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Abstract

Statutory article retrieval (SAR), the task of
retrieving statute law articles relevant to a le-
gal question, is a promising application of le-
gal text processing. In particular, high-quality
SAR systems can improve the work efficiency
of legal professionals and provide basic legal
assistance to citizens in need at no cost. Unlike
traditional ad-hoc information retrieval, where
each document is considered a complete source
of information, SAR deals with texts whose
full sense depends on complementary infor-
mation from the topological organization of
statute law. While existing works ignore these
domain-specific dependencies, we propose a
novel graph-augmented dense statute retriever
(G-DSR) model that incorporates the structure
of legislation via a graph neural network to
improve dense retrieval performance. Experi-
mental results show that our approach outper-
forms strong retrieval baselines on a real-world
expert-annotated SAR dataset.1

1 Introduction

Today, the high cost of legal expertise prevents less
fortunate people from understanding and reacting
to legal issues that may arise (Ponce et al., 2019).
In recent years, an increasing number of works
have focused on legal text processing (Zhong et al.,
2020) with the intent to assist legal practitioners
and citizens while reducing legal costs and improv-
ing equal access to justice for all. Statutory article
retrieval (SAR), the task of retrieving statute law
articles relevant to a legal question, marks the first
and one of the most crucial steps in any legal aid
process. Our goal is to help reduce the gap between
people and the law by improving SAR systems that
could provide citizens with the first component of
a free professional legal aid service.

Prior work has addressed SAR with standard in-
formation retrieval approaches such as term-based

1Our source code is available at https://github.
com/maastrichtlawtech/gdsr.
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Figure 1: Illustration of the hierarchical organization
of statute law. Each law code is structured into books,
titles, chapters, and sections. The deeper the divisions,
the closer the legal concepts of the articles below them.

models or dense embedding-based models (Kim
et al., 2019; Nguyen et al., 2021). While good per-
formance has been achieved, these approaches rely
on the flawed assumption that articles are complete
and independent sources of information. In reality,
statute law is an ensemble of interdependent rules
meticulously organized into different codes, books,
titles, chapters, and sections, as illustrated in Fig-
ure 1. Each level in the structure of legislation
comes with a unique heading that informs about
the content of the articles below it. An article takes
on its whole meaning only when considered at its
rightful place in the structure with the complemen-
tary information from its neighboring articles.

This work shows that such a structure can be
highly beneficial for retrieving statutes. We pro-
pose a graph-augmented dense statute retriever (G-
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DSR) model that leverages the topological structure
of legislation to enhance the article content infor-
mation. Specifically, the proposed model extends
the document encoder of a dense retriever with
a graph neural network to learn knowledge-rich
cross-article representations. Similar to previous
work, we adopt a contrastive learning strategy to
optimize the similarity between the representations
of relevant query-article pairs.

The contributions of this paper are threefold:
• We propose a graph-augmented dense re-

triever model for statutory article retrieval that
explicitly utilizes the topological organization
of statute law to enrich the article information.

• We conduct empirical evaluations on our
model and demonstrate improvements over
strong retrieval baselines.

• We perform ablation studies on various model
components and training strategies to under-
stand the impact of several design options on
the effectiveness of our model.

2 Preliminaries

In this section, we formally introduce the task of
statutory article retrieval and discuss the specific
difficulties associated with it. We then explain
how we identify the structure of legislation as an
essential consideration in SAR.

Problem formulation. Given a simple legal ques-
tion, such as "Who should pay for the construction
of the common wall?", SAR aims to return one or
several relevant articles from the legislation. For-
mally speaking, a SAR system can be expressed
as a function R : (q, C) 7→ F that takes as in-
put a question q along with a corpus of articles
C = {a1, a2, · · · , aN}, and returns a much smaller
filter set F ⊂ C of the supposedly relevant articles,
ranked by decreasing order of relevance. For a
fixed k = |F| ≪ |C|, the retriever can be evaluated
in isolation with multiple rank-based metrics. Most
modern retriever systems follow a two-stage re-
trieval approach (Guo et al., 2016; Hui et al., 2017;
McDonald et al., 2018), where a pre-fetcher first
aims to return all relevant documents in the filter
set F and a re-ranker then attempts to make more
relevant documents in F appear before less rele-
vant ones. In this work, we focus our research on
improving the pre-fetcher component for SAR.

Challenges. SAR comes with two core chal-
lenges that make the task unique compared to tra-

ditional information retrieval. First, the statutes
to be retrieved are written in a language that dra-
matically differs from the ordinary plain language
used in the questions. The legal language uses a
specialized jargon known for its frequent and delib-
erate use of formal words, Latin phrases, lengthy
sentences, and expressions with flexible meanings
(Charrow and Crandall, 1990). Second, statutory
articles are long text sequences that may reach sev-
eral thousand words. This implies overcoming the
maximum input length limit of 512 tokens imposed
by BERT-based models, which have recently be-
come the standard in neural information retrieval
due to their effectiveness.

