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Abstract

Prompting pre-trained language models leads
to promising results across natural language
processing tasks but is less effective when
applied in low-resource domains, due to the
domain gap between the pre-training data
and the downstream task. In this work, we
bridge this gap with a novel and lightweight
prompting methodology called SwitchPrompt
for the adaptation of language models trained
on datasets from the general domain to diverse
low-resource domains. Using domain-specific
keywords with a trainable gated prompt, Switch-
Prompt offers domain-oriented prompting, that
is, effective guidance on the target domains
for general-domain language models. Our few-
shot experiments on three text classification
benchmarks demonstrate the efficacy of the
general-domain pre-trained language models
when used with SwitchPrompt. They often even
outperform their domain-specific counterparts
trained with baseline state-of-the-art prompt-
ing methods by up to 10.7% performance in-
crease in accuracy. This result indicates that
SwitchPrompt effectively reduces the need for
domain-specific language model pre-training.

1 Introduction

Recent work showed promising results on different
natural language processing tasks when prompting
pre-trained language models (LMs) instead of fine-
tuning them, especially in low-resource settings
(Schucher et al., 2022). Most LMs which are pub-
licly available have been trained on general-domain
corpora (Devlin et al., 2019; Liu et al., 2019; Goyal
et al., 2021), such as Wikipedia or the BooksCor-
pus (Zhu et al., 2015). Applying them to tasks from
a special domain results in a domain gap.

For some special domains, domain-specific
LMs exists, e.g., Clinical BERT (Alsentzer et al.,
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2019) or BioBERT (Lee et al., 2019). However,
pre-training deep language models requires large
amounts of text data.1 While we can assume the
availability of large-scale text data in the general
domain, this assumption might not hold for low-
resource domains, making the creation of domain-
specific LMs challenging. Moreover, training dif-
ferent models for each and every new domain might
be inefficient from a computation point of view.2

Even if there are domain-specific texts and compu-
tational resources available, domain-specific LMs
may not be able to get sufficient domain-oriented
guidance through traditional prompting techniques
because, for instance, domain-specific knowledge
might be represented by a large and diverse vocab-
ulary. As a result, both prompting LMs from the
general domain and from a special domain might
be ineffective, especially in low-resource settings.

Motivated by these challenges, we explore
domain-oriented prompts and propose a novel
and lightweight method, SwitchPrompt, to effec-
tively retrieve domain-specific knowledge from
pre-trained LMs. It extends the sequence of soft-
prompting vectors with a sequence of vectors rep-
resenting domain-specific keywords and introduces
gates to allow the model to dynamically switch be-
tween a general soft prompt and a domain-specific
one based on the input sentence. We hypothe-
size that this approach helps to effectively retrieve
domain-specific knowledge from pre-trained LMs.

Our experiments on benchmark datasets from
different domains indicate that SwitchPrompt out-
performs different state-of-the-art prompting meth-
ods. It improves results in both in-domain and
out-of-domain settings, effectively reducing do-
main gaps among pre-training and downstream task
data. We find that it is especially suitable for low-

1Clinical BERT (Alsentzer et al., 2019), for instance, was
trained on the MIMIC-III v1.4 database (Johnson et al., 2016)
which includes 2 million notes.

2Lee et al. (2019) used eight NVIDIA V 100 GPUs for 23
days to train the BioBERT.
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resource settings (both little data and little computa-
tional resources) as it neither requires pre-training
domain-specific LMs nor fine-tuning LMs for the
downstream task. The code base for SwitchPrompt
is available online.3

2 Related Work

Language model prompting. Prompting pre-
trained LMs has been shown effective for different
NLP tasks (Brown et al., 2020). While discrete
prompts are intuitively understandable, their de-
sign requires non-trivial human involvement and
they may be outperformed by fine-tuning (Shin
et al., 2020; Jiang et al., 2020; Gao et al., 2021).
Recent studies address this issue by optimizing
so-called soft prompts in continuous space. Li
and Liang (2021a) propose prefix tuning that op-
timizes prefix activations prepended to the input
layer and each layer in the encoder stack. Lester
et al. (2021) prepend trainable continuous embed-
dings to the original sequence of input word embed-
dings. Liu et al. (2021) propose P-tuning in which
an LSTM encoder captures the sequential repre-
sentations of the soft prompts. Liu et al. (2022)
use a deep prompting methodology which injects
prompts at each layer of the pre-trained LM. In
contrast to those prior works, we propose a new
soft prompting method that is especially suited for
low-resource domains.

