
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3193–3205
May 2-6, 2023 ©2023 Association for Computational Linguistics

Self-Adaptive Named Entity Recognition by Retrieving
Unstructured Knowledge

Kosuke Nishida†‡ Naoki Yoshinaga§ Kyosuke Nishida†

†NTT Human Informatics Laboratories, NTT Corporation
‡The University of Tokyo

§Institute of Industrial Science, the University of Tokyo
†{kosuke.nishida.ap, kyosuke.nishida.rx}@hco.ntt.co.jp

§ynaga@iis.u-tokyo.ac.jp

Abstract

Although named entity recognition (NER) helps
us to extract domain-specific entities from text
(e.g., artists in the music domain), it is costly to
create a large amount of training data or a struc-
tured knowledge base to perform accurate NER
in the target domain. Here, we propose self-
adaptive NER, which retrieves external knowl-
edge from unstructured text to learn the usages
of entities that have not been learned well. To
retrieve useful knowledge for NER, we design
an effective two-stage model that retrieves un-
structured knowledge using uncertain entities
as queries. Our model predicts the entities in
the input and then finds those of which the
prediction is not confident. Then, it retrieves
knowledge by using these uncertain entities as
queries and concatenates the retrieved text to
the original input to revise the prediction. Ex-
periments on CrossNER datasets demonstrated
that our model outperforms strong baselines by
2.35 points in F1 metric.

1 Introduction

Named entity recognition (NER) helps us to ex-
tract entities from text in various domains such as
biomedicine (Kim et al., 2003), disease (Doğan
et al., 2014), and COVID-19 (Wang et al., 2020).
However, accurate neural NER requires a massive
amount of training data (Chiu and Nichols, 2016;
Ma and Hovy, 2016; Yadav and Bethard, 2018).
As well, the annotation of a domain-specific NER

dataset costs a lot of money because it requires the
involvement of domain experts.

To compensate for the lack of training data in
NER, researchers have utilized external knowledge.
Traditional feature-based NER uses features based
on gazetteers or name lists (Florian et al., 2003;
Cohen and Sarawagi, 2004; Luo et al., 2015) as
external knowledge. Although recent neural NER

methods can even benefit from gazetteers and name
lists (Seyler et al., 2018; Liu et al., 2019; Mengge

Model

Unstructured KB

Input Entity
Prediction

Entity
Candidates

Entity-Level
Query

Textual
Knowledge Self-

Adaptation

Figure 1: Concept of self-adaptive NER: the model pre-
dicts entity candidates to conduct entity-level retrieval
from the unstructured KB; then it revises the prediction
with reference to the retrieved knowledge.

et al., 2020), only a few domains with struc-
tured knowledge bases (gazetteers) have this merit.
Thus, several studies have resorted to using raw
text (unstructured knowledge) to perform weakly-
supervised learning on general-domain structured
knowledge (Cao et al., 2019; Mengge et al., 2020;
Liu et al., 2021a).

In this paper, we explore the potential of uti-
lizing unstructured knowledge in the NER task by
referring to it at inference time. Our basic idea is
inspired by recent retrieval-augmented language
models (LMs) (Guu et al., 2020). These models
are pre-trained with retrieval-augmented masked
language model (MLM), so that they can perform
well in open-domain question answering (ODQA)
by retrieving relevant unstructured knowledge us-
ing a question as a query. However, as we will later
confirm in the experiments, the models designed
for ODQA are not effective in the NER task because
it requires an understanding of many entities in the
input text.

To deal with this problem, we propose a retrieval-
augmented model capable of determining which
entities to focus on in the input text for knowl-
edge retrieval. The proposed self-adaptive NER
(SA-NER) with unstructured knowledge model
searches an unstructured knowledge base (UKB)
when it lacks confidence in its prediction. We cre-

3193

ate the UKB automatically by splitting a raw text
corpus into pieces and assigning dense vectors as
keys to each piece of unstructured knowledge. To
help in understanding local semantics, we design
a retrieval system tailored for NER; our model pre-
dicts the entities and then retrieves knowledge in
terms of those it is not confident in predicting.

To evaluate our method’s capability of retriev-
ing useful knowledge about entities, we conducted
experiments on various NER datasets (Tjong
Kim Sang and De Meulder, 2003; Salinas Alvarado
et al., 2015; Liu et al., 2021b), some of which have
domain-specific types.

Our contributions are summarized as follows:

• We are the first to integrate retrieval-
augmentation into NER. SA-NER retrieves
entity-level knowledge dynamically for NER.

• In experiments, SA-NER outperformed strong
baselines pre-trained in a supervised and self-
supervised fashion by 1.22 to 2.35 points.

• We reveal why knowledge retrieval is useful
for NER. We found that our model is effective
on entities not included in the general-domain
pre-training dataset.

2 Task Settings

We developed SA-NER to solve the problems of
NER with unstructured knowledge. NER is a se-
quence tagging task in which the model inputs a
token sequence X ∈ V L, where V is the vocabu-
lary and L is the maximum sequence length. The
model outputs a BIO label sequence of the same
length. Let C be the number of types. Then, the
number of the BIO labels is 2C + 1.

SA-NER assumes a corpus as an unstructured
knowledge, which is split into token sequences
of length L, following the existing retrieval-
augmented language model (LM) (Borgeaud et al.,
2021), in order to store a large corpus efficiently.
We retrieve m pieces of knowledge and concate-
nate them into X . We feed the concatenated text
X+ ∈ V (m+1)L to the model.

3 Related Work

Here, we review NER that uses raw text (unstruc-
tured knowledge) without structured knowledge,
with in-domain structured knowledge, with general-
domain structured knowledge, and for pre-training
of billion-scale LMs . Also, we review the retrieval-
augmented LMs.

3.1 NER with unstructured knowledge

Researchers have utilized various clues to retrieve
useful raw text for NER. Traditional NER models
focus on surrounding contexts (Sutton and McCal-
lum, 2004; Finkel et al., 2005; Krishnan and Man-
ning, 2006) and linked documents (Plank et al.,
2014) to capture non-local dependencies. More
recent neural NER models benefit from neighbor
sentences to obtain better contextualized word rep-
resentations (Virtanen et al., 2019; Luoma and
Pyysalo, 2020). Meanwhile, Banerjee et al. (2019)
and Li et al. (2020) encode knowledge contexts on
entity types such as questions, definitions, and ex-
amples taken from in-domain structured KBs (e.g.,
UMLS Meta-thesaurus). In this study, we devel-
oped a generic method that retrieves useful raw
text (unstructured text) for NER.

Distant supervision (Mintz et al., 2009) uses
structured knowledge to annotate raw text with
pseudo labels. Performing distantly supervised
fine-tuning with in-domain structured knowledge
after the MLM pre-training is effective in domain-
specific NER (Wang et al., 2021; Trieu et al., 2022).
However, domain-specific distant supervised learn-
ing depends on the structured knowledge’s cover-
age of the label set of the downstream task.

Weakly supervised learning with general-
domain structured knowledge (Cao et al., 2019;
Liang et al., 2020; Mengge et al., 2020; Liu et al.,
2021a) can transfer general-domain knowledge to
the target domain. Its methods learn the entity
knowledge through weakly supervised learning,
even though the target task has domain-specific
entities and types (Liu et al., 2021a). We confirmed
that our model achieved a performance gain by us-
ing raw text as unstructured knowledge at inference
time because the world knowledge cannot be stored
in the limited-sized model.

