Modeling Complex Event Scenarios via Simple Entity-focused Questions

Mahnaz Koupaee', Greg Durrett?, Nathanael Chambers®, Niranjan Balasubramanian'

! Stony Brook University, 2 The University of Texas at Austin, 3 United States Naval Academy
1{mkoupaee, niranjan}@cs.stonybrook.edu
2gdurrett@cs.utexas.edu, >nchamber@usna. edu

Abstract

Event scenarios are often complex and involve
multiple event sequences connected through
different entity participants. Exploring such
complex scenarios requires an ability to branch
through different sequences, something that
is difficult to achieve with standard event lan-
guage modeling. To address this, we propose
a question-guided generation framework that
models events in complex scenarios as answers
to questions about participants. At any step
in the generation process, the framework uses
the previously generated events as context, but
generates the next event as an answer to one
of three questions: what else a participant did,
what else happened to a participant, or what
else happened. The participants and the ques-
tions themselves can be sampled or be provided
as input from a user, allowing for controllable
exploration. Our empirical evaluation shows
that this question-guided generation provides
better coverage of participants, diverse events
within a domain, comparable perplexities for
modeling event sequences, and more effective
control for interactive schema generation'.

1 Introduction

Event scripts (Schank and Abelson, 1977), also
known as event schemas, describe a sequence of
events in a particular context. Representing and
modeling such schemas is central to applications
in Al such as question answering, discourse under-
standing, and information extraction (Balasubrama-
nian et al., 2013). Early work used hand-crafted
event schemas as a starting point (Schank and Abel-
son, 1977; Mooney and DeJong, 1985), but modern
techniques attempt to extract these at a large scale
from unlabeled data (Chambers and Jurafsky, 2008;
Chambers, 2013; Pichotta and Mooney, 2016; We-
ber et al., 2018b).

'"The code is available at https://github.com/
StonyBrookNLP/qga-event-1ms

police arrested the suspect on several charges

& =

Q1. What did police do?

A1. The police questioned the man

Q1.1. What else did the police do?

A1.1. They began to focus on the details of the crash

Q1.2. What else did the police do?

A1.2.The police seized the car

Q2. What did the suspect do?

A2. the man tried to flee his apartment

Q2.1. What else happened to the suspect?

A2.1. officers pursued him

Q2.2.1. What else did officers do?

A2.2.1. officers seized some items from his home

Q2.2.2. What else happened to the suspect?

A2.2.2. He taken into custody

— s

Figure 1: Question-guided event sequence generation.
The user can interact with the system by asking ques-
tions regarding the entities and the system will generate
corresponding events. Different questions can lead to
different paths as shown with different colored boxes.

Event language models can also be used to
approximate schematic knowledge via event se-
quences. They can be trained to generate a se-
quence of events with their participating roles de-
scribing a real-life scenario. However, these sce-
narios can often be complex and don’t always fit as
simple sequences (Weber et al., 2018b). For exam-
ple, suppose we have the following event: police
arrested suspect on several charges, with
police, suspect and charges as entities. The sce-
nario can be described in multiple ways depending
on which entities we want to focus on and what
roles they play in the subsequent events. We may
be interested in knowing what the police did, what
the suspect did or what happened to the charges,
each of which can be explored as its own sequence,

2468

Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2468—2483
May 2-6, 2023 ©2023 Association for Computational Linguistics

https://github.com/StonyBrookNLP/qa-event-lms
https://github.com/StonyBrookNLP/qa-event-lms

yielding many interconnected sequences of events
in the scenario. An event language model, how-
ever, will simply generate events conditioned on
the previous events in the discourse, with no di-
rect mechanism to guide generation towards areas
of interest within the scenario. As a result, with
standard decoding strategies we often end up with
a sequence of events that might be relevant to the
scenario, but not necessarily cover the broad set of
diverse paths in the scenario; we would only know
the fate of certain entities if the system samples
events that included them. This lack of control will
make it difficult to use the system, as one must
keep sampling events until it just happens to pro-
duce events with roles one is interested in.

We propose a simple modification in which event
language models are trained to also condition on
the entities and the roles they play in a scenario
through a set of simple questions, as illustrated in
Figure 1. Given the same example event and its
entities, one can then explore the scenario through
various paths by asking the system to generate the
events with their desired entities and roles. Such a
question-guided model can be used in interactive
settings to model and construct diverse paths that
cover various aspects of complex scenarios.

A key challenge, however, is in creating the nec-
essary training data at scale. We show that we can
repurpose standard event sequences to create train-
ing data for question-guided models: we take a
partial sequence of events as context and derive a
role-based question involving an entity for which a
future event in the sequence can be an answer. This
allows for creating large scale training instances
that are (Context, Question, Answer) triples, which
then allows us to train models that can better re-
spond to user control in the form of questions.

Our analysis shows that question-guided event
language models can generate sequences with more
diversity and comparable quality as an event lan-
guage model. Our human evaluation of the model
in an interactive setting, shows that the control-
lability of the question-guided model allows for
generation of sequences that lead to better quality,
broader-coverage schemas with fewer interactions.
This interactive evaluation is a step toward con-
structing schematic/common-sense knowledge for
analyzing events, an application in the intelligence
analysis community.

In summary, this paper makes the following con-
tributions; (i) It argues the need for control in event

language models to explore complex scenarios; (ii)
It provides a simple yet effective way for training
event language models that can be guided to ex-
plore different aspects of complex scenarios; (iii)
It provides empirical evidence showing improved
control and utility via automatic and manual evalu-
ations.

2 Related Work

Event Schema Induction Event scripts (or
schemas) originally proposed by (Schank and Abel-
son, 1977), consist of a set of events and actors
(also known as slots) playing different roles. The
event schemas are capable of analyzing complex
situations by encoding information from prototypi-
cal events and their participants.

Early works on scripts considered them as struc-
tured representations of events and their partici-
pants with the causal relationships between them
(Schank and Abelson, 1977; Mooney and DeJong,
1985). However, the manual construction of scripts
is too time-consuming and does not scale, so the
scripts could only focus on specific domains of
interest and have not been used more broadly.

Event schemas can also be induced automatically
from text using statistical techniques in an unsuper-
vised fashion (Chambers and Jurafsky, 2008, 2009;
Balasubramanian et al., 2013). These models are
easily interpretable but fail to capture long-distance
complex relationships between events. Event lan-
guage modeling is a type of schema induction via
language modeling techniques (Rezaee et al., 2021).
Given a sequence of events, the event language
model predicts the probability of the next event
(Manshadi et al., 2008). Framing schema learning
as a language modeling problem with various ways
to represent events, including word sequences an-
notated with predicate-argument structure (Pichotta
and Mooney, 2016), OpenlE tuples (Rudinger et al.,
2015; Weber et al., 2018a,b) or compositional em-
beddings (Modi, 2016), is another direction to-
wards realizing large-scale schema libraries.

Graph schema induction methods (Li et al.,
2020, 2021) model different relations between en-
tities and their arguments to capture the multi-
dimensionality of scenarios. Reasoning about com-
plex relations between events requires going be-
yond the single dimension of event cooccurrence
and capturing different types of semantic relations
between events such as causal, counterfactual, etc.
(Han et al., 2021). Our approach uses the standard

2469

language models and provides them with the guid-
ance to also produce different aspects of a scenario
via simple control codes.

Controlled text generation Language models have
shown promising results in text generation, how-
ever, it is not easy to have control over differ-
ent aspects of generation (Keskar et al., 2019),
an issue that has been studied in previous works
(Dathathri et al., 2019; He et al., 2020; Lu et al.,
2021; Mireshghallah et al., 2022). The key compo-
nents of these methods differ in the types of con-
trols provided and how they are provided and their
applications. CTRL (Keskar et al., 2019) trains
a very large language model by conditioning on
texts with appended control codes that are used to
guide the generation towards specific styles, con-
tents, and task-specific behaviors. CTRLSum (He
et al., 2020) uses the entity/length controls which
are in forms of keywords that are automatically
extracted from the text and trains a summarization
system which is capable of generating summaries
in an interactive manner. These approaches, how-
ever, require finetuning. Dathathri et al. (2019)
and Mireshghallah et al. (2022) propose variants of
controllable generation with no need to finetune or
retrain the whole system.

Learning latent representations or codes from
the input towards diverse generation is another di-
rection that has been explored for machine transla-
tion (Shu et al., 2019), dialogue generation (Huang
et al., 2018) and causal relations generation (Weir
et al., 2020). Controllable generation to generate
diverse events has been previously studied in Kwon
et al. (2021), where the system uses automatically
generated control codes to generate diverse precon-
ditions of events.

In this work, we use controllable generation to
model complex event scenarios. We introduce sim-
ple role-based questions about participants (agen-
tive or non-agentive) as an effective means for
control. Asking questions to get specific informa-
tion about events is the focus of many existing ap-
proaches. While there has also been a body of work
on semantic role labeling using QA pairs (Roit
et al., 2020; Klein et al., 2020; Michael and Zettle-
moyer, 2021; Pyatkin et al., 2021), the main distinc-
tion here lies in the fact that these approaches use
QA pairs to identify the semantic roles, whereas
our approach makes use of role-based questions to
generate the next event with a specific entity play-
ing a specific role. We show how to train for these

Shooting Scenario Events
QGELM ELM
7T €4: the thief took a rifle from the store.
e,: police received a call about the incident.]
e5: police arrived at the scene.
e,: the store was put on lockdown.

e5: police chased the thief.

— eg: the thief started firing at people.

— e;: the rifle was later found in a dumpster.

Figure 2: The shooting scenario events extracted from a
news article. Typical LMs only see e; as the immediate
next event, whereas for the question-guided LMs, any
of the ey, e5