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Abstract

We introduce our probabilistic robustness re-
warded data optimization (PRoDO) approach
as a framework to enhance the model’s gener-
alization power by selecting training data that
optimizes our probabilistic robustness metrics.
We use proximal policy optimization (PPO) re-
inforcement learning to approximately solve
the computationally intractable training sub-
set selection problem. The PPO’s reward is
defined as our (α, ϵ, γ)-Robustness that mea-
sures performance consistency over multiple
domains by simulating unknown test sets in
real-world scenarios using a leaving-one-out
strategy. We demonstrate that our PRoDO ef-
fectively filters data that lead to significantly
higher prediction accuracy and robustness on
unknown-domain test sets. Our experiments
achieve up to +17.2% increase of accuracy
(+25.5% relatively) in sentiment analysis, and -
28.05 decrease of perplexity (-32.1% relatively)
in language modeling. In addition, our prob-
abilistic (α, ϵ, γ)-Robustness definition serves
as an evaluation metric with higher levels of
agreement with human annotations than typical
performance-based metrics.

1 Introduction

Modern machine learning works with massive
amounts of data on a range of tasks like language
modeling, object detection, and data mining. Us-
ing large amounts of training set to build machine
learning systems requires extensive computational
resources and creates problems like domain shifts
and input noise. These unfiltered training data harm
model learning robustness (Frénay and Verleysen,
2013) that leads to prediction errors and serious
consequences like self driving car fatality and med-
ical misdiagnosis (Tian et al., 2018).

One problem causing this model instability is
that the model learning is opt for the system’s qual-
ity, which is typically evaluated by measuring how
close this system’s output of a test set is from its

human label using metrics such as accuracy, error
rate, perplexity, human evaluation score, and so on.
However, such a system performance metric highly
depends on the test set’s choice and is thus unreli-
able. For instance, if our training set is drawn from
the news domain, then the performance on a test set
from the news domain (in-domain test set) is usu-
ally much higher than that from the Twitter domain
(out-of-domain test set). As a result, in NLP, while
some systems produce human parity results like the
use of a pre-trained Transformer (Hendrycks et al.,
2020) on in-domain test sets, these systems are
easily corrupted by out-of-domain (OOD) samples
from the real world.

Existing studies on data selection and robust
learning demonstrate a need for test domain knowl-
edge during training. Some data selection work
(Moore and Lewis, 2010; Kirchhoff and Bilmes,
2014; van der Wees et al., 2017; Fan et al., 2017;
Qu et al., 2019; Liu et al., 2019; Kang et al., 2020)
chooses critical in-domain data for domain adap-
tation, and other work defends against adversarial
attacks but offers little help for out-of-domain ro-
bustness (Taori et al., 2020) under natural distribu-
tional shifts (Wang et al., 2021) that occurs more
frequently than extreme adversarial cases. This out-
of-domain robustness is often measured by testing
on a specific domain and a single task like senti-
ment classification (Müller et al., 2019; Hendrycks
et al., 2020). The problem with these existing ap-
proaches is that the target domain knowledge is
often unknown, as is the case for most real-world
applications that do not know the domain of test
data they will receive before launch.

To address these challenges, our goal is to select
training data to achieve high accuracy on OOD test
set, without requiring any target domain insight
during data selection or model training process.
We distinguish the out-of-domain and unknown-
domain test sets by assigning the out-of-domain as
the test domain known during the training, and the
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Figure 1: Probabilistic Robustness Rewarded Data Optimiza-
tion (PRoDO) Framework.

unknown-domain as the test domain along with its
information that are not known during the training.
Practical applications often apply the latter case
where we do not have any target domain knowl-
edge, a condition we call “unknown-domain" ro-
bustness. To move our understanding forward,
there is an urgent need to revisit out-of-domain
robustness in “unknown worlds" to bridge the gap
between laboratory observations and real-life re-
sults.

In our approach to the measurement of robust-
ness on unknown domains, we define robustness as
the consistency of the behavior of a machine learn-
ing system. The more a machine learning system’s
behavior deviates from the typical, the less robust
the system is defined to be. Notice that this defini-
tion does not necessarily give a notion of whether
system performance is good or bad. For example,
in terms of sentiment analysis, this definition refers
to consistency in prediction accuracy for a trained
classifier.