Pre-trained LMs memorize factual knowledge in
their models through pre-training on unstructured
corpus (Petroni et al., 2019; Cao et al., 2021; Dhin-
gra et al., 2022). Recently, billion-scale generative
pre-trained LMs have been proposed (Raffel et al.,
2020; Brown et al., 2020). Although the generative
models cannot be applied naively to structured pre-
diction tasks such as NER, some papers tackled NER

with the generative LMs (Paolini et al., 2021; Yan
et al., 2021; Zhang et al., 2022; Chen et al., 2022).
One of the advantages of retrieval-augmented LMs
over billion-scale LMs is ease of maintenance; For
instance, the models can use up-to-date Wikipedia

3194

as the UKBs.

3.2 Retrieval-Augmented Language Models

LMs using external knowledge have recently been
proposed (Guu et al., 2020; Lewis et al., 2020; Izac-
ard and Grave, 2021; Singh et al., 2021; Borgeaud
et al., 2021). However, they focus on language
modeling and ODQA, and successful retrieval-
augmented LMs in NER have not been reported.
They obtain queries for knowledge retrieval in such
a way that each query represents the whole input
or a fixed-length chunk split from the input. There-
fore, they cannot retrieve knowledge that tells the
usages of the entities, which is important for NER.
In addition, because an input may include many
entities, the model should focus on only those en-
tities whose knowledge is not stored in the model.
However, retrieval-augmented LMs have not incor-
porated such a mechanism to create and filter mul-
tiple queries.

Wang et al. (2022) and Shinzato et al. (2022)
found that retrieving knowledge from the training
data is also useful, as it provides knowledge not
stored in the trained model. Therefore, we imple-
mented SA-NER in such a way that it uses both
labeled and unlabeled UKBs.

de Jong et al. (2022) used a virtual knowledge
base whose values are vector representations. Fo-
cusing on entity knowledge, they extracted men-
tions from hyperlinks in Wikipedia to learn their
representations. They reported that the virtual KB

was less accurate but more efficient than FID (Izac-
ard and Grave, 2021), which reads the input and
textual knowledge with attention.

4 Method

Here, we present SA-NER. We explain the construc-
tion of the unstructured knowledge base (§4.1), the
encoder architecture (§4.2), the two-stage NER al-
gorithm which revises the prediction using the un-
structured knowledge (§4.3), the training method
(§4.4), and the pre-training method (§4.5).

4.1 Unstructured KB Construction

We create an unlabeled UKB from raw text and a
labeled UKB from the training data. We assume
in-domain text as a source of unlabeled unstruc-
tured knowledge and split it into token sequences
of length L, which is equal to the maximum length
of the SA-NER inputs. In addition, following Wang
et al. (2022), we add the model’s training data as

labeled unstructured knowledge. We set L = 64 to
avoid truncating most of the original inputs.

The unstructured knowledge is stored in the
UKBs with associated keys. The keys of the se-
quence are the sentence embedding and the n-gram
embeddings. Huang et al. (2021) showed that the
average of the token embeddings is more useful for
sentence embedding than the first [CLS] embed-
ding and that the embeddings in the lower layers
are also important, as well as those in the last layer.
Therefore, we define the sentence embedding and
n-gram embedding as the average pooling of the
token representations. The token representations
are the concatenations of the frozen BERT input and
output, so that both the context-free and contextu-
alized meanings are considered.

To select only entity-like n-grams as the keys,
we remove those n-grams that have stop words or
have no capital letters. In addition, we use string
matching for filtering. We hold only the knowledge
that includes the n-grams appearing in the training
data for the UKBs used at training time. Also, we
hold the knowledge that includes the n-grams ap-
pearing in the training or development (test) data
for the UKBs at the inference on the development
(test) data. Instead of string matching, we can use a
summarization-based filtering for n-gram keys, as
detailed in Appendix C. We formulate the extrac-
tion of a fixed number of representative n-grams
from a sequence as an extractive summarization.
We use a sub-modular function as the objective (Lin
and Bilmes, 2011); thus, the greedy algorithm has
a (1− 1/e) approximation guarantee.

Following Wang et al. (2022), we use the labeled
UKB even in training to reduce the training-test dis-
crepancy; in such case, the model does not retrieve
the input itself from the labeled UKB.

4.2 Encoder

We use BERT (Devlin et al., 2019) and a linear
classifier with a softmax activation as the encoder f .
Figure 2 shows the encoder structure. To represent
the label information from the labeled knowledge
base in the model, we provide additional token-
type embeddings. Though the token type is always
zero in the conventional BERT model for NER, we
use 2C + 3 token-type IDs;

ti =





0 if xi is the original input
1 if x+i is unlabeled knowledge
li + 2 if x+i is labeled knowledge

,

3195

BERT
Token Emb.

Type Emb.

Labeled
UKB

Original Input

Unlabeled
UKB

Those who wanted to maintain the
allegiance to the House of Freedoms ...

Query

The election was won
by the centre-right

House of Freedoms coalition ...

ValueKey
Retrieval

Knowledge
Input 1 ... m

UKBs

Figure 2: Overview of our self-adaptive NER with knowledge retrieval from UKBs, which store text with n-gram and
sentence embeddings as keys. The labeled UKB has text with labels encoded as token type embeddings. The queries
are embeddings of unconfident entities and input. We use a sparse matrix in the self-attention modules in BERT.

where li is the label of the labeled knowledge, and
X+ is the concatenated text.

In the self-attention module, we use the sparse
attention technique to reduce the space and time
complexity from O(m2L2) to O(mL2). As shown
in Figure 2, we mask the inter-knowledge interac-
tion.1 Let k be a function that returns 0 as the sen-
tence id if the sequence is the input X and 1, ...,m
if the sequence is the knowledge. Accordingly, the
attention matrix before the softmax operation is

Aij =

{
Q⊤

i Kj√
dk

if k(i) = k(j) or k(i)k(j) = 0

−∞ otherwise
,

where i, j are the token indices, dk is the number
of dimensions of the attention head, and Q and
K ∈ R(m+1)L×dk are query and key matrixes.

4.3 Two-stage Tagging of Self-Adaptive NER

SA-NER performs two-stage tagging, i.e., calcu-
lation of P = f(X), and calculation of P+ =
f(X+). The purpose of the first stage is to find
the entities that require additional information and
obtain queries for knowledge retrieval. The sec-
ond stage is to refine the labels with the retrieved
knowledge. The motivation behind this design is
to retrieve useful entity-wise knowledge to disam-
biguate individual tokens in NER. We predict the
entity spans for entity-level retrieval. We use only
the unconfident entities as the entity-based queries
in order to exclude unnecessary knowledge from
the retrieved results. The pseudo-code of the model
is listed in Algorithm 1.

We obtain the classification probabilities of the
given text P = f(X) ∈ RL×(2C+1) or that of the

1We implement X+ as an (m+1)×L tensor. We calculate
three attention matrices: intra-sequence attention ((m+ 1)×
L×L), knowledge-to-input attention (m×L×L), and input-
to-knowledge attention (m × L × L). This operation takes
advantage of parallel computing on the GPU.