Structure of legislation. The legislation comes
with a well-thought-out organization of its written
rules to facilitate access to provisions covering a
given subject (Onoge, 2015). This organization is
established in a hierarchical manner, where higher-
level divisions cover broad legal domains while
lower-level divisions deal with specific legal con-
cepts. To examine the importance of this hierarchy
in the SAR process, we conduct a preliminary in-
vestigation in which we study the reasoning legal
experts follow when performing the task. We sum-
marize these experts’ approach in Appendix A.1.
We observe that legal experts rely heavily on the
structure of law when retrieving relevant articles
to a legal question, which indicates that the dif-
ferent divisions’ headings in the legislation carry
valuable information that retrieval systems should
consider. Additionally, we analyze the degree to
which neighboring articles cover related subjects in
Appendix A.2 and find high levels of similarities,
which suggests that information from neighboring
articles should be considered to capture an article’s
whole meaning.

3 Approach

In this section, we present a new general approach
for SAR that learns to retrieve relevant statutes by
using both the textual semantic information from
articles and the structural graph information from
the legislation. Our model, called graph-augmented
dense statute retriever (G-DSR), consists of two
main building blocks, as depicted in Figure 2, that
are trained independently with the same objective.
We first describe the dense retriever component
of our approach in Section 3.1 and then explain
how our legislative graph encoder builds upon it in
Section 3.2.
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Figure 2: An illustration of the graph-augmented dense statute retriever (G-DSR) model. G-DSR consists
of two main building blocks that are trained independently. Left: The dense statute retriever (DSR) first learns
high-quality low-dimensional embedding spaces for both the queries and articles such that relevant query-article
pairs appear closer than irrelevant ones in those vector spaces. Right: The legislative graph encoder (LGE) then
learns to enrich the article representations by aggregating information from the organization of statute law.

3.1 Dense Statute Retriever

Our approach’s first component, called dense
statute retriever (DSR), aims to learn high-quality
low-dimensional embedding spaces for questions
and articles so that relevant question-article pairs
appear closer than irrelevant ones in those spaces.
Below, we review the overall architecture of the re-
triever and detail the design of its query and article
encoders. We then describe the contrastive learning
strategy we employ and choice of negative pairs.

Bi-encoder. We use the widely adopted bi-
encoder architecture (Bromley et al., 1993) as
the foundation of our dense retriever. The lat-
ter maps queries and articles into dense vector
representations and calculates a relevance score
s : (q, a) 7→ R+ between query q and article a by
the similarity of their embeddings, i.e.,

s(q, a) = sim
(
Eθ

Q(q), E
ϕ
A(a)

)
, (1)

where Eθ
Q(q), E

ϕ
A(a) ∈ Rd denote the query and

article embeddings respectively, and sim : Rd ×
Rd 7→ R is a similarity function such as cosine or
dot-product.

Query encoder. To encode the queries, we feed
them into a BERT-based (Devlin et al., 2019) model

Eθ
Q : Wn 7→ Rd with weights θ, that maps an

input sequence of n tokens from vocabulary W to
d-dimensional real-valued token embeddings. We
take the last layer’s [CLS] token representation as
the query embedding, i.e.,

Eθ
Q(q) = BERT[CLS](q). (2)

Hierarchical article encoder. Since statutory
articles may be longer than the maximum in-
put length of a standard BERT-based encoder,
we use a hierarchical variation that can process
longer textual sequences (Pappagari et al., 2019;
Zhang et al., 2019; Yang et al., 2020a). Each
article a is first split into smaller text passages
[p1, p2, · · · , pm], where a passage pi is a sequence
of tokens [t(i)1 , t

(i)
2 , · · · , t(i)n ] with n ≤ 512. These

passages are then independently passed through
a shared BERT-based model to extract a list of
context-unaware passage representations using the
respective [CLS] token embeddings, as illustrated
in Figure 2. Next, the hierarchical model sums the
[CLS] token representations of each passage with
learnable passage position embeddings and feeds
the resulting representations into a small Trans-
former encoder to make them aware of the sur-
rounding passages. The final article representation
is computed through a pooling operation over the
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context-aware passage representations, i.e.,

Eϕ
A(a) = pool

([
h̃
(1)
[CLS], · · · , h̃

(m)
[CLS]

])
, (3)

where h̃
(i)
[CLS] ∈ Rd is the contextualized embed-

ding of passage pi, and pool : Rm×d 7→ Rd is
either mean or max pooling.

Contrastive learning. The training objective of
the bi-encoder is to learn effective embedding func-
tions Eθ

Q(·) and Eϕ
A(·) such that relevant question-

article pairs have a higher similarity than irrelevant
ones. Let D = {⟨qi, a+i ⟩}Ni=1 be the training data
where each of the N instances consists of a query qi
associated with a relevant article a+i . By sampling a
set of negative articles A−

i for each question qi, we
can create a training set T = {⟨qi, a+i ,A−

i ⟩}Ni=1.
For each training instance in T , we contrastively
optimize the negative log-likelihood of the positive
article against the negative ones, i.e.,

L
(
qi, a

+
i ,A−

i

)
= − log

es(qi,a
+
i )/τ

∑
a∈A−

i ∪{a+i } e
s(qi,a)/τ

,

(4)
where τ > 0 is a temperature parameter to be set.

Negatives. We consider two types of negative ex-
amples: (i) in-batch (Chen et al., 2017; Henderson
et al., 2017), i.e., articles paired with the other ques-
tions from the same mini-batch, and (ii) BM25, i.e.,
top articles returned by BM25 that are not relevant
to the question.

3.2 Legislative Graph Encoder
Our approach’s second component, called Legisla-
tive Graph Encoder (LGE), aims to enrich article
representations given by the trained retriever’s arti-
cle encoder by fusing information from a legislative
graph. Below, we elaborate on the legislative graph
construction and the graph training process.