To measure a system’s performance consistency,
we combine test sets for evaluation from various
domains, like news, biomedical, and Twitter; ran-
domly sample their subsets, and take each subset
as this system’s input and obtain an output. Then,
we measure the performance of each output. If
these output performances are close to each other,
we say they are consistent. To quantify this consis-
tency, we define our robustness metric as a notion
of a probabilistic definition on the distribution of
performance across different test domains, called
(α, ϵ, γ)-Robustness, where the higher the proba-
bility of the consistent prediction performance, the
more robust the system.

Our objective is to measure the probability of up-
per bounding the prediction accuracy gap between

any test subset and its average. More specifically,
we call an NLP system (α, ϵ, γ)-robust, if for every
subset uniform-randomly drawn from a distribu-
tion, its prediction error, a combination of the target
domain error and the source domain error weighted
by the parameter α, is centered around the mean
error, which is bounded through a parameter ϵ with
a probability depending on γ, an indicator of how
robust a system is, see definition in Figure 1 (in
green) and details in Section 2.2.

In our approach, we do not need any target-
domain data since we “simulate" unknown target-
domain test sets using the leave-one-out error sta-
bility (Mukherjee et al., 2006). We assume that
the non-left-out test sets are the simulated target
domain while the left-out test is the real target do-
main for evaluation. For example, given biomecial
as our unknown target domain to evaluate, we take
the training data as the source-domain set and sam-
ple different subsets from a combination of other
test domain data (e.g., news, TED talks, etc.) to
simulate our target-domain test sets. The hyper-
parameter α is the target-domain error weight and
offers flexibility to balance the trade-offs between
source- and target-domain errors.

The (α, ϵ, γ)-Robustness takes a new direction
away from adversarial robustness to a general con-
sistency of a model’s quality as meta-evaluation
methods that measure the consistency of user-
defined quality metrics. Thus, any standard perfor-
mance evaluation metrics, such as accuracy, can
be used within the definition of our robustness.

After defining our robustness metric as our data
optimization goal, we ask, how should we select a
subset of data that can maximize the robustness?
We assert that in general, the subset selection prob-
lem is computationally intractable. We conjecture
that this condition holds true for every objective
function, including our notion of probabilistic ro-
bustness, and is the reason why we use Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
deep reinforcement learning to optimize the train-
ing set, which has the advantages of low variance,
monotonic policy improvement, and sampling effi-
ciency (Schulman et al., 2015; Uc-Cetina et al.,
2021) compared to A2C (Konda and Tsitsiklis,
2000) and policy gradient (Sutton et al., 1998).
Our Probabilistic Robustness rewarded Data Op-
timization (PRoDO) framework equipartitions the
training data into mini-batches and simultaneously
learns a policy network to select data iteratively
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and a value network to estimate future returns us-
ing our (α, ϵ, γ)-Robustness as the reward functions
illustrated in Figure 1 .

Our empirical results on sentiment analysis and
language modeling show that the use of our ro-
bustness definition consistently and significantly
enhances a model’s out-of-domain performance.
The main contributions of this work include:

1. Probabilistic Robustness definition of
(α, ϵ, γ)-Robustness;

2. The creation of PPO Deep Reinforcement
Learning framework for data selection;

3. The improvement of NLP model accuracy and
out-of-domain generalization on showcase ap-
plications of sentiment analysis and language
modeling.

The rest of the paper is as follows: In Section
2.1, we describe our PRoDO framework. In Section
2.2, we introduce the (α, ϵ, γ)-Robustness. Section
3 introduces experimental details including base-
lines, NLP tasks and ablation study. In Section 4,
we discuss the previous literature on robustness in
machine learning. Section 5 concludes the paper.

2 Method

Our goal is to enable our task model F (any Deep
Learning-based NLP model, such as Transformer,
etc.,) to achieve consistent while superior perfor-
mance on any unknown test domain Dx whose
distribution is different from the source training set
X , by learning an effective subset of X that can
maximize the robustness of model F .