Algorithm 1 Two-stage self-adaptive NER

Require: input X , KBs, hyperparamters m,λconf

1: Predict probability P = f(X)
2: Compute confidence score ce = mini∈Ie Pi,ŷi for each

predicted entity e ∈ E with span Ie
3: Obtain unconfident entities U = {e|e ∈ E , ce < λconf}
4: Add the sentence and unconfident-entity embeddings to

the queries, Q
5: Initialize the retrieval results R = Φ
6: for query qi in the queries, Q do
7: Retrieve m nearest-neighbor keys for qi from the KBs
8: Store their values with the distance in R
9: end for

10: Deduplicate R to obtain top-m knowledge Km
1 from R

11: Output probabilities P and P+ = f(X+ = [X;Km
1])

text with knowledge P+ = f(X+) ∈ RL×(2C+1),
where the vectors after position L are ignored. The
model parameters are shared in the two stages.

First Stage We collect unconfident entities U in
X and feed X to the model to obtain the classi-
fication probability P ∈ RL×(2C+1). Then, we
extract the entities E from X in accordance with
the predicted labels ŷ = argmaxcP·c ∈ RL.
The confidence score of a predicted entity e is
ce = mini∈Ie Pi,ŷi , where Ie is the span of e ∈ E .
If the type predictions are inconsistent in an entity
(e.g., [B-LOC, I-PER]), we set ce = 0. We collect
the unconfident entities U ⊆ E whose confidence
scores are less than a threshold λconf .

Then, we obtain the queries, which are the sen-
tence and entity embeddings. The sentence embed-
ding is the average pooling over all token embed-
dings. Each unconfident entity u ∈ U has multiple
entity embeddings: average-pooled vectors of n-
grams which share at least one token with u. The
n-grams are filtered out similarly as in the UKB

construction (§ 4.1). E denotes the number of en-
tity embeddings (which are embeddings of n-grams
overlapping with u ∈ U). Each token embedding
is a concatenation of the BERT input and output.

3196

Note that we only consider sentence-to-sentence
and entity-to-n-gram matching. We retrieve the top-
m nearest neighbors of the sentence embedding
from the sentence embeddings in the UKBs and
of the entity embeddings from the n-gram embed-
dings. Then, we select the top-m nearest knowl-
edge from the collected 2(E + 1)m knowledge
while deduplicating the backbone knowledge se-
quence by keeping the knowledge having the mini-
mum distance.

Second Stage We concatenate the knowledge
Km

1 to the input X and obtain the classification
probability P+ = f(X+ = [X;Km

1]). Finally,
the model outputs BIO labels in accordance with
P for the tokens in the confident entities and in
accordance with P+ for the other tokens.

4.4 Training
To train our two-stage SA-NER, we utilize super-
vision on the training data to refine unconfident
entities and design the loss function.

Unconfident Entity Collection In the training
phase, we add the misclassified entities, i.e., those
of which the prediction is not correct, to the uncon-
fident entities U described in §4.3.

Loss Function We use two cross-entropy losses,
L1 for the model prediction without knowledge
(the first step) and L2 for the model prediction with
knowledge (the second step). The total loss func-
tion is L2 + λ1L1, where λ1 is a hyperparameter.

4.5 Pre-training
As is done in retrieval-augmented language mod-
els for ODQA (Guu et al., 2020; Borgeaud et al.,
2021), we add a retrieval-augmented pre-training
stage before the fine-tuning. We propose two
methods for NER-aware retrieval-augmented pre-
training. The first method uses a general domain
NER dataset, CoNLL03 (Tjong Kim Sang and
De Meulder, 2003). The model is pre-trained with
the method described above (§4.1~§4.4).

The second method involves a large-scale self-
supervised pre-training following NERBERT (Liu
et al., 2021a). Although the UKB in SA-NER and
the pre-training data overlapped in some cases, SA-
NER can use the knowledge effectively by referring
to it at inference time.

NERBERT The pre-training corpus is Wikipedia.
If the consecutive words in the corpus have a hy-
perlink, the words are labeled as an entity. We

categorize such entities with the DBpedia Ontol-
ogy (Mendes et al., 2012). If the entity exists in the
ontology, we categorize it to its type. If it does not
exist or it belongs to multiple types, we categorize
it to the special “ENTITY” type.

We split the corpus into fixed-length token se-
quences,2 and extract the sequences with tokens
labeled with the DBpedia types. We reduce the
proportion of “ENTITY” labels by using filtering
rules and down sampling. The resulting dataset has
33M examples, 939M tokens, and 404 types.

We add a final linear layer with a trainable pa-
rameter Wpre ∈ Rd×(2Cpre+1) to the top of BERT,
where d is the hidden size of BERT and Cpre is
the number of types. Before fine-tuning, the final
layer is replaced with a randomly initialized linear
layer whose output dimension is determined by the
downstream task. Refer to Appendix B and the
original paper (Liu et al., 2021a) for details.

Knowledge Retrieval We use the SA-NER model
in the pre-training to reduce the pre-training and
fine-tuning discrepancy. We use the pre-training
data itself as UKBs. We retrieve knowledge with its
pseudo-labels from the data as labeled knowledge
and randomly delete the pseudo-labels to make the
knowledge unlabeled. We set the deletion probabil-
ity as 0.95 to simulate downstream tasks where the
unlabeled UKB is larger than the labeled UKB. For
efficiency, we use Wikipedia hyperlinks as the keys
and queries of the retrieval. Instead of a two-stage
prediction, we sample m pieces of knowledge that
includes an entity in the original input.

5 Evaluation

We conducted experiments on three NER datasets to
evaluate the effectiveness of our self-adaptive NER

with unstructured knowledge. We used the entity-
level F1 as the metric, following the literature.

5.1 Dataset

CrossNER (Liu et al., 2021b) consists of five do-
mains: politics, science, music, literature, and AI.
This small-scale dataset was created by annotating
the sentences extracted from the Wikipedia arti-
cles in each domain. It provides the textual corpus
extracted from Wikipedia for the in-domain pre-
training. We used it for the unstructured UKB.3

2Although the original NERBERT uses a sentence as a unit,
we use a fixed length in order to share the setting with UKBs.