Graph construction. To leverage the hierarchi-
cal organization of statute law, we formalize the
latter as a tree structure consisting of two types
of node: (i) section nodes, which are titled struc-
tural units that represent the consecutive divisions
in codes of law (i.e., the headings of the books,
titles, chapters, and sections), and (ii) article nodes,
which are textual content units that represent the
different statutory articles. As illustrated in Fig-
ure 1, the edges represent the hierarchical connec-
tions between section and article nodes. Formally,
such a tree can be represented as a directed acyclic

graph G = (V, E), with V as the node set and
E ⊆ V × V as the edge set.

Node feature initialization. Nodes in V are com-
monly associated with d-dimensional features. We
apply the article encoder Eϕ

A(·) from the trained
bi-encoder to encode the semantic information of
nodes (i.e., section headings and article contents)
offline and use the resulting embeddings as the
initial node features X ∈ R|V|×d.

Node feature update. To fuse the information of
node features using the graph structure, we use a
graph neural network (GNN). Such a model con-
sists of a stack of neural network layers, where each
layer aggregates local neighborhood information
(i.e., features of neighbors) around each node and
then passes this aggregated information on to the
next layer. Generally speaking, a GNN takes as in-
puts the feature matrix X and the graph’s adjacency
matrix A ∈ R|V|×|V|

+ , with Ai,j as the edge weight
between nodes i and j, and produces a node-level
output Z ∈ R|V|×d that captures each node’s struc-
tural properties. Every GNN layer can be written
as a non-linear function

H(l+1) = f(H(l),A), (5)

with H0 = X and HL = Z, L being the num-
ber of layers. In its simplest form, the layer-wise
propagation rule is such that

f(H(l),A) = σ(AH(l)W(l)), (6)

where W(l) is the input linear transformation’s
weight matrix for the l-th neural network layer
and σ(·) is a non-linear activation function. We
propose to use a 3-layer GATv2 network (Brody
et al., 2022), a variant of GAT (Velickovic et al.,
2018) that has the ability to learn the strength of
connection between neighboring nodes through a
dynamic attention mechanism. Formally, a GATv2
layer updates a node’s hidden state as follows

h
(l+1)
i = σ


 ∑

j∈N (i)

α
(l)
ij W

(l)h
(l)
j


 , (7)

where N (i) is the set of first-order neighbors of
node i, and α

(l)
ij are normalized attention coeffi-

cients indicating the importance of node j’s fea-
tures to i in the l-th layer. The latter are computed
based on the features of the connected nodes using
an attention function att : Rd ×Rd 7→ R such that

α
(l)
ij = softmax

(
σ(att(h

(l)
i ,h

(l)
j )

)
. (8)
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Learning process. To optimize the GNN param-
eters, we adopt the same contrastive learning strat-
egy used to train the bi-encoder. Since graph G
can be relatively large, performing an update of
all the node features in G at every training itera-
tion would incur high computational costs. Be-
sides, most of these computations would be of no
use as only the updated representations of nodes
{A−

i ∪ a+i }
|B|
i=1 from batch B are needed to update

the model parameters. Therefore, we build a sub-
graph Gsub at each training step that only contains
the article nodes from batch B as well as their L-
hop neighbors (where L is decided by the number
of GNN layers). We then pass that sub-graph to
the graph network and use the resulting article rep-
resentations to compute the loss in Equation (4).
Comparably to the node features, the query embed-
dings are pre-computed offline before training by
the query encoder Eθ

Q(·) of our trained bi-encoder.

4 Experimental Setup

In this section, we present the basic setup for ex-
periments. In particular, Section 4.1 describes the
dataset we conduct our experiments on, Section 4.2
details our model implementation, Section 4.3 re-
views the different baselines we use for comparison,
and Section 4.4 reports the evaluation metrics.

4.1 Dataset
We conduct experiments on the publicly available
Belgian Statutory Article Retrieval Dataset (Louis
and Spanakis, 2022, BSARD).2 To the best of our
knowledge, BSARD is the only SAR dataset that
provides the lists of consecutive division headings
each article belongs to, which is crucial for building
the graph of the legislative structure. The dataset
consists of 1,100+ French native questions on var-
ious legal topics, as shown in Table 1, labeled by
skilled experts with references to relevant statutory
articles from the Belgian legislation. The retrieval
corpus comprises 22,600+ articles collected from
32 Belgian codes covering numerous legal domains.
The questions are relatively short and might have
several relevant legal articles. We refer readers to
the original paper for further data collection and
analysis details.

4.2 Implementation Details
Model. We use the publicly released Camem-
BERT (Martin et al., 2020) checkpoint to initialize

2
https://huggingface.co/datasets/antoiloui/bsard

Topic Train Dev Test

Family 216 56 67
Housing 203 38 66
Money 103 35 36
Justice 96 25 30
Foreigners 41 9 13
Social security 27 8 6
Work 23 6 4

Total 709 177 222

Table 1: Topic distribution of questions in BSARD.