The entire process details are depicted in Fig-
ure 1. Our method consists of reinforcement learn-
ing (RL), data selection, and training NLP mod-
els using the selected data. Specifically, we use
reinforcement learning to train a data selection pol-
icy, and we use the data selection policy to select
a subset of training data to fine-tune NLP mod-
els. Following Yu et al. (2022a), we pre-train
the task model F on the full training data set
X = {xi}Ni=1, where xi is a sentence, N is training
set size. Then, the training set X is shuffled and
randomly partitioned into T disjoint data batches
such that X = {Bt}Tt=1 = {B1,B2, ...,BT },
with Bt = {x(t−1)N |T+1, x(t−1)N |T+2, ..., xtN |T },
where N |T is the integer division of N by T , and
T ≤ t. For each batch, we select a subset of data
B̂t = {(xi)oi=1|xi ∈ Bt} with size o according to

the data selection policy trained by reinforcement
learning, and use it to fine-tune the model F . In
general, F and its encoder g are updated on B̂t for
T times in an epoch, and each update is based on
the previous checkpoint. Besides training set, we
use a test data pool D containing n test domains
D = {D1,D2, . . . ,Dn} to simulate the real world
scenario and compute the robustness score with it.

In the following sections, we will first introduce
how our PRoDO framework learns to select data
(Section 2.1) and then our reward function based
on the probabilistic robustness definition (Section
2.2).

2.1 PRoDO framework

We now present the details of our Probabilistic
Robustness Rewarded Data Optimization (PRoDO)
framework.

2.1.1 RL training
The goal of our reinforcement learning agent is to
learn an optimal data selection policy π to maxi-
mize the expected return Rt =

∑T−t
j=0 γ

jrt+j from
each state st, where the scalar reward rt measures
how good the action at taken by the policy is at
the time step t and γ ∈ [0, 1] is the discount fac-
tor. Specifically, each time step can be split into
six steps as in Figure 1. Firstly, the encoder (e.g.
an embedding layer in LSTM, or an encoder in
transformer) inside the NLP model transforms the
batch of raw data Bt into a batch of (document)
embeddings, denoted as st. Secondly, the agent
takes action at based on state st. The agent takes
the state st as input and outputs a probability dis-
tribution for st, so that each sentence is associated
with a probability, representing how likely it is go-
ing to be selected. The selected subset, denoted
as B̂t, is then obtained by Bernoulli sampling each
sentence in the state st. The result of Bernoulli sam-
pling is represented as an action vector at, where
each value in it is either 0 or 1 representing each
sentence in the batch not being or being selected.
Thirdly, as soon as we obtain B̂t, the NLP model F
as well as encoder g are fine-tuned by the selected
subset B̂t. Then, the scalar reward rt = R(D,F)
is calculated by our reward functions R (defined
in Section 2.2) based on all available test domains
D and current NLP model F . Next, the advantage
At over action at is computed by the difference of
reward rt and the output of value function V (st).
Finally, we update the policy function following
the gradient with regard to the objective in PPO
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(details in next section 2.1.2) using the advantage
At.

2.1.2 PPO
In the conventional policy based (Sutton et al.,
1998) or actor-critic (policy-value) (Mnih et al.,
2016) based reinforcement learning, the precision
of the value function often corrupts the policy opti-
mization process for two reasons. First, some col-
lected states might introduce noise to the prediction
of V (st), and thus lead to an inaccurate estimate
of advantage At following with an inaccurate up-
date of policy gradient. Secondly, a trajectory of
interaction (consider a large dataset with a large
interaction horizon T ) might take long time, while
one collection of data can only be used to update
the policy once, thus leading to severe sample inef-
ficiency.

Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) and Proximal Policy Op-
timization (PPO)(Schulman et al., 2017) are pro-
posed to solve the aforementioned problems by
introducing importance sampling and advantage
clipping. We adopt PPO as our framework since it
is much simpler to implement than TRPO. PPO has
the following properties, which are very desirable
to achieve our goals: low variance, monotonic pol-
icy improvement and sampling efficiency (Grond-
man et al., 2012; Schulman et al., 2017). Our
framework consists of policy and value networks
jointly and dynamically learned together with the
task model using the advantage error computed
from the reward function, as shown in Algorithm 1.
PPO uses A(st, at), the advantage of action at in
state st to scale the policy gradient. Specifically,
the advantage of action (Mnih et al., 2016) at in
state st is defined as

A(st, at) = Q(st, at)−V(st) ≈
T−t∑

j=0

γjrt+j−V(st),

(1)
where γ ∈ (0, 1] is the discounting factor set

as 0.99. V is the value function implemented as a
value network.