3We can see if the self-adaptive NER is useful even though
the unlabeled knowledge overlaps the NERBERT pre-training

3197

AI. Mus. Lit. Sci. Pol. Avg. Fin. CoNLL03

Train (# NE types) 100 (14) 100 (13) 100 (12) 200 (17) 200 (9) — 1169 (4) 14987 (4)
BERT† 50.37 66.59 59.95 63.73 66.56 61.44 — —
DAPT† 56.36 73.39 64.96 67.59 70.45 66.55 — —
NERBERT‡ 60.39 76.23 67.85 71.90 73.69 70.01 — —

BERT on CoNLL03 56.97 (1.05) 69.10 (1.08) 64.37 (0.73) 65.76 (0.58) 70.16 (0.56) 65.27 (0.80) 72.35 (5.32) —
REALM-NER on CoNLL03 58.05 (1.15) 71.17 (0.63) 64.58 (0.69) 66.33 (0.66) 69.38 (0.36) 66.56 (0.80) 70.03 (1.35) —
SA-NER on CoNLL03 60.31 (1.03) 72.20 (0.79) 66.23 (1.30) 68.22 (0.57) 71.18 (0.57) 67.62 (0.85) 74.02 (2.29) —

BERT on NERBERT 62.05 (0.66) 76.45 (0.90) 69.68 (0.26) 72.10 (0.67) 74.38 (0.40) 70.93 (0.58) 75.05 (7.47) 90.25 (0.11)
REALM-NER on NERBERT 64.32 (0.31) 77.55 (0.69) 70.42 (0.60) 72.52 (0.42) 74.45 (0.38) 71.85 (0.43) 73.34 (1.74) 89.94 (0.42)
SA-NER on NERBERT 65.27 (0.95) 78.71 (0.47) 71.79 (0.57) 74.38 (0.19) 74.63 (0.36) 72.96 (0.51) 75.77 (1.01) 90.49 (0.49)

Table 1: Main results on the test set. The model was pre-trained on CoNLL03 or the NERBERT dataset from the
BERT-base-cased model. We ran five experiments with different seeds. Standard deviations are parenthesized.
Performances of the previous models are cited from Liu et al. (2021b)† and Liu et al. (2021a).‡ BERT on NERBERT
corresponds to our implementation of the NERBERT model.

AI. Mus. Lit. Sci. Pol. Avg. Fin. CoNLL03

DistilBERT on CoNLL03 54.16 (1.21) 66.64 (0.54) 60.53 (1.26) 64.14 (0.49) 67.61 (0.70) 62.61 (0.84) 68.78 (6.35) —
REALM-NER on CoNLL03 53.85 (1.38) 67.03 (0.41) 61.83 (1.38) 64.19 (0.17) 69.09 (0.52) 63.20 (0.54) 70.35 (5.04) —
SA-NER on CoNLL03 55.31 (1.03) 67.25 (1.14) 61.53 (1.18) 65.71 (1.03) 69.36 (0.55) 63.83 (0.99) 72.89 (2.71) —

DistilBERT on NERBERT 59.52 0.89) 71.60 (1.05) 63.52 (0.47) 69.26 (0.97) 68.88 (0.64) 66.56 (0.80) 73.36 (4.17) 89.23 (0.19)
REALM-NER on NERBERT 60.39 (0.53) 71.39 (0.33) 62.89 (0.19) 68.18 (0.83) 69.79 (0.82) 66.53 (0.54) 74.35 (5.06) 88.54 (0.62)
SA-NER on NERBERT 61.90 (0.38) 73.61 (0.45) 65.48 (0.31) 70.44 (0.69) 69.95 (0.90) 68.27 (0.55)) 75.40 (1.46) 89.50 (0.30)

Table 2: Main results on the test set. The models were pre-trained from DistilBERT-base-cased.

The label sets are different among the domains.

Finance (Salinas Alvarado et al., 2015) is a
medium-scale NER dataset collected from U.S.
SEC filings. We used the Wikipedia articles in
the finance domain as the textual corpus D to con-
struct the unlabeled UKB. The label set is person,
organization, location, and miscellaneous.

CoNLL03 (Tjong Kim Sang and De Meulder,
2003) is a widely used large-scale NER dataset col-
lected from Reuters news stories between August
1996 and August 1997. We used the Reuters-21578
text classification dataset (Lewis, 1997), which was
collected from Reuters in 1987, as D. The label set
is the same as that of Finance.

5.2 Compared Models

Our text encoder and tokenizer were the pre-trained
BERT-base-cased model (Devlin et al., 2019) or
DistilBERT-base-cased model (Sanh et al., 2019).
All experiments used the hyperparameters de-
termined on the development set of CrossNER-
Politics; refer to Appendix A.

We pre-trained the compared models on the

data. Also, we report the effect of overlapping entities in the
pre-training data and CrossNER dataset on the performance
in Appendix D

CoNLL03 or NERBERT (Liu et al., 2021a)4 datasets
before fine-tuning. In addition to the BERT

model (i.e., BERT with CoNLL03 or NERBERT

pre-training), we implemented the NER version of
REALM (REALM-NER). For REALM-NER, we re-
placed the retrieval-augmented MLM of REALM

with our retrieval-augmented pre-training methods
tailored for NER to assess the effectiveness of our
knowledge retrieval. Also, we set m = 1, removed
the entity-level retrieval, and ignored the labeled
UKB. We cited the results of the previous mod-
els: BERT, NERBERT, and DAPT (Gururangan et al.,
2020), which is the domain-adapted BERT base-
line.5 We compared our model with models con-
sisting of BERT and a linear classifier because the
classifier architecture is out of the scope of our
study.

5.3 Main Results

Table 1 and Table 2 show the main results. The pro-
posed model outperformed the baselines across all
target domains, models, and pre-training datasets.

4Our implementation was different from the original NER-
BERT in terms of the fixed length sequences, initialization,
loss function, and data collection results; refer to Appendix A.

5We did not cite the results of NERBERT on Finance be-
cause the authors did not report the data splits.

3198

Method Acc ∆

Proposed 77.33 (0.19)

w/o Entity-level Retrieval 76.21 (0.23) 1.12
w/o Sentence-level Retrieval 76.54 (0.48) 0.79

w/o Confident Entities (i.e., λconf > 1) 76.91 (0.24) 0.42
w/o using First-Step Prediction on E \ U 76.97 (0.33) 0.36

w/o Unlabeled Knowledge 76.23 (0.44) 1.10
w/o Labeled Knowledge 76.82 (0.45) 0.51

NERBERT 75.90 (0.22) 1.43

Table 3: Ablation studies on the development set of the
politics domain. ∆ shows the drop from the proposed
model. Each ablation was conducted in the fine-tuning
and evaluation.

The improvement is typically larger in the lower-
resource domain with more types, because per-type
supervision is limited in such case.

Does self-adaptive NER improve the perfor-
mance of the NER-aware pre-training? SA-
NER outperformed BERT with CoNLL03 and NER-
BERT pre-training. This indicated that the self-
adaptation using unstructured knowledge at infer-
ence time has the effect of obtaining additional
knowledge that is not stored in the model, even
though the model has seen the unstructured knowl-
edge in the pre-training. Moreover, because we can
increase the unlabeled UKB after pre-training, the
model can acquire new knowledge more efficiently
than by conducting additional pre-training.

Does self-adaptive NER improve the perfor-
mance of the retrieval-augmented LM baseline?
SA-NER outperformed REALM-NER. SA-NER re-
trieves knowledge with the entity-level retrieval
from the labeled and unlabeled UKB and encodes
large pieces of knowledge due to the sparse atten-
tion. These techniques improved the usefulness
of the knowledge for NER. The contributions of
each component are discussed in the ablation stud-
ies. We also found that REALM-NER tends to be
not good in the setting # Train > 1000. Because
REALM-NER retrieves a piece of knowledge with
only the sentence-level query, knowledge retrieval
is not always useful in that setting.

5.4 Ablation Studies

Table 3 shows the results of the ablation studies.
We used the best performing SA-NER with NER-
BERT pre-training as the full model. We found that
all components of SA-NER improved performance.