DSR’s query encoder. Due to the specificity of the
legal language the article encoder has to deal with,
we follow prior work on domain adaptation (Gu-
rurangan et al., 2020; Jørgensen et al., 2021) and
continue pre-training CamemBERT on BSARD
statutory articles for 50k gradient steps to adapt it
to the target legal domain. We use the resulting
domain-specific checkpoint to warm-start the arti-
cle’s first-level encoder. The second-level encoder
is a two-layer Transformer encoder of 14M param-
eters with a similar configuration (i.e., 768-hidden,
3072-intermediate, 12-heads, 0.1 dropout, GeLU).
We use max-pooling to aggregate the final chunk
representations and cosine as the decomposable
similarity function.

Data augmentation. Due to the recent success in
using synthetic query generation to improve dense
retrieval performance (Liang et al., 2020; Ma et al.,
2021; Thakur et al., 2021), we propose to augment
BSARD with synthetic domain-targeted queries.
We use a mT5 model (Raffel et al., 2020) fine-tuned
on general domain data from mMARCO (Bonifa-
cio et al., 2021) to synthesize queries for our target
statutory articles.3 We generate five queries per
article, which results in a total of around 118k syn-
thetic queries. We combine the latter with the gold
BSARD train samples and obtain an augmented
training set of around 122.5k question-article pairs.

Optimization. We train DSR for 15 epochs with
a batch size of 24 using AdamW (Loshchilov and
Hutter, 2017) with β1 = 0.9, β2 = 0.999, ϵ =1e-
7, weight decay of 0.01, and learning rate warm
up along the first 5% of the training steps to a
maximum value of 2e-5, after which linear decay is
applied. We then optimize LGE parameters for 10

3
https://huggingface.co/doc2query/

msmarco-french-mt5-base-v1
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epochs with a batch size of 512 using AdamW with
β1 = 0.9, β2 = 0.999, ϵ =1e-7, weight decay of
0.1, and a constant learning rate of 2e-4. We use 16-
bit automatic mixed precision to accelerate training
and save memory. Details on our hyperparameter
tuning process are given in Appendix B.

Hardware & schedule. Training is performed
on a single 32 GB NVIDIA V100 GPU hosted on
a server with a dual 20-core Intel Xeon E5-2698
v4 CPU @2.20GHz and 512 GB of RAM. It takes
around 1 day to train DSR and 35 minutes for LGE.

Libraries. We implement, train, and tune our
models using Transformers (Wolf et al., 2020), Py-
Torch (Paszke et al., 2019), PyTorch-Geometric
(Fey and Lenssen, 2019), PyTorch-Lightning (Fal-
con, 2019), W&B Sweeps (Biewald, 2020), and
DeepSpeed (Rasley et al., 2020).

4.3 Baselines

We compare our approach against three strong re-
trieval systems. As a sparse baseline model, we
follow prior work and consider BM25 (Robertson
et al., 1994),4 a popular bag-of-words retrieval func-
tion based on exact term matching. We then exam-
ine the document expansion technique docT5query
(Nogueira and Lin, 2019), which augments each ar-
ticle with a pre-defined number of synthetic queries
generated by a finetuned mT5 model,3 and then
uses a traditional BM25 lexical index from the
augmented articles for retrieval. Last, we include
the results of a supervised dense passage retriev-
ers (Karpukhin et al., 2020, DPR) pre-finetuned
on more than 90.5k question-context pairs from a
combination of three French QA datasets.5

4.4 Evaluation

We evaluate model performance using three com-
monly used ranking measures (Manning et al.,
2008), namely the macro-averaged recall at differ-
ent cutoffs (R@k), mean average precision (mAP),
and mean r-precision (mRP). Those metrics are fur-
ther defined in Appendix D. We deliberately omit
to report the precision@k given that questions in
BSARD have a variable number of relevant articles,
which implies that questions with r relevant articles
would always have P@k < 1 if k > r. Similarly,
the mean reciprocal rank (mRR) is not appropriate

4We use k1 = 2.5 and b = 0.2. Details on BM25 hyper-
parameters tuning are given in Appendix C.

5
https://huggingface.co/etalab-ia/dpr-question_

encoder-fr_qa-camembert

for BSARD as only the first relevant article would
be considered. As some questions might have up to
100 relevant articles, we use k ∈ {100, 200, 500}
for the recall@k.

5 Experiments

In this section, we empirically evaluate the effec-
tiveness of our proposed approach against com-
petitive baselines and discuss the main results in
Section 5.1. Next, we provide an ablation study in
Section 5.2 to understand how different design and
training options affect our model’s performance.

5.1 Main Results

Table 2 shows retrieval performance on BSARD
test set. Although we report model performance on
two rank-aware metrics (i.e., mAP and mRP), we
emphasize that our approach is specifically aimed
at improving the pre-fetching component of a re-
triever (Zhang et al., 2021a) and therefore focuses
on optimizing rank-unaware metrics (i.e., R@k).

First, we compare the performance of our pro-
posed G-DSR model(8) against other well-known
retrieval approaches and find it significantly outper-
forms all of them on SAR. In particular, it improves
over the sparse retrieval methods(1,2) by around
30% on recall@k and by more than 25% on mAP
and mRP. It also outperforms a competitive pre-
finetuned DPR model(4) by 6% on R@100, 9% on
R@200, and 5% on R@500. However, the latter
shows a better performance on rank-aware metrics
compared to our DSR models, which we speculate
might be due to its extensive pre-finetuning step on
three domain-general retrieval datasets, leading the
model to a deeper knowledge of the task at hand.