Language models in special domains. Most
popular pre-trained LMs are trained on data from
the general domain. Tailoring an LM towards a do-
main can be done via domain-specific pre-training
from scratch (i.a., Alsentzer et al., 2019; Lee et al.,
2019) or adaptation of an existing model to target
domain data with continued pre-training (i.a., Gu-
rurangan et al., 2020; Xu et al., 2020; Lange et al.,
2022). We refer to the survey of Hedderich et al.
(2021) for more information on language model
adaptation for low-resource domains. In this pa-
per, we take a different approach and investigate
to which extend LMs that were pre-trained on the
general domain can be prompted for domain knowl-
edge in few-shot settings as this requires only a
minimal amount of domain-specific data.

3 Method

We now present SwitchPrompt, and give an exam-
ple of an architecture in which it can be applied. In

3https://github.com/boschresearch/switchprompt

our architectural setup, the underlying pre-trained
language model is fixed (i.e., not fine-tuned).

3.1 Domain-Specific Soft Prompts
The motivation behind our proposed prompts
P ∈ Rl×e is to allow the model to dynamically
switch between a general-domain prompt Pg and a
domain-specific prompt Pd in order to retrieve dif-
ferent kinds of knowledge from the pre-trained LM
based on the current input, where e is the embed-
ding dimension, and l is the length of the prompt
(i.e., number of soft-prompt vectors). We imple-
ment this with a sigmoid-based gating function:

P = g1(pad(Pg)) + (1− g1)Pd (1)

g1 = σ(w⊤
1 sinput) (2)

where pad is a function that pads Pg to length l.
The prompts Pg and Pd will be defined in Equa-
tions 3 and 6, respectively. Gate g1 is calculated
based on the representation of the input sentence
sinput (in our case the representation of the [CLS]
token when feeding the input sentence into the pre-
trained LM) and a weight vector w1 ∈ Re that is
randomly initialized and updated during training.

The general-domain prompt is implemented
as a sequence of randomly initialized vectors
v1, . . . , vm that are trained on the downstream task,
similar to Lester et al. (2021) and Liu et al. (2022):

Pg = [v1; v2; . . . ; vm] = Vm (3)

The sequence length m is a hyperparameter of the
model and ‘[;]’ denotes concatenation.

The domain-specific prompt is designed to in-
corporate a sequence of vectors Kn = [k1; . . . ; kn]
that represent domain-specific keywords. The intu-
ition is to inject the semantic information of the
special domains using the domain-specific key-
words. We define the set of keywords using a
term-frequency-based approach. In particular, we
estimate a score c for each word w from the target
domain based on the normalized term frequencies
estimated on documents from the general domain
tfg(w) and domain-specific documents tfd(w):

c(w) = α · tfg(w) + tfd(w), α < 0 (4)

ti = {w|rank(c(w)) = i}, 1 ≤ i ≤ n (5)

Using α < 0, we are able to select terms that
are representative for the target domain and avoid
terms that are frequent in the general domain. In
Equation 5, we select the n words from the target
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domain with the highest scores c as our keywords.
Each keyword ti is then represented as a vector ki,
using the same language model as for prompting.

Initial experiments showed that it is not enough
to simply set Pd = Kn = [k1, k2, . . . , kn] but that
the sequence of keywords should actually be com-
bined with the sequence of soft prompts. Thus, we
implement the domain-specific prompt as follows:

Pd = g2[Vm;Kn] + (1− g2)[Kn;Vm] (6)

g2 = σ(w⊤
2 sinput) (7)

We combine the sequence of keywords of length
n with the sequence of soft prompts of length m
with concatenation, yielding a sequence of length
l = m+ n. We let the model decide with a second
gate g2 in which order the sequences should be
concatenated. Again, the gate is calculated based
on the representation of the input sentence and a
trainable weight vector w2 ∈ Re, where e is the
embedding dimension. Thus, although the same
domain-specific keywords are used for all inputs,
the resulting soft prompt is dependent on the input
sentence.