Does the entity-level retrieval improve perfor-
mance? First, we confirmed the usefulness of
self-adaptive knowledge retrieval, because knowl-
edge retrieval based on the model’s entity pre-
diction is more useful for NER than conventional
sentence-level retrieval (∆1.12 vs. ∆0.79). Also,
we found that both knowledge retrievals improve
NER performance.

Does the distinction about confidence improve
the performance? Second, we investigated the
efficacy of distinguishing the predicted entities in
terms of confidence. The model retrieves knowl-
edge about unconfident entities U = {e|ce <
λconf , e ∈ E}, and then refines the prediction for
only the unconfident entities with the retrieved
knowledge. We set λconf > 1 to remove the distinc-
tion. We observed that ignoring confident entities
in creating queries is slightly effective (∆0.42),
because we can restrict the retrieval results to in-
formative knowledge for NER. Then, we used the
second-step prediction for all tokens. We found that
reusing the first-step prediction for confident enti-
ties improved performance slightly (∆0.36). Using
the first-step prediction is important for confident
entities because the retrieved knowledge is likely to
be irrelevant to them. We consider that making the
distinction is more useful in the smaller m setting
where the amount of knowledge is limited.

Do the labeled and unlabeled UKBs improve
the performance? Finally, we confirmed that
both the labeled and unlabeled UKBs are important
(∆1.10 and ∆0.51). The unlabeled UKB covers
various contexts, and the labeled UKB has supervi-
sion. The two types of UKB have different roles in
helping the model recognize entities.

5.5 Discussion

Does the performance of our model depend on
the amount of knowledge? Figure 3 plots F1

score versus the amount of knowledge m. We can
see that more pieces of knowledge led to higher
F1 scores. Because the time and space complexity
of the sparse attention is linear in the number of
pieces of knowledge, the sparse attention is suit-
able for large m. However, the dense attention did
not improve performance in the case of large m.
We consider that the sparse attention represents the
intra- and inter-sequence interactions more effec-
tively than the naive dense attention can.

3199

1/1 2/4 3/9 4/16
Amount of Knowledge (Dense/Sparse Attention)

75

76

77

78
F1

Sparse Attention
Dense Attention
No Knowledge

Figure 3: F1 score versus the amount of knowledge
m. The error bars show the standard deviation over
five runs. For a fair comparison of the time and space
complexity, we compared the methods with different
values of m, since our sparse attention runs in O(ml2)
while the dense attention runs in O(m2l2).

Entities NERBERT Proposed

All 3472 75.90 (0.22) 77.33 (0.19)
Seen in Training 661 84.05 (1.43) 85.20 (0.21)
Unseen in Training 2811 71.39 (0.29) 73.03 (0.36)
Seen in Pre-Training 3083 77.58 (0.17) 78.83 (0.29)
Unseen in Pre-Training 389 50.90 (1.63) 54.18 (1.85)

Table 4: Detailed results on the development set.

What types of entity require external knowl-
edge? Table 4 lists the results for when the target
entities were restricted to each type, which is de-
fined in terms of whether the supervision of an
entity was included in the training and pre-training
data. The proposed model outperformed NERBERT

on all types. The improvement was 1.15 points
for the “seen in training” type and 1.64 points
for the “unseen in training” type. Therefore, self-
adaptation has an effect regardless of whether or
not the entity exists in the training data; we also
observed this effect in the ablation studies.

Regarding the “unseen in pre-training” type, the
proposed model improved performance by 3.28
points. The pre-training dataset collected from
Wikipedia shares a lot of entities in the CrossNER
dataset created from Wikipedia, and thus whether
the tokens are labeled as entities in the pre-training
dataset (i.e., the tokens have Wikipedia hyperlinks)
has a large effect on performance. We confirmed
that PRE-training data is more valuable than one
might think, similarly to the findings of Wang et al.
(2022) that the reference to the training data at
inference time is worthwhile.

Is the self-adaptive NER sensitive to the unconfi-
dence threshold? To investigate the sensitivity
of SA-NER to the hyperparameter, we set λconf to
various values at inference time after we trained
the model with λconf = 0.9.

λconf Acc Unconfident Proportion

0 76.21 (0.23) 0.00%
0.1 77.14 (0.30) 3.60%
0.5 77.18 (0.23) 5.38%
0.7 77.21 (0.28) 9.60%
0.8 77.30 (0.21) 12.25%
0.9 77.33 (0.19) 16.63%
0.95 77.33 (0.16) 21.04%
0.97 77.24 (0.19) 24.74%
0.99 77.13 (0.16) 31.99%
0.995 77.12 (0.17) 37.61%
0.999 77.01 (0.22) 63.63%
1 76.91 (0.24) 100.00%

Table 5: F1 score versus confidence threshold λcoef .
Unconfident proportion indicates the proportion of un-
confident entities to all entities. We omitted rows
0.2, 0.3, 0.4, and 0.6, whose performance is the same as
that of the rows directly above.

String Matching Filtering 77.33 (0.19)
w/o Knowledge Retrieval (NERBERT) 75.90 (0.22)
w/o Entity-level Retrieval 76.21 (0.23)

Summarization-based Filtering 77.02 (0.40)

Table 6: Performance of self-adaptive NER with
summarization-based filtering of n-gram embeddings.

Table 5 shows the results. The performance is
on par if λconf ∈ [0.8, 0.95]. Therefore, SA-NER

is not sensitive to λconf . We also confirmed that
modifying the prediction of the high-confidence
entities is harmful (λconf = 1) and thus using λconf

is useful. Moreover, we observed that modifying
the prediction of certain entities (3.6% of the total
number) is important. These entities are ones in
which the token-level predictions were inconsistent,
and their confidence ce were set to 0.

Does the self-adaptive NER depend on the filter-
ing method of the n-grams? We compared the
two filtering methods for n-gram embeddings in
the UKB. The string matching method used the in-
formation of the n-grams appearing in the training
or development (test) splits in the evaluation on the
development (test) set. The summarization-based
method just set the maximum number of n-grams
in each piece of knowledge.

Table 6 shows the results. Both methods outper-
formed the no-knowledge baseline (NERBERT) and
the ablated model without the entity-level knowl-
edge retrieval. The summarization-based filtering
requires fewer assumptions and is computationally
efficient, although it is less accurate.

3200

Input the Association for the Rose in the Fist of Lan-
franco Turci and those who wanted to maintain
the allegiance to the House of Freedoms coali-
tion.

Knowledge The election was won in Sardinia by the centre-
right House of Freedoms coalition ... voted party
with 30.2% .

Prediction organization → political party

Input Director Michael Moore partnered with produc-
ers Harvey Weinstein and Bob Weinstein in May
2017 to produce and distribute Fahrenheit 11/9 .

Knowledge ... Bob Weinstein, the founders of Miramax
Films.

Prediction politician → politician

Table 7: Qualitative Analysis. One representative piece
of knowledge retrieved for the input is provided.

5.6 Qualitative Analysis

Table 7 shows examples of our model. The first
example is a case in which the self-adaptation im-
proved the model prediction. The original input
itself does not have evidence that the House of
Freedoms is a political party. However, the knowl-
edge provides this evidence by mentioning it in the
context of an election. The second example is the
most common fault in the political domain. Be-
cause of the imbalance between the training labels
of person and politician, the person entities tend
to be misclassified as politician entities. Although
both the input and the knowledge indicate that Bob
Weinstein is not a politician, the model made the
wrong prediction.

