the multitask setup moderately
improve the predictions of BERTLine on S-Sg.

Model BL BL-Simple
Attach 79.49 78.55
Model BL BL-Noinfo
Rel 71.41 71.15

Table 4: Scores on STAC-squished (S-Sq)

6 Related work

Older approaches to multiparty conversation (Afan-
tenos et al., 2015; Perret et al., 2016) used manual
features about EDU pairs and simple ML models
to build a local attachment model for predicting
attachment and relation labels. They also added
a decoding mechanism. BERTLine’s local model
uses transformer-style embeddings.

Shi and Huang (2019) were the first to obtain
significant discourse parsing results using a neu-
ral approach on the corpus S. They attempted to
capture incremental and contextual effects in their
model by training a supplemental Structured En-
coder that incrementally updates attachment paths
(sequences of parent-child EDUs). However, Wang
et al. (2021) showed that the model obtains similar
scores with or without the Structured encoder; the
encoder didn’t capture what it intended. Moreover,

they implemented this method with Python 2 and
Tensorflow 1.3, which are not in use anymore.

Liu and Chen (2021)’s model encodes EDUs us-
ing a pre-trained RoOBERTa model (Liu et al., 2019)
and a bi-GRU cell to capture contextual informa-
tion but limits the size of the input dialogues. It
uses two linear layers for link and relation predic-
tion. We could not reproduce their results with
their model or our reimplementation > perhaps be-
cause of an evaluation metric that does not consider
multiple parents or all gold EDU pairs.

The Structure Self-Aware Graph Neural Network
(SSA-GNN) by Wang et al. (2021) proposes a com-
plex GNN-based architecture and model that uses
both EDU and edge embeddings. The model is
comprised of a Hierachichal GRU gate to obtain
contextual EDU representations. They then apply
the SSA-GNN to capture implicit structural infor-
mation between EDUs, using a Structure-Aware
Scaled Dot-Product Attention (Zhu et al., 2019;
Wang et al., 2020) to update edge and EDU repre-
sentations. A teacher network is also trained and
supplements the standard classification loss with
an auxiliary loss to enhance learning performances.
Our model is simpler with better results. More-
over, none of the models by (Shi and Huang, 2019;
Liu and Chen, 2021; Guz et al., 2020; Wang et al.,
2021) predict multiple parents for attachments.

7 Conclusions

We have described a simple yet effective discourse
parser that provides multiple attachments and code-
pendent learning of the labeling and attachment
tasks. Our model is the only neural parser that
does this. We also wanted to show the power of
local information when cleverly used. Indeed, dis-
course parsing requires contextual information, but
our results show that current research does not yet
leverage that information to achieve gains that con-
vincingly outstrip those of a local model.

Zhttps://github.com/zineb198/F1_recompute
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8 Limitations

Some of the limitations of this work are the lack
of diversity in expert-annotated discourse data sets
on multiparty and situated dialogue. Since current
data sets come from forums and chat messages, we
still have to see how our model behaves in a spoken
conversation context. More investigation efforts
must be made in order to better analyze and evalu-
ate S-Sg. While it has a more predictable structure
due to nonlinguistic elements, it also seems at first
glance to contain better suited semantic relation
labeling for the linguistic elements. We need to do
an in-depth error analysis on BERTLine’s perfor-
mance on the three versions of the STAC corpus.
We would also like to investigate training on one
corpus and then running the model on the other
corpus, and we would like to do the same with the
Molweni corpus.

9 Ethics Statement

Bertline’s performance does not seem to pose any
ethical difficulties or questions.
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