Next, we investigate the influence of different
training strategies on the rank-unaware results of
our base dense retriever.(5) We find that DSR’s per-
formance is improved when adapting the article
text encoder to the legal domain before finetuning
on the target data.(6) Besides, training DSR on a
larger dataset containing synthetic domain-targeted
queries improves its performance even more.(7)

Finally, our results show that using a GNN model
on top of DSR allows to enrich the article represen-
tations and leads to the best overall performance.(8)

Interestingly, G-DSR also significantly improves
the rank-aware performance of our best perform-
ing DSR model by ∼12%, suggesting that a GNN
could act as an effective re-ranker for SAR.
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Model #Params R@100 (↑) R@200 (↑) R@500 (↑) mAP (↑) mRP (↑)
Baselines
1 BM25 - 49.3 57.3 63.0 16.8 13.6
2 docT5query - 51.7 59.4 65.8 18.7 15.0
4 DPR 220M 77.9 81.3 88.2 45.4 39.1

Ours
5 DSR 234M 77.1 81.8 86.7 35.6 28.8
6 DSR w. domain-adaptive pre-training 234M 79.8 83.9 88.9 39.5 31.3
7 DSR w. data augmentation 234M 82.7 88.7 92.8 35.3 27.5

8 G-DSR 262M 84.3 90.4 93.1 47.1 40.2

Table 2: Retrieval performance on BSARD Test set. The best results are marked in bold.

5.2 Ablation Study

To further understand how different design choices
and training strategies affect the results, we con-
duct several additional experiments and discuss our
findings below.

Alternative pre-trained LMs. In addition to
CamemBERT, we experiment with several other
French or multilingual pre-trained language mod-
els to initialize the first-level text encoders in DSR
– namely, mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020), and ELECTRA-fr (Clark
et al., 2020).6 We fine-tune the different warm-
started models on BSARD training set and report
dev results in Table 3. We find that a CamemBERT-
initialized DSR model performs best.

Alternative GNNs. Additionally to GATv2, we
explore different GNN architectures to perform
the node feature update – namely, GCN (Kipf
and Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Velickovic et al., 2018), and k-GNN
(Morris et al., 2019) – and summarize the results
in Table 4. Our experiments show that using an al-
ternative GNN model does not affect performance
much, which suggests that the act of fusing infor-
mation from neighboring nodes is more important
than the way the aggregation is performed.

Similarity and loss functions. Besides cosine
for scoring pairs of query-article representations,
we also experiment with dot-product and Euclidean
distance and find both inferior to cosine. As an
alternative to negative log-likelihood, we test the
triplet loss (Burges et al., 2005) and observe that the
latter significantly decreases model performance.
More details can be found in Appendix E.

6
https://huggingface.co/dbmdz/

electra-base-french-europeana-cased-discriminator

Pre-trained LM #Params R@100 (↑) R@500 (↑)
XLM-R 278M 59.8 78.7
mBERT 177M 69.2 86.6
ELECTRA-fr 110M 57.6 73.7
CamemBERT 110M 75.4 88.5

Table 3: BSARD Dev results of DSR warm-started with
different pre-trained word embedding models.

Model #Params R@100 (↑) R@500 (↑)
GCN 14M 84.4 92.0
GAT 14M 84.4 92.1
GraphSAGE 28M 84.5 92.9
k-GNN 28M 83.8 93.0
GATv2 28M 84.8 92.3

Table 4: BSARD Dev results of LGE with different
(3-layer) GNN architectures.

6 Related Work

Our work operates at the intersection of several
research areas, including long document modeling,
dense information retrieval, graph neural networks,
and legal NLP.

Long document modeling. The emergence of
deep neural networks for language processing
brought new challenges to text encoding, one of
which is learning high-quality representations of
long documents. For example, Tang et al. (2015)
employ a bottom-up approach using CNN and
BiLSTM-based hierarchical networks, where sen-
tences are first encoded into vectors, which are
then combined to form a single document vector.
Similarly, Yang et al. (2016) build a document vec-
tor by aggregating important words into sentence
vectors and then aggregating important sentence
vectors to document vectors using attention mech-
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anisms. More recently, hierarchical variants of
Transformer-based models have been explored for
various language tasks, including document classi-
fication (Mulyar et al., 2019; Pappagari et al., 2019;
Chalkidis et al., 2019; Wu et al., 2021), summa-
rization (Zhang et al., 2019), semantic matching
(Yang et al., 2020a), and question answering (Liu
et al., 2022). In addition to hierarchical attention
Transformer-based (HAT) models, several sparse
attention Transformers (SAT) have been introduced
to reduce the computational complexity of the
model, thus allowing to process sequences longer
than 512 tokens (Child et al., 2019; Beltagy et al.,
2020; Zaheer et al., 2020). However, Chalkidis
et al. (2022) show that a pre-trained HAT model per-
forms comparably or better than an equally-sized
SAT model across several downstream tasks while
being substantially faster and less memory inten-
sive. Recently, other non-Transformer-based ap-
proaches have been proposed for efficient long se-
quence processing based on structured state spaces
(Gu et al., 2022; Gupta et al., 2022).