6 Conclusions

We proposed SA-NER, which is designed for NER

to retrieve knowledge from the labeled and un-
labeled UKBs by using unconfident entities and
given inputs as queries. It encodes many pieces
of knowledge efficiently with sparse attention. In
experiments, SA-NER outperformed DistilBERT
and BERT baselines pre-trained on the CoNLL03
and NERBERT datasets by 1.22 to 2.35 points. We
found that the entity-level retrieval, the focus on
the unconfident entities, the labeled and unlabeled
UKBs, and the large m that is enabled by the sparse
attention all contribute to SA-NER’s performance.

We believe that SA-NER can help application
providers to develop NER services in their target
domain with domain-specific entity types that they
have defined, even if they do not have an annotated
dataset sufficiently.

Limitations

SA-NER would be of benefit to low-resource do-
mains and languages. However, for languages that
have no word segmentation, such as Chinese, the
method of constructing UKB based on n-grams and
capitalization may not be suitable. For such lan-
guages, we can use a traditional word segmenter
and POS tagger to extract entity-like n-grams. Al-
though we did not conduct any such data prepro-
cessing in our experiments, it may also be useful
for English.

Acknowledgement

This work (second author) was partially supported
by JSPS KAKENHI Grant Number 21H03494. We
thank the anonymous reviewers for their hard work.

References
Pratyay Banerjee, Kuntal Kumar Pal, Murthy De-

varakonda, and Chitta Baral. 2019. Knowledge
guided named entity recognition for biomedical text.
arXiv preprint arXiv:1911.03869.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing with Python. O’Reilly
Media, Inc.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, et al. 2021. Improving lan-
guage models by retrieving from trillions of tokens.
arXiv preprint arXiv:2112.04426.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.
Knowledgeable or educated guess? revisiting lan-
guage models as knowledge bases. In ACL-IJCNLP,
pages 1860–1874.

Yixin Cao, Zikun Hu, Tat-seng Chua, Zhiyuan Liu, and
Heng Ji. 2019. Low-resource name tagging learned
with weakly labeled data. In EMNLP-IJCNLP, pages
261–270.

Xiang Chen, Lei Li, Shumin Deng, Chuanqi Tan,
Changliang Xu, Fei Huang, Luo Si, Huajun Chen,
and Ningyu Zhang. 2022. LightNER: A lightweight
tuning paradigm for low-resource NER via pluggable
prompting. In COLING, pages 2374–2387.

3201

https://doi.org/https://doi.org/10.48550/arXiv.1911.03869
https://doi.org/https://doi.org/10.48550/arXiv.1911.03869
https://doi.org/https://doi.org/10.48550/arXiv.2112.04426
https://doi.org/https://doi.org/10.48550/arXiv.2112.04426
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/D19-1025
https://doi.org/10.18653/v1/D19-1025
https://aclanthology.org/2022.coling-1.209
https://aclanthology.org/2022.coling-1.209
https://aclanthology.org/2022.coling-1.209

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. TACL,
4:357–370.

William W Cohen and Sunita Sarawagi. 2004. Exploit-
ing dictionaries in named entity extraction: combin-
ing semi-Markov extraction processes and data inte-
gration methods. In KDD, pages 89–98.

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGer-
ald, Fei Sha, and William Cohen. 2022. Mention
memory: incorporating textual knowledge into trans-
formers through entity mention attention. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. 2022. Time-aware language mod-
els as temporal knowledge bases. TACL, 10:257–273.

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colossal
clean crawled corpus. In EMNLP, pages 1286–1305.

Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong
Lu. 2014. NCBI disease corpus: a resource for dis-
ease name recognition and concept normalization.
Journal of biomedical informatics, 47:1–10.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In ACL, pages 363–370.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In CoNLL@HLT-NAACL, pages
168–171.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
ACL, pages 8342–8360.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In ICML, pages 3929–
3938.

Junjie Huang, Duyu Tang, Wanjun Zhong, Shuai Lu,
Linjun Shou, Ming Gong, Daxin Jiang, and Nan
Duan. 2021. WhiteningBERT: An easy unsuper-
vised sentence embedding approach. In Findings
of EMNLP, pages 238–244.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In EACL, pages 874–
880.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. Genia corpus—a semantically anno-
tated corpus for bio-textmining. Bioinformatics,
19(suppl_1):i180–i182.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Vijay Krishnan and Christopher D. Manning. 2006. An
effective two-stage model for exploiting non-local de-
pendencies in named entity recognition. In COLING,
pages 1121–1128.

David D. Lewis. 1997. Reuters-21578 text categoriza-
tion test collection, distribution 1.0.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive NLP tasks. In NeurIPS, pages 9459–9474.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020. A unified MRC
framework for named entity recognition. In ACL,
pages 5849–5859.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Rui-
jia Wang, Tuo Zhao, and Chao Zhang. 2020. Bond:
Bert-assisted open-domain named entity recognition
with distant supervision. In KDD, page 1054–1064.

Hui Lin and Jeff Bilmes. 2011. A class of submodu-
lar functions for document summarization. In ACL,
pages 510–520.

Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. 2019. To-
wards improving neural named entity recognition
with gazetteers. In ACL, pages 5301–5307.

Zihan Liu, Feijun Jiang, Yuxiang Hu, Chen Shi, and
Pascale Fung. 2021a. NER-BERT: A pre-trained
model for low-resource entity tagging. arXiv preprint
arXiv:2112.00405.

Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai, Zi-
wei Ji, Samuel Cahyawijaya, Andrea Madotto, and
Pascale Fung. 2021b. CrossNER: Evaluating cross-
domain named entity recognition. In AAAI, pages
13452–13460.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In EMNLP, pages 879–888.

Jouni Luoma and Sampo Pyysalo. 2020. Exploring
cross-sentence contexts for named entity recognition
with BERT. In COLING, pages 904–914.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In ACL, pages 1064–1074.

3202

https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/https://doi.org/10.1145/1014052.1014065
https://doi.org/https://doi.org/10.1145/1014052.1014065
https://doi.org/https://doi.org/10.1145/1014052.1014065
https://doi.org/https://doi.org/10.1145/1014052.1014065
https://arxiv.org/abs/2110.06176
https://arxiv.org/abs/2110.06176
https://arxiv.org/abs/2110.06176
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.1016/j.jbi.2013.12.006
https://doi.org/10.1016/j.jbi.2013.12.006
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://aclanthology.org/W03-0425
https://aclanthology.org/W03-0425
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/v1/2021.findings-emnlp.23
https://doi.org/10.18653/v1/2021.findings-emnlp.23
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.3115/1220175.1220316
https://doi.org/10.3115/1220175.1220316
https://doi.org/10.3115/1220175.1220316
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.1145/3394486.3403149
https://doi.org/10.1145/3394486.3403149
https://doi.org/10.1145/3394486.3403149
https://aclanthology.org/P11-1052
https://aclanthology.org/P11-1052
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://doi.org/https://doi.org/10.48550/arXiv.2112.00405
https://doi.org/https://doi.org/10.48550/arXiv.2112.00405
https://ojs.aaai.org/index.php/AAAI/article/view/17587
https://ojs.aaai.org/index.php/AAAI/article/view/17587
https://doi.org/10.18653/v1/D15-1104
https://doi.org/10.18653/v1/D15-1104
https://doi.org/10.18653/v1/2020.coling-main.78
https://doi.org/10.18653/v1/2020.coling-main.78
https://doi.org/10.18653/v1/2020.coling-main.78
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101

Pablo Mendes, Max Jakob, and Christian Bizer. 2012.
DBpedia: A multilingual cross-domain knowledge
base. In LREC, pages 1813–1817.