Let rt(θ) denote the probability ratio rt(θ) =
πθ(at|st)

πθold(at|st) , the objective of PPO is defined in
Schulman et al. (2017) as

Atclipped = clip(rt(θ), 1− ϵ, 1 + ϵ)At (2)

J (θ) = Et

[
min(rt(θ)At, Atclipped)

]
, (3)

Algorithm 1 PRoDO Training Algorithm
Input: Epoch L, learning rate α, discount factor γ, training set X , pre-trained
task model F(including encoder g), reward function R (discussed in section
3.2)
Output: selected data, fine-tuned F , policy πθ , data value estimator
Vθv

1: Initialize data selection policy πθ and value estimator Vθv
2: for episode l = 1 to L do
3: Shuffle (uniformly at random) all training samples;
4: Equipartition X into T (disjoint) sets with same size n|T : X =

{Bt}T
t=1 = {B1,B2, ...,BT };

5: Initialize an empty list: episode history Υ
6: for all Bt ∈ X (uniform transition probability) do
7: st = gt(Bt);
8: Obtain batch action at by sampling based on πθ(st);
9: B̂t = {(xi)

o
i=1|ai = 1}, where o is selected sample size;

10: Update task model F(gt) by fine-tuning on B̂t;
11: rt = R(B̂t,F);
12: Store (st, at, rt) to episode history Υ;
13: end for
14: for all (st, at, rt) ∈ Υ do
15: Obtain A(st, at) for each batch;
16: Update policy weights θ and value estimator weights θv ;
17: end for
18: Clear episode history Υ;
19: end for
20: return F ,πθ and Vθv

where ϵ is a hyperparameter, and we set it as 0.2.
The objective function clips the range of change of
policy gradient into [1− ϵ, 1 + ϵ], which forces the
new policy to not deviate too much from the old
policy. This clipping design of PPO ensures mono-
tonic improvement and thus it has the advantages
of sample efficiency and ease of tuning compared
to other policy-based algorithms.

The objective of value network is:

∇θvV(θv) = Eπθ
∇θV (rt − V(st; θv))2 (4)

The parameters of value function θv is updated by:

θv(t+1) = θvt + α∇θvt(rt − V(st; θvt))2 (5)

2.2 Reward function: (α, ϵ, γ)-Robustness
The reward function in Section 2.1 is the robustness
of the NLP model F .

In the real world, the out-of-domain data are
often much less than the in-domain data. Formally,
consider a pool of m samples where βm samples
are drawn from target domain Dt and (1 − β)m
samples are drawn from source domain Ds where
β ∈ [0, 1), β is often small in many scenarios.
Thus, the minimization of empirical target error ϵ̂t
becomes hard with the constraint of limited target
data. To solve this, we instead try to minimize a
convex combination of empirical source and target
error:

ϵ̂α = αϵ̂t + (1− α)ϵ̂s (6)
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where α ∈ [0, 1]. We also denote ϵα as the
weighted combination of the true source and target
errors measured with respect to source domain Ds

and target domain Dt, as shown in Figure 2.
According to the learning theory of Ben-David

et al. (2010), the probability that the difference
between the weighted empirical error ϵ̂α and the
weighted true error ϵα of an NLP system exceeds
a given threshold has an upper bound as shown in
Equation 7. Since we are more interested in bound-
ing the difference between the weighted empirical
error ϵ̂α and the weighted true error ϵα to some
threshold, so as to consider the system as “robust”,
we can transform the inequality to derive a lower
bound of the probability as shown in Equation 9:

Pr[|ϵ̂α − ϵα| ≥ ϵ] ≤ 2e

−2mϵ2

α2
β

+
(1−α)2

1−β (7)

⇔ 1−Pr[|ϵ̂α−ϵα| ≥ ϵ] ≥ 1−2e

−2mϵ2

α2
β

+
(1−α)2

1−β (8)

⇔ Pr[|ϵ̂α − ϵα| < ϵ] ≥ 1− 2e

−2mϵ2

α2
β

+
(1−α)2

1−β (9)

The right hand side of Equation 9 is the lower
bound of the probability that the difference of the
empirical error and the true error of an NLP system
is smaller than some threshold ϵ. We can introduce
the robustness factor γ (γ ∈ [0, 1]) to the right hand
side to control how tightly we would like to bound
the probability of error difference:

Pr[|ϵ̂α − ϵα| < ϵ] ≥ 1− 2e

−2mϵ2

α2
β

+
(1−α)2

1−β · γ (10)

⇔ γ ≥ 1− Pr[|ϵ̂α − ϵα| < ϵ]

2e

−2mϵ2

α2
β

+
(1−α)2

1−β

(11)

In consequence, we give the formal definition of
(α, ϵ, γ)-robustness as:

Definition We call an NLP system (α, ϵ, γ)-
robust, if for any source domain Ds and target
domain Dt, the difference between the empiri-
cal error ϵ̂α and the true error ϵα is bounded
through a threshold parameter ϵ with a probability

of 1 − 2e

−2mϵ2

α2
β

+
(1−α)2

1−β · γ, where α ∈ [0, 1] is the
weight of target domain error and β ∈ [0, 1) is the
ratio of target data within all data.

Based on this definition, we can interpret γ ∈
[0, 1] as the inverse indicator of robustness for

an NLP system. For example, a larger γ indicates a
lower probability that the difference between empir-
ical error ϵ̂α and true error ϵα is within our expected
threshold, so that the empirical error is probably
with large variance, and thus the large γ indicates
a less robust system.

2.2.1 Compute robustness by bootstrapping
We estimate robustness metrics using the leave-one-
out error stability (Mukherjee et al., 2006) by ex-
cluding a left-out test set from all available datasets
where we measure robustness. More precisely, for
a given model, we randomly select one leaving-
one-out test set and then combine all other tests
to compute the robustness of the left-out datasets.
Specifically, we consider the test domain as the
target domain (an unknown domain that will not be
used in training) and use all other test domains as
available resources to compute mean and variance.

In practice, it often occurs that only limited test
domains are available. Thus, the test scores of test
domains are discrete values and hard to form a
distribution. To solve this problem, we seek to a
modified bootstrap algorithm to construct a pool
of subsamples from the combined test set, as pro-
posed by Yu et al. (2022b). For each subsample,
instead of random sampling from the complete test
pool, we randomly sample from the elements not
present in the current subsample to minimize the
intersection between each.

3 Experiments

3.1 Baselines
We compare our measure with four baselines. The
first baseline denoted as All is the normal NLP
model trained on all training samples. Minmax
is derived from classic min-max objective in ro-
bust optimization. Diff (Zhang et al., 2022) and
Ratio (Niu et al., 2020) are recently introduced
robustness metrics defined by input perturbations.

Min-max robustness The notion of robustness
can be originated from robust optimization (Ben-
Tal and Nemirovski, 1998; Bertsimas and Sim,
2004) in which the optimization goal is to find
a solution h satisfying

min
h

[ max
δ1,...δn∈∆

n∑

i=1

l(h, xi + δi)] (12)

where xi are the observed training samples, δi are
deviations or perturbations from the observed sam-
ples, l(,̇)̇ is the loss function, and ∆ are all possible
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Figure 2: Illustrations of (α, ϵ, γ)-Robustness for two NLP systems. Orange curve and blue curve are the probability density
function (PDF) of the test scores (X) of two NLP systems. The inference of robustness comparison is shown in top.

perturbations. Robust algorithms satisfying this
definition are expected to minimize the empirical
error under the worst possible perturbation. Since
min-max objective targets the “worst possible per-
turbation”, we consider the most challenging test
set that will degrade the NLP performance most
as “the worst possible perturbation” and use the
evaluation score of such test set as a quantitative
measure to denote model robustness under the min-
max objective.

3.2 Improvements on NLP tasks
We experiment on a typical classification task of
sentiment analysis and a generation task of lan-
guage modeling.

3.2.1 Sentiment Analysis
In the task of sentiment analysis, we train a CNN
classifier (Kim, 2014) using Amazon product re-
view dataset (Blitzer et al., 2007). Specifically,
we use the combined set of DVD, kitchen and
books domains as source data. To compute ro-
bustness metrics, we use the full pre-processed
Amazon product review dataset, which contains
other domains such as grocery, tools, beauty and
computer. We treat the test accuracy on the boot-
strapped subsamples as a distribution and compute
the (α, ϵ, γ)-Robustness by setting ϵ as 0.001 and
α as 0.9. From Table 1, the classifiers optimized
with (α, ϵ, γ)-Robustness outperforms all baselines.
Specifically, the Min-max robustness achieves the
second highest average accuracy score on test do-
mains.