Dense information retrieval. Traditionally, lexi-
cal approaches such as TF-IDF and BM25 (Robert-
son et al., 1994) have been the de facto standard
for textual information retrieval due to their robust-
ness and efficiency. However, these approaches
suffer from the lexical gap problem (Berger et al.,
2000) and can only retrieve documents containing
keywords present in the query. To overcome this
limitation, recent work relies on neural-based archi-
tectures to capture semantic relationships between
pairs of texts (Lee et al., 2019; Karpukhin et al.,
2020; Yang et al., 2020b; Xiong et al., 2021). These
models map queries and documents into dense
vector representations and calculate a relevance
score by the similarity of the vectors (Gillick et al.,
2018), which allows the document representations
to be pre-computed and indexed offline for infer-
ence. The dense retrieval approach was recently
extended by hybrid lexical-dense methods, which
aim to combine the strengths of both approaches
(Seo et al., 2019; Gao et al., 2021; Luan et al.,
2021). We refer the readers to Yates et al. (2021)
for a survey on neural information retrieval.

Graph neural networks. Graph neural net-
works (GNNs) capture the topological relationships
among the nodes of a graph using an information
diffusion mechanism that propagates node features
according to the underlying graph-structured data

(Scarselli et al., 2009). These models have shown
their effectiveness and flexibility in a wide vari-
ety of NLP tasks, including text classification (Lin
et al., 2021; Yu et al., 2022), relation extraction
(Zhang et al., 2018; Li et al., 2020; Carbonell et al.,
2020), and question answering (Cao et al., 2019;
Xu et al., 2021b). Recently, GNNs have been em-
ployed for document retrieval to enhance the vec-
tor representations by leveraging the topological
structure of the documents, where nodes are pas-
sages from a document and edges are relations
between these passages (Xu et al., 2021a; Zhang
et al., 2021b; Albarede et al., 2022).

Application to the legal domain. In recent years,
the legal domain has attracted much interest in the
NLP community, both for its challenging char-
acteristics and massive volumes of textual data
(Chalkidis and Kampas, 2019; Zhong et al., 2020).
Researchers see it as an opportunity to develop
novel automated methodologies that can reduce
heavy and redundant tasks for legal professionals
while providing a reliable, affordable form of legal
support for laypeople (Bommasani et al., 2021).
Earlier techniques for legal information retrieval
were mainly based on term-matching approaches
(Kim and Goebel, 2017; Tran et al., 2018). Re-
cently, a growing number of works have used neu-
ral networks to enhance retrieval performance, in-
cluding word embedding models (Landthaler et al.,
2016), doc2vec models (Sugathadasa et al., 2018),
CNN-based models (Tran et al., 2019), and BERT-
based models (Nguyen et al., 2021; Chalkidis et al.,
2021; Althammer et al., 2022). To the best of our
knowledge, we are the first to exploit the structure
of statute law with GNNs to improve the perfor-
mance of dense retrieval models.

7 Conclusion

In this paper, we introduce G-DSR, a novel ap-
proach for statutory article retrieval (SAR) that
leverages the topological structure of legislation
to improve retrieval performance. Specifically, G-
DSR enriches the article representations of a dense
retriever designed for long document retrieval by
employing a graph neural network that uses the
organization of statute law to learn knowledge-rich
cross-article embeddings. Experiments show that
G-DSR outperforms competitive baselines on a
real-world expert-annotated SAR dataset. We also
include a detailed analysis to motivate our design
choices and training strategies.
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Limitations

While our approach performs well on statutory arti-
cle retrieval, it comes with several limitations that
provide avenues for future work.

First, experimental results are based on ques-
tions and labels drafted by legal professionals. It is
possible that other legal professionals would draft
the questions differently or, less likely yet possible,
that they would deem different statutory provisions
relevant. This raises the question of to what extent
similar results would be obtained if the model were
trained on a different dataset, for instance, based
on other experts or domains, hence testing the ap-
proach’s generalizability. The main challenge in
this regard is obtaining data, as organizations are
unlikely to share or even collect similar data.

Second, our proposed methodology was evalu-
ated exclusively on the Belgian legislation, whose
laws are organized in a hierarchical manner where
the deeper the divisions, the more closely related
the legal concepts of the articles under them. Al-
though we believe our approach could be applied
to most, if not all, jurisdictions that rely on statute
law (including both civil and common law coun-
tries), different jurisdictions may have different
organizations of their legal provisions, which could
potentially affect the model’s performance. It is
also worth mentioning that the dataset used for eval-
uation comes with a linguistic bias as Belgium is a
multilingual country with French, Dutch, and Ger-
man speakers, but the provided provisions are only
available in French. Studying the applicability and
impact of the present work to other jurisdictions
and languages is an exciting research direction that
is challenging in practice due to the scarcity of
high-quality multilingual statute retrieval datasets.

Then, our approach currently considers the topo-
logical structure of legislation for modeling the
inter-article dependencies, which implies that infor-
mation is aggregated between direct neighboring
articles only while those from more distant sec-
tions are completely ignored. Nevertheless, it is
common for articles to cite other articles from dif-
ferent sections or even different statutes. Therefore,
we believe that considering richer legal graph struc-
tures, especially legal citation networks, could in-
crease effectiveness even more. However, building
such citation networks from raw texts requires a
considerable text-processing effort.