Xue Mengge, Bowen Yu, Zhenyu Zhang, Tingwen Liu,
Yue Zhang, and Bin Wang. 2020. Coarse-to-fine pre-
training for named entity recognition. In EMNLP,
pages 6345–6354.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Juraf-
sky. 2009. Distant supervision for relation extraction
without labeled data. In ACL-IJCNLP, pages 1003–
1011.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie
Ma, Alessandro Achille, RISHITA ANUBHAI, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation
between augmented natural languages. In ICLR.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In Au-
todiff@NIPS.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In EMNLP-IJCNLP, pages 2463–2473.

Barbara Plank, Dirk Hovy, Ryan McDonald, and Anders
Søgaard. 2014. Adapting taggers to Twitter with
not-so-distant supervision. In COLING, pages 1783–
1792.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:1–67.

Julio Cesar Salinas Alvarado, Karin Verspoor, and Tim-
othy Baldwin. 2015. Domain adaption of named
entity recognition to support credit risk assessment.
In ALTA, pages 84–90.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In
EMC2@NeurIPS.

Dominic Seyler, Tatiana Dembelova, Luciano Del Corro,
Johannes Hoffart, and Gerhard Weikum. 2018. A
study of the importance of external knowledge in
the named entity recognition task. In ACL, pages
241–246.

Keiji Shinzato, Naoki Yoshinaga, Yandi Xia, and Wei-
Te Chen. 2022. Simple and effective knowledge-
driven query expansion for QA-based product at-
tribute extraction. In ACL, pages 227–234.

Devendra Singh, Siva Reddy, Will Hamilton, Chris
Dyer, and Dani Yogatama. 2021. End-to-end train-
ing of multi-document reader and retriever for open-
domain question answering. In NeurIPS, pages
25968–25981.

Charles Sutton and Andrew McCallum. 2004. Collec-
tive segmentation and labeling of distant entities in
information extraction. In SRL@ICML.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
CoNLL, pages 142–147.

Hai-Long Trieu, Makoto Miwa, and Sophia Anani-
adou. 2022. Named entity recognition for cancer
immunology research using distant supervision. In
BioNLP@ACL, pages 171–177.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
BERT for Finnish. arXiv preprint arXiv:1912.07076.

Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu,
Siqi Sun, Ruochen Xu, Chenguang Zhu, and Michael
Zeng. 2022. Training data is more valuable than you
think: A simple and effective method by retrieving
from training data. In ACL, pages 3170–3179.

Xuan Wang, Vivian Hu, Xiangchen Song, Shweta
Garg, Jinfeng Xiao, and Jiawei Han. 2021. Chem-
NER: Fine-grained chemistry named entity recog-
nition with ontology-guided distant supervision. In
EMNLP, pages 5227–5240.

Xuan Wang, Xiangchen Song, Bangzheng Li, Yingjun
Guan, and Jiawei Han. 2020. Comprehensive named
entity recognition on CORD-19 with distant or weak
supervision. arXiv preprint arXiv:2003.12218.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In ACL:
System Demonstrations, pages 38–45.

Vikas Yadav and Steven Bethard. 2018. A survey on re-
cent advances in named entity recognition from deep
learning models. In COLING, pages 2145–2158.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified genera-
tive framework for various NER subtasks. In ACL-
IJCNLP, pages 5808–5822.

Shuai Zhang, Yongliang Shen, Zeqi Tan, Yiquan Wu,
and Weiming Lu. 2022. De-bias for generative ex-
traction in unified NER task. In ACL, pages 808–818.

A Experimental Setup

Table 8 shows the data statistics. Because the fi-
nance dataset provides no development data, we
split the front half of the 306 test examples into our

3203

http://www.lrec-conf.org/proceedings/lrec2012/pdf/570_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/570_Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.514
https://doi.org/10.18653/v1/2020.emnlp-main.514
https://aclanthology.org/P09-1113
https://aclanthology.org/P09-1113
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://aclanthology.org/C14-1168
https://aclanthology.org/C14-1168
https://aclanthology.org/U15-1010
https://aclanthology.org/U15-1010
https://doi.org/10.18653/v1/P18-2039
https://doi.org/10.18653/v1/P18-2039
https://doi.org/10.18653/v1/P18-2039
https://doi.org/10.18653/v1/2022.acl-short.25
https://doi.org/10.18653/v1/2022.acl-short.25
https://doi.org/10.18653/v1/2022.acl-short.25
https://proceedings.neurips.cc/paper/2021/file/da3fde159d754a2555eaa198d2d105b2-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/da3fde159d754a2555eaa198d2d105b2-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/da3fde159d754a2555eaa198d2d105b2-Paper.pdf
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/2022.bionlp-1.17
https://doi.org/10.18653/v1/2022.bionlp-1.17
https://doi.org/https://doi.org/10.48550/arXiv.1912.07076
https://doi.org/https://doi.org/10.48550/arXiv.1912.07076
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2021.emnlp-main.424
https://doi.org/10.18653/v1/2021.emnlp-main.424
https://doi.org/10.18653/v1/2021.emnlp-main.424
https://doi.org/https://doi.org/10.48550/arXiv.2003.12218
https://doi.org/https://doi.org/10.48550/arXiv.2003.12218
https://doi.org/https://doi.org/10.48550/arXiv.2003.12218
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/C18-1182
https://aclanthology.org/C18-1182
https://aclanthology.org/C18-1182
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2022.acl-long.59
https://doi.org/10.18653/v1/2022.acl-long.59

development split and the back half into our test
split.

We collected the raw text in the finance domain
from Wikipedia articles. We used the dump data of
Wikipedia Circus Search.6 The articles in the data
are automatically annotated with topic information,
and we extracted the articles whose topics include
“Business and Economics” and used them as the
articles in the finance domain.

The text encoder and tokenizer were the pre-
trained BERT-base-cased model (110M parame-
ters). The pre-training took 17 hours on eight
NVIDIA Quadro RTX 8000 (48GB) GPUs. The
training of the largest CoNLL dataset took 6 hours
on one GPU. The hyperparameter settings are
listed in Table 9. We set the early stop epoch
to five only in CoNLL03 for computational effi-
ciency. We used the Adam optimizer (Kingma
and Ba, 2015), PyTorch (ver. 1.10.1)7 (Paszke
et al., 2017), and transformers (ver. 4.15.0)8 (Wolf
et al., 2020). Stop words were implemented with
NLTK (ver. 3.7)9 (Bird et al., 2009). We used faiss
(ver. 1.7.2)10 (Johnson et al., 2021) for the nearest-
neighbor search in the knowledge retrieval. We set
L = 64 for all of the data preprocessing, with a
sliding window size of 16. For entities in the slid-
ing window, we used the max operation to select
from the two predictions.