3.2 Prompting Architecture

Since our proposed method is a new definition of
soft prompts, it can be integrated into any existing
model that uses soft prompts. In our experiments,
we adopt the P-Tuning v2 architecture (Liu et al.,
2022) because of its high efficacy on different nat-
ural language understanding tasks. P-Tuning v2
is an adaptation of deep prompt tuning (Qin and
Eisner, 2021; Li and Liang, 2021b) that injects soft
prompts at every layer of the pre-trained LM. Dur-
ing training, the prompts are tuned but the LM stays
fixed. For the class prediction of the downstream
task, a randomly initialized classification head is
added on top of the pre-trained LM.

4 Experiments

In this section, we describe the setup (datasets,
training details and baselines) and the results of
our experiments.

4.1 Datasets

For our experiments, we use classification bench-
mark datasets from different domains: question
classification from the general domain (TREC,
Voorhees and Tice, 2000) and from the clinical
domain (GARD, Kilicoglu et al., 2016), as well as

experiment classification from the materials sci-
ence domain (SOFC-Exp, Friedrich et al., 2020).
Statistics of the datasets can be found in Table 1.

Dataset Domain Instances Classes

GARD Clinical 1253 11
SOFC-Exp Materials science 2042 2
TREC General 4893 7

Table 1: Statistics of text classification datasets.

Among them, the SOFC-Exp dataset offers a
binary sentence classification task with positive
and negative labels whereas GARD and TREC are
multi-class question classification datasets.

To investigate very-low-resource settings, we
construct few-shot datasets by randomly sampling
N shots per class with N ∈ {2, 4, 16, 64}. Follow-
ing the proposed theory for realistic low-resource
regimes (Perez et al., 2021; Kann et al., 2019), we
also create few-shot development sets by keeping
the number of shots in the training and development
sets in sync. In the 4-shot scenario, for example,
both the training and the development set consist
of 4 examples for each class. For all datasets, we
use accuracy (%) as evaluation metric.

To give a closer insight into the challenges of the
different domains that we use in our experiments,
we present example instances from the datasets in
Table 2. The examples show that the models need
to cope with domain-specific terminology, such as
“perisylvian polymicrogyria” (clinical domain) or
“electrochemical” (materials science domain), and
domain-specific labels, for instance, “diagnosis”.

4.2 Training Details
We use open-sourced HuggingFace language mod-
els4 for our experiments. We train our models with
a batch size of 32. The maximum sequence length
is set to 128 and we use dropout with rate 0.1 on
the classification layer. We use the ExponentialLR5

learning rate scheduler with a gamma value of 0.95
and the Adam optimizer. All experiments are per-
formed on a V 100 GPU.6 Each reported result is
the average performance of five runs.

4.3 Baselines
We compare our method to different baselines: (i)
Fine-tuning of the pre-trained LM, (ii) prompting

4https://huggingface.co/models
5https://pytorch.org/docs/stable/optim.html#

torch.optim.Optimizer
6We ran our experiments on a carbon-neutral GPU cluster.

2691

https://huggingface.co/models
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer


Domain Input Output

Clinical How is it different from bilateral perisylvian polymicrogyria in how it presents ? Diagnosis
Clinical Are there products other than cigarette tobacco associated with Buerger disease ? Cause
Mat. science They called this phenomenon nonfaradaic electrochemical modification of catalytic activity (NEMCA). Negative
Mat. science It is possible to reduce up to 35% of NO present when the cell stacks are polarized with 1.5 V for each cell. Positive
General What is the name of the largest city in Chile , South America ? Location
General What was the average life expectancy during the Stone Age ? Number

Table 2: Example sentences and their labels from our domain-specific and general-domain datasets.