3.2.2 Language Modeling
Our baseline is a Transformer language
model (Vaswani et al., 2017) with default
hyper-parameters. We experiment with two
moderate size datasets WikiText-2 (Merity et al.,
2016) and Penn Treebank. As for evaluation, we
report perplexity scores on four translation datasets
from different domains, IWSLT’17 (TED talk)
(Cettolo et al., 2012), Biomedical’21 (medical)
(Yeganova et al., 2021), MTNT’18 (Reddit)
(Michel and Neubig, 2018) and WMT’15 (news).
The baseline models are trained using the fairseq
toolkit (Ott et al., 2019) and stop training until
the validation perplexity score does not improve
for 5 epochs. The evaluation results are shown
in Table 2. The perplexity (PPL) on all test
domains have been improved. Specifically, test
perplexity of MTNT’18 has an improvement of
28.05 (32.1% relative improvement) compared to
the best baseline (Niu et al., 2020).

3.3 Ablation study

3.3.1 Comparison with human evaluation
We give a case study to compare the robustness of
four language models trained on four different do-
mains from the OPUS dataset (Tiedemann, 2012)
using proposed robustness metrics. We combine
MTNT’18, BIO’21, WMT’15 and IWSLT’17 test
sets as a test pool, then subsample 50% of the test
pool for 30 times. Next, we collect PPL scores on
each subsampled bootstrap, and compute the mean
and variance for the PPL score distribution. Fig-
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auto beauty food instruments office computer tools phones grocery jewelry outdoor avg
All 56.48 54.03 56.02 59.15 56.84 55.17 55.95 52.79 53.06 56.63 55.81 55.63
Minmax 72.56 55.91 76.24 74.70 80.08 60.90 82.50 57.68 69.01 60.56 70.50 69.14
Diff 51.77 63.78 75.99 66.77 79.01 47.23 81.93 50.39 64.28 71.74 63.48 65.12
Ratio 71.06 63.92 75.25 82.01 67.45 63.19 78.57 58.83 68.79 65.53 62.80 68.85
(α, ϵ, γ) 79.26 67.07 82.28 85.47 84.67 68.68 89.29 62.60 73.45 77.25 75.45 76.86
+% 8.20 3.15 7.03 3.46 17.22 5.49 10.72 3.77 4.66 11.72 12.65 8.01

Table 1: Sentiment analysis accuracy [%] on amazon unprocessed domains. Last row: absolute improvement between (α, ϵ, γ)
and Ratio (Niu et al., 2020). Last column: average accuracy over all domains.

WikiText-2 Penn Treebank
IWSLT BIO MTNT WMT IWSLT BIO MTNT WMT

All 328.23 259.47 274.17 296.27 147.03 117.17 93.82 104.55
Minmax 189.03 140.35 160.26 169.03 142.84 82.55 91.59 101.91
Diff 193.06 136.94 167.55 168.90 140.18 79.04 92.62 98.70
Ratio 195.73 134.15 158.35 160.34 143.37 80.66 87.21 102.18
(α, ϵ, γ) 175.91 123.47 142.34 154.38 118.96 71.45 59.16 87.70

Table 2: Language modeling: Perplexity on four test domains. First row: source training domain; Second row: test domains.

ure 3 shows the normalized γ values against each
corresponding epsilon value for the four language
models. We can observe the γ values for the model
trained by medical are much smaller than the val-
ues for other models, and the γ values for office are
the highest. This shows that the model trained by
medical is the most robust among all models, while
the model trained by office is the least robust.

Model 1 Model 2 γ Human Agree?
edu office edu edu YES
edu medical medical medical YES
edu books books books YES

office medical medical medical YES
office books books books YES
books medical medical medical YES

Table 3: Robustness Metrics pair-wise comparison on
each two models.