Finally, although G-DSR shows promise for
statutory article retrieval, it is not yet ready for

practical use in the real world. One issue is that
our model is designed to be an effective pre-fetcher,
optimizing recall such that all articles relevant to
a question appear in an unordered filter set of size
k (k being relatively large). However, in practice,
users would expect a high-quality retrieval system
to not only find these relevant articles but also to
sort them by decreasing order of importance, re-
quiring an adequate re-ranker. Then, it is essential
to recognize that while access to relevant legal pro-
visions is a necessary step in helping the general
public solve their legal issues, it is not a sufficient
condition on its own as laypeople may still strug-
gle to understand the legal jargon and apply the
provisions to their specific situations. Ideally, the
tool to be made accessible to the public should con-
sist of a two-stage framework: (i) a legal provision
retriever, which selects a small subset of relevant le-
gal articles in response to a given question, and (ii)
a legal-to-natural translator or summarizer, which
examines the retrieved articles and generates an an-
swer in natural language. In the present work, we
chose to focus on the first stage of this framework
and leave the second for future work.
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Appendix

A Preliminary Studies

A.1 How important is the structure of law for
statutory article retrieval?

To better understand the reasoning skilled humans
follow when retrieving statutory articles, we ask
several legal experts to retrieve relevant articles to
questions sampled from the Belgian Statutory Ar-
ticle Retrieval Dataset (Louis and Spanakis, 2022,
BSARD). We deliberately choose experts unfamil-
iar with Belgian law and thus have no past knowl-
edge of the location of articles covering a particular
subject. In what follows, we summarize the ap-
proach these experts use.

First, they determine whether the issue involves
either public or private law. To distinguish between
the two, it is necessary to identify to whom the
rules apply (i.e., the parties involved in the issue
that hold the rights or duties). Generally speaking,
public law deals with issues that affect the general
public or state (i.e., society as a whole), whereas
private law deals with issues that affect individuals,
families, and businesses. This first step allows
the experts to make an initial selection among the
codes of law, which generally relate to only one of
either public or private law.

Next, the experts refine their search by determin-
ing the field of law (e.g., contract law), followed
by the sub-field (e.g., tenant law), and so on, un-
til a set of potentially relevant codes is created in
the question’s domains. The experts then focus on
the table of contents of one of the selected codes
and undertake a hierarchical search that starts from
the book’s headings and progressively extends to
its titles, chapters, and sections. This step makes
it possible to filter out many irrelevant articles by
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analyzing the connection between the question’s
subject and the different sections’ headings.

Finally, the experts explore the articles within the
sections deemed potentially relevant to the question
in search of the expected answer. If the experts
realize that the chosen direction is a dead end, they
return to the previous higher level of the structure,
choose another potentially relevant direction, and
narrow their search from there.

From this study, we conclude that legal experts
rely heavily on the structure of law when retrieving
relevant articles to a legal question, which indicates
that the different divisions’ headings carry valuable
information that retrieval systems should consider.

A.2 How related are neighboring articles in
statute law?

In statute law, the sense of a given article is not nec-
essarily self-contained by itself but instead spans
across different articles from the same or even dif-
ferent sections. To confirm this, we study to what
extent consecutive articles (as they appear in the
statute books) address similar subjects.

We consider the Belgian Civil Code, which is the
book whose articles are most cited in BSARD, and
randomly sample sets of 200 consecutive articles
out of it. We then normalize the articles by low-
ercasing, lemmatizing, and removing stop-words,
punctuation, and numbers. Finally, we compute the
cosine similarities between the TF-IDF representa-
tions of all articles from a given set. Figure 3 shows
a heatmap of article similarities for such a set. We
see that consecutive articles do indeed cover sim-
ilar topics, suggesting that the information in a
given article is likely to be complementary to that
in its neighboring articles. Therefore, we assume
that neighboring articles should be considered to
capture an article’s whole meaning.

B G-DSR Hyperparameter Tuning

We conduct hyperparameter tuning using Bayes
search based on performance on BSARD devel-
opment set, measured with the macro-averaged
R@200. Due to limited computational resources,
we train our models on BSARD training set only –
which takes approximately 1 hour and 15 minutes
for DSR and around 5 minutes for LGE – and use
the constrained search spaces described below.

DSR grid search space:
• batch size: {8, 16, 24, 32}
• learning rate: {5e-5, 4e-5, 3e-5, 2e-5, 1e-5}

0

0.2

0.4

0.6

0.8

1

Figure 3: Cosine similarities between TF-IDF repre-
sentations of 200 consecutive articles from the Belgian
Civil Code, taken from the Belgian Statutory Article
Retrieval Dataset (Louis and Spanakis, 2022, BSARD).

• weight decay: {0, 0.1, 0.01, 0.001}
• max chunk length: {64, 128, 256, 512}
• max document length: {1024, 2048}
• pooling strategy: {mean, max}
• similarity function: {dot-product, cosine, L2}
• temperature: {0, 0.1, 0.01, 0.001}

LGE grid search space:

• batch size: {8, 16, 32, 64, 128, 256, 512}
• learning rate: {2e-2, 2e-3, 2e-4, 2e-5, 2e-6}
• weight decay: {0, 0.1, 0.01, 0.001}
• #layers: {1, 2, 3, 4}

In total, we run 100 hyperparameter search trials
for both DSR and LGE. The optimal hyperparam-
eters, shown in Table 5, are used to re-train the
models combining both train and development sets
for a final evaluation on the test set.

C BM25 Hyperparameter Tuning

Following Chalkidis et al. (2021), who show that
BM25 performance is highly dependent on ade-
quately choosing the (k1, b) values for the task at
hand, we perform a hyperparameter grid search on
BSARD development set and plot the results in
Figure 4. We observe that, in the case of SAR, the
best performance is obtained with k1 = 2.5 and
b = 0.2. Therefore, we use these values for the
final evaluation on BSARD test set.
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Hyperparam DSR LGE

Model
Maximum Chunk Length 128 -
Maximum Document Length 1024 -
Pooling Strategy max -
#Layers - 3

Loss
Temperature 0.01 0.01
Similarity cos cos

Training
Batch Size 24 512
Weight Decay 0.01 0.1
Max Epochs 15 10
Peak Learning Rate 2e-5 2e-4
Learning Rate Decay Linear Constant
Warmup ratio 0.05 0.0
AdamW ϵ 1e-7 1e-7
AdamW β1 0.9 0.9
AdamW β2 0.999 0.999
Gradient Clipping 1.0 1.0

Table 5: Training hyperparameters for DSR and LGE.

D Evaluation Metrics

Let relq(a) ∈ {0, 1} be the binary relevance label
of article a for question q, and ⟨i, a⟩ ∈ Fq a result
tuple (article a at rank i) from the filter set Fq ⊂ C
of ranked articles retrieved for question q.

Recall. The recall is the fraction of relevant arti-
cles retrieved for query q w.r.t. the total number of
relevant articles in the corpus C, i.e.,

Rq =

∑
⟨i,a⟩∈Fq

relq(a)∑
a∈C relq(a)

. (9)

When computed for a filter set of size k = |Fq| ≪
|C|, i.e., at a certain cutoff and not on the entire
list of articles in C, we report the metrics with the
suffix “@k”.

R-Precision The R-Precision is the proportion
of the top-R retrieved articles that are relevant to
query q, where R is the total number of relevant
articles for q, i.e.,

RPq =

∑
⟨i,a⟩∈{Fq}Ri=1

relq(a)

R
. (10)

Average Precision. The average precision is the
mean of the precision value obtained after each
relevant article is retrieved, that is

APq =

∑
⟨i,a⟩∈Fq

Pq,i× relq(a)∑
a∈C relq(a)

, (11)
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49.7 51.6 52.8 52.5 51.4 52.2 52.5 51.3 50.1 49.5 44.8
49.9 51.9 53.2 52.5 51.4 52.5 52.5 51.3 50.4 49.7 45.2
50.0 51.9 53.3 52.5 51.7 52.6 52.5 51.9 50.5 49.3 44.9
50.1 51.9 53.4 52.5 51.9 52.7 52.7 52.1 50.7 49.3 45.4
50.1 51.8 53.6 52.5 51.9 52.5 52.7 52.1 50.9 49.4 45.9
50.3 52.1 53.6 52.8 52.2 52.5 52.8 52.2 50.9 49.3 45.9
50.2 53.0 53.6 52.9 52.8 52.6 52.8 52.4 50.9 49.6 47.1
50.8 53.0 53.7 52.9 52.7 52.6 52.6 52.6 50.9 49.7 46.9
51.2 53.3 53.8 53.5 53.4 52.6 52.4 52.6 50.7 50.4 47.2
51.5 53.3 54.1 53.4 53.5 52.6 52.3 52.2 51.5 50.6 48.0
51.1 53.3 54.0 53.3 53.4 52.6 52.1 52.3 52.1 50.7 48.0
50.8 53.0 53.8 52.3 53.1 52.5 52.3 52.4 51.6 51.7 48.2
51.2 52.2 52.8 53.2 52.1 52.1 51.6 51.9 51.6 51.2 49.2
50.3 51.1 51.1 51.9 52.1 52.1 51.7 51.0 50.9 51.1 49.2

Figure 4: Heatmap showing BM25 results on BSARD
Dev set for different values of k1 and b.

Loss Similarity R@100 (↑) R@200 (↑) R@500 (↑)

Cross-entropy
Cosine 75.0 80.7 86.7
Dot 21.6 37.1 56.0
Euclidean 43.9 58.1 71.6

Triplet
Cosine 5.4 9.9 17.2
Dot 4.3 6.4 10.3
Euclidean 9.0 14.3 25.2

Table 6: BSARD Dev results of DSR trained using
different similarity and loss functions.

where Pq,j is the precision computed at rank j
for query q, i.e., the fraction of relevant articles
retrieved for query q w.r.t. the total number of
articles in the retrieved set {Fq}ji=1:

Pq,j =

∑
⟨i,a⟩∈{Fq}ji=1

relq(a)∣∣∣{Fq}ji=1

∣∣∣
. (12)

We report the macro-averaged recall at various cut-
offs (R@k), mean Average Precision (mAP), and
mean R-Precision (mRP), which are the average
values over a set of n queries.

E Ablation Details

Besides cosine similarity and negative log-
likelihood (NLL) loss, we also test the dot-product
and Euclidean (inverse of distance is taken as sim-
ilarity measure) as well as the triplet loss. The
temperature for the NLL loss is set to 0.01, and the
margin value of the triplet loss is set to 1. We report
the results on BSARD development set in Table 6.
For a fair comparison, all models are trained for
15 epochs with a batch size of 24, weight decay of
0.01, warm-up proportion of 0.05, an initial learn-
ing rate of 2e-5, and a linear decay learning rate
schedule.
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