We pre-trained the NERBERT model under the
same hyperparameter settings as above, without
knowledge retrieval (that is, m = 0). This pre-
training was the different from the original NER-
BERT in terms of the sequence segmentation, ini-
tialization, and data collection results, in addition
to the hyperparameters.

B Our implementation of NERBERT

Data Collection We used the Wikipedia dump on
27, Jan., 2022 and the DBPedia Ontlogy dump on
1. Dec. 2021.11 Then, we split the corpus into fixed-
length token sequences and removed the sequences

6https://dumps.wikimedia.org/other/
cirrussearch/

7https://pytorch.org/
8https://github.com/huggingface/

transformers
9https://www.nltk.org/

10https://github.com/facebookresearch/
faiss

11We used en-specific data, which means that the
types are annotated without transitive augmentation.
https://databus.dbpedia.org/dbpedia/
mappings/instance-types/

Train # Dev # Test # Types UKB

AI. 100 350 431 14 15
Mus. 100 380 456 13 467
Lit. 100 400 416 12 436
Sci. 200 450 543 17 191
Pol. 200 541 651 9 354
Fin. 1169 103 103 4 850
CoNLL03 14987 3466 3684 4 7.5

Table 8: Data Statistics. UKB indicates the size of
UKB (MB).

Pre-Training Fine-Tuning

Batch size 1024 16
Epochs 1 300
Steps 10000 —

Early stop — 5/8
m 2 10
n 3 3

λconf — 0.9
λ1 — 0.1

Learning rate 5e-5 5e-5

Table 9: Hyperparameters.

without entities that were not labeled as “ENTITY.”
We reduced the proportion of “ENTITY” labels

by using filtering rules and down sampling. We
randomly filtered the sentences to reduce these la-
bels. If all entities in a sentence were the top-20
frequent labels, the sentences were randomly re-
moved from the dataset: 30% if the number of
“ENTITY” entities was three, 50% if the number
was four, and 70% if the number was more than
four. In the pre-training, we used weighted sam-
pling. The sampling weight of the sentence was
min0≤i≤l |Eci |−0.3, where Ec is the number of en-
tities of type c in the dataset, and ci is the type of
the i-th token. As a result, the final dataset had 33M
examples, 939M tokens, and 404 types.12 With the
exception of the loss function, initialization, and
the use of the retrieval-augmented model, we fol-
lowed the procedure of the NERBERT pre-training
algorithm.

Loss Function In addition to the cross-entropy
loss used in the original NERBERT, we incorpo-
rated a multi-task loss to efficiently learn the NER

ability by ignoring the very frequent “ENTITY”
type in the entity typing. For the entity extraction,
we performed three-class classification tasks. We
summed the output probabilities of the final linear

12Liu et al. (2021a) reported their data has 16.3M exam-
ples, 457.6M tokens, and 315 types. However, they had not
published their data or the URLs of the dump data before our
experiments.

3204

https://dumps.wikimedia.org/other/cirrussearch/
https://dumps.wikimedia.org/other/cirrussearch/
https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.nltk.org/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://databus.dbpedia.org/dbpedia/mappings/instance-types/
https://databus.dbpedia.org/dbpedia/mappings/instance-types/

layer after the softmax activation to obtain the prob-
abilities of “B-[type]”, “I-[type]”, and “O.” In the
entity typing, we masked the output logits of the
final linear layer corresponding to the “ENTITY”
label. Then, we performed the 2Cpre − 1 classifi-
cation task. The total loss was the sum of the two
cross-entropy losses.

Initialization We had to initialize the weight of
the final linear layer and the token-type embeddings
because of the mismatch of the set of the labels
between the downstream and pre-training tasks.
Instead of a random initialization from N (0, σ0),
where σ0 ∈ R is a fixed standard deviation, we used
the learned distribution N (µ,σ), where µ,σ ∈
Rd is the bias and the standard deviation of the
weight of the final linear layer and the token-type
embeddings in the pre-trained model.

C Summarization-Based Filtering

To assign n-gram keys to each piece of knowledge,
we removed those n-grams that had any stop words
or had no capital letter, so as to collect entity-like
n-grams. In addition, we used filtering methods
based on the string matching and the extractive
summarization. The summarization-based filtering
enabled us to limit the number of n-grams in each
piece of knowledge.

We formulated the extraction of a fixed number
of representative n-grams from a sequence as an
extractive summarization task, as follows. Here, let
hi be an n-gram embedding whose start position is
i, regardless of whether the n-gram is filtered out
or not. S ∈ RL×L is the cosine similarity matrix
of hi (0 ≤ i < L). We denote the token spans as
{Is}; each span is a maximal token span that does
not include stop words but includes a capital letter.
We should extract n-grams from different spans to
increase the diversity of n-grams. Is is the set of
such spans.

We defined the optimization problem as fol-
lows: Z ⊆ {0, 1, · · · , L − 1} denotes the set of
n-grams. We used a sub-modular function as the
objective to be maximized, under the constraint
|Z| ≤ Nmax (Lin and Bilmes, 2011). The objec-
tive function is

Lcov(Z) =
∑

0≤i<L

min


∑

j∈Z
sij , α

∑

0≤k<L

sik


 ,

Method Acc ∆

BERT on CoNLL03 70.16 (0.56)

BERT on NERBERT (non-overlap) 73.59 (0.19) 3.43
SA-NER on NERBERT (non-overlap) 75.13 (0.19) 4.97

BERT on NERBERT (overlap) 75.90 (0.19) 5.74
SA-NER on NERBERT (overlap) 77.33 (0.19) 7.17

Table 10: Performance on the development set. The
models were pre-trained on CoNLL03, NERBERT with-
out the entity overlap, and NERBERT with the entity
overlap.

Ldiv(Z) =
∑

Is∈Is

√√√√√
∑

j∈Z∩Is


 1

L

∑

0≤i<L

sij


,

Lsum(Z) = Lcov(Z) + λdivLdiv(Z).

The hyperparameters are α = 0.1, λdiv = 10, and
Nmax = 3. We also required Z to meet the filtering
condition (that is, the inclusion of a capital letter
and no stop word). Lcov(Z) measures the coverage
of the n-grams and Ldiv(Z) measures the diversity
of the n-grams.

Because this objective function is a sub-modular
function, the greedy algorithm has a (1− 1/e) ap-
proximation guarantee. Therefore, we can use a
lightweight computation to extract the most impor-
tant n-grams.

D Effect of Overlapping Entities

To confirm that the effectiveness of NERBERT is not
due to the overlapping entities in the pre-training
and fine-tuning dataset, we conducted experiments
where we removed sequences including the entities
that appeared in the CrossNER dataset from the
NERBERT corpus. Table 10 shows the results. We
confirmed that the NER ability learned from the
NERBERT corpus itself improved performance and
SA-NER outperformed NERBERT in both settings.

However, we also found that the performance
of NERBERT is overestimated because of entity
overlap. Brown et al. (2020) and Dodge et al.
(2021) also noted that leakage of the benchmark
datasets from the pre-training corpus affects the
performance of GPT-3 (Brown et al., 2020) and
T5 (Raffel et al., 2020). The community should
solve this problem in future.

3205