Methodology Model 2-shots 4-shots 16-shots 64-shots All

Fine-tuning BERT 21.2 25.5 40.8 67.4 81.8
Clinical BERT 35.9 40.4 56.3 68.1 82.5

P-tuning BERT 48.3 48.9 53.1 68.1 82.0
Clinical BERT 49.2 53.1 58.2 69.6 82.8

P-tuning V2 BERT 27.2 44.4 61.9 79.1 84.0
Clinical BERT 34.3 48.7 63.4 82.3 86.7

SwitchPrompt BERT 36.3 54.2 64.0 81.1 85.4
Clinical BERT 40.9 55.2 65.1 81.9 86.9

Table 3: Results on special-domain dataset GARD.

Methodology Model 2-shots 4-shots 16-shots 64-shots All

Fine-tuning BERT 18.2 26.1 48.5 54.6 61.9
SciBERT 29.4 32.7 50.4 56.2 64.7

P-tuning BERT 37.5 38.2 52.6 58.5 64.9
SciBERT 42.1 43.4 54.8 59.3 66.2

P-tuning V2 BERT 30.8 31.2 52.8 59.9 68.4
SciBERT 33.7 35.6 53.9 61.4 69.7

SwitchPrompt BERT 32.4 34.3 53.4 61.0 69.9
SciBERT 36.2 37.1 55.9 62.5 70.6

Table 4: Results on special-domain dataset SOFC-Exp.

using P-tuning (Liu et al., 2021), and (iii) prompt-
ing using P-Tuning v2 (Liu et al., 2022). For
all methods, we report results for using either a
general-domain LM (BERT (Devlin et al., 2019))
or domain-specific LMs (Clinical BERT (Alsentzer
et al., 2019) and SciBERT (Beltagy et al., 2019)).

4.4 Results
Low-resource domains. Tables 3 and 4 show the
results of our model for the clinical and materi-
als science domain in comparison to state-of-the-
art baseline approaches. In general, the prompt-
ing methods outperform fine-tuning, with espe-
cially large margins for very-few-shot settings (2
and 4 shots). This highlights the limitations of
fine-tuning with limited training datasets. Another
general trend is that using domain-specific LMs
(Clinical BERT and SciBERT, respectively) out-
performs BERT from the general domain. Our
proposed method SwitchPrompt outperforms other
state-of-the-art prompting methods up to 2.1%
points. We further note that (i) our method prompt-
ing general-domain LMs even outperforms other
methods prompting domain-specific LMs, and (ii)
our method reduces the performance gap between

Methodology Model 2-shots 4-shots 16-shots 64-shots All

Fine-tuning BERT 33.3 53.3 71.4 88.7 95.7
P-tuning V2 BERT 56.0 63.3 79.4 92.5 96.8
SwitchPrompt BERT 66.7 72.4 88.3 91.2 97.6

Table 5: Results on general-domain dataset TREC.

using an LM from the general domain vs. a domain-
specific one.

For very-few-shot settings (2,4-shots), P-tuning
outperforms our method. We assume that the rea-
son is that it replaces the input of the LM with
differential embeddings from the prompt-encoder,
while in our method we consider the vanilla inputs
of the LM, reducing the complexity and training
time (see Figure 1) of our model.

General domain. To investigate the behavior of
our method in the general domain, we now evalu-
ate its performance on TREC. Table 5 shows that
our method outperforms both fine-tuning and other
prompting methods in almost all dataset settings,
up to 10.7 accuracy points. Thus, even on the gen-
eral domain, SwitchPrompt can boost the perfor-
mance of pre-trained LMs.

5 Analysis

In this section, we report the results of our abla-
tion study, give more insights into what our model
learned and analyze its training time. We also pro-
vide a qualitative error analysis.

Ablation study. Our ablation study in Table 7
shows the impact of the different components of
our prompting function, evaluated with the full
GARD dataset. Row (1) corresponds to Switch-
Prompt, and row (6) corresponds to the previ-
ous state-of-the-art prompting model P-Tuning v2.
Row (2) shows that the concatenation of keywords
and the general-domain soft prompt is important to
the model. Row (3) and (4) show the large impact
of the second gate g2, and row (5) and (6) show
that neither the domain-specific keywords Kn nor
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Domain Keywords

Clinical Diagnosed, Prognosis, Cantrell, Idiopathic, Tourette, Opitz, Testotoxicosis, Late-onset, Amniocentesis, Prenatally
Mat. science Fuel, Oxide, D8-Discover, Viscometer, Hydroxide/poly, Room-temperature, Ion-conductor, Electrocatalytic, Cobalt-doped, Non-homogeneous
General Cholera, Tasman, Conservancy, Boil, Premier, Consumption, Conditioner, Foster, Chemiosmotic, Registers

Table 6: Automatically selected 10 keywords per domain by our approach.

Prompt Acc

(1) g1(pad(Vm)) + (1 − g1)(g2[Vm;Kn] + (1 − g2)[Kn;Vm]) 85.4
(2) g1(pad(Vm)) + (1 − g1)(g2Vm + (1 − g2)Kn) 82.6
(3) g1(pad(Vm)) + (1 − g1)[Vm;Kn] 81.4
(4) g1(pad(Vm)) + (1 − g1)[Kn;Vm] 77.6
(5) Kn 54.8
(6) Vm 84.0

Table 7: Impact of prompt design choices in the full-data
setting of the GARD dataset using BERT embeddings.
Row (1) corresponds to SwitchPrompt, and row (6) cor-
responds to P-Tuning v2.

Input Prediction Gold Output

How can this be? Management Susceptibility
Will we be okay? Information Prognosis
What is the treatment of mixed
connective tissue disorder ? Information Management

What are the expected out-
comes for individuals with
cryoglobulinemia ?

Information Prognosis

Table 8: Error analysis on GARD dataset.

the general soft-prompting vectors Vm alone are
sufficient to achieve the highest performance.

Domain-specific keywords. The keywords are
an integral part of SwitchPrompt. Since we com-
pute keywords automatically (see Section 3), we
analyze the extracted keywords in more detail.

Table 6 shows the 10 keywords that have been se-
lected by our method. For the clinical and materials
science domain, the keywords are domain-specific
terms while for the general domain, the keywords
cover a broad range of topics.

Training time analysis. During training time,
the underlying LM is frozen in the SwitchPrompt
framework. This substantially reduces training
time and computational memory, compared to alter-
native approaches, such as fine-tuning or P-Tuning.
Figure 1 illustrates this. P-Tuning v2 is a little bit
faster than our approach as it does not need to train
the gating parameters. However, the time differ-
ence is considerably small (2.2 min for 10 epochs
in the all-data setting, i.e., 0.22 min per epoch).

Qualitative error analysis. Finally, we manually
conduct a qualitative error analysis on the GARD
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Figure 1: Training time in minutes for 10 epochs for
different methods on the GARD dataset.

dataset. The results are displayed in Table 8. We
find that our method mainly fails when the input
sentences convey little domain-specific information
(see examples in first two rows). Another category
of errors is the prediction of a more general class
(“Information” instead of “Management” or “Prog-
nosis” in the last two rows).

6 Conclusion

In this paper, we proposed a new methodology
called SwitchPrompt for effectively prompting
pre-trained language models in low-resource do-
mains. Integral parts of our method are domain-
specific keywords and gates, which allow the
language model to dynamically retrieve domain-
specific knowledge. Experiments on sentence clas-
sification datasets from different domains show
that our method outperforms various baseline
methods in few-shot and all-data settings. In
particular, it reduces the performance gap be-
tween general-domain and domain-specific lan-
guage models. Future work can investigate the
impact on sequence-labeling tasks as well as on
mixed-domain datasets.
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Limitations

In preliminary experiments, we found that our
method is sensitive to the selection of key-
words. While we found an automatic and domain-
independent way for extracting them (see Section
3), its efficacy needs to be tested on more domains
and possibly also on mixed domain datasets.
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