To evaluate how our robustness measures match
human judgments, we compare the rank given by
Figure 3 with the rank given by perplexity score
and the rank given by human annotators, as shown
in Table 4. Each human annotator is assigned with
two language models selected at random. The hu-
man annotators do not know any details about the
model or the training data used for each model.
She/He can only use these models to get two gen-
erated sentences for the same input prompt. This
step can be repeated as many times as possible until
the human annotator decides which model is more
consistent in its generations. The decision is based
on consistency of generation quality but rather the
quality itself. The results of pair-wise comparison

Figure 3: (α, ϵ, γ)-Robustness plot on four lan-
guage models. “model-books” denotes the language
model trained by the books domain from the OPUS
dataset (Tiedemann, 2012)

between two language models are shown in Table
3. Our (α, ϵ, γ)-robustness perfectly aligns with de-
cisions made by human annotators, while the rank
based on perplexity score fails to match human
evaluation results.

3.3.2 Domain distance

Many data selection work use target domain knowl-
edge to select best in-domain data samples that
are close to target domain (Aharoni and Goldberg,
2020; Liu et al., 2019; Ma et al., 2019). Our method
does not use target domain knowledge, thus, we
question whether our selected data resembles tar-
get domain under such zero-knowledge setting. We
follow Aharoni and Goldberg (2020) using Distil-
Bert (Sanh et al., 2019) to embed all domain data,
Penn Treebank data and our (α, ϵ, γ)-Robustness
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Model CE PPL rankCE rankPPL rankγ rankHuman

edu 11.34 2474.16 1 1 3 3
books 12.03 4039.17 2 2 2 2
office 12.06 4181.39 3 3 4 4

medical 13.41 9426.04 4 4 1 1

Table 4: (α, ϵ, γ)-Robustness 100% agrees with human ranking, while perplexity (PPL) and cross entropy (CE) 25% agree with
human. “office” means the model is trained on the office domain.

BIO MTNT WMT IWSLT
All 89.95 92.94 93.35 92.99
(α, ϵ, γ) 92.06 94.25 94.55 93.96

Table 5: Cosine similarity [%] between (row,column) data
set. With zero-knowledge of four target domains, our method
selects subsets of training data that are more close to the target
domain.

selected PTB data into sentence embeddings and
compute pairwise cosine similarity between the
centroid of each domain. The result is shown in
Table 5. With zero-knowledge of four target do-
mains, our method selects subsets of training data
that are more close to the target domain. Further-
more, we find the larger domain distance between
the source domain and the target domain, the larger
improvement will be, by computing the pearson
correlation coefficient (0.83) between the domain
distance and the relative improvement normalized
by test set size.

4 Related Work

In previous years, a crucial direction of work on
robustness of NLP models lies on the vulnerabil-
ity of NLP models to input perturbations, such as
crafted noises (Song et al., 2020; Boucher et al.,
2022; Li et al., 2020; Schwinn et al., 2021). For
instance, Cheng et al. (2018) proposes an adver-
sarial stability training objective to enable neural
machine translation models robust to input pertur-
bations. Niu et al. (2020) evaluates robustness to
input perturbations for neural machine translation.
Compared to them, our approach handles new test
inputs with distribution shifts from any unknown
domains.

Some literature propose evaluation metrics for
robustness from the perspectives of statistics or in-
put perturbations (Weng et al., 2018; Niu et al.,
2020; Mangal et al., 2019; Couellan, 2021). How-
ever, they either focus on the worst-case scenario
of adversarial inputs or sampling single instances
without considering the full distribution of the sys-
tem performance.

5 Conclusion

We introduce probabilistic robustness rewarded
proximal policy data optimization (PRoDO) frame-
work to improve NLP model’s generalization by
selecting training data. Our framework is rewarded
by the (α, ϵ, γ)-Robustness to measure an NLP
model’s performance consistency over multiple do-
mains. Our experiments show the effectiveness of
probabilistic robustness measure to enhance learn-
ing generalization and prediction accuracy. Our
work also demonstrates a successful step towards
general robustness evaluation and data selection
without target domain insight.

6 Limitations

Time efficiency is one limitation of this work. For
one thing, like other data selection work with rein-
forcement learning (RL), introducing RL requires
convergence of the policy network and the value
network, which takes quite a long time empirically.
Referring to our time comparison results, our meth-
ods are roughly ten times slower than training with
all source data directly. For another, our robust-
ness measure requires the tuning process for hyper-
parameters α and ϵ, which also takes additional
time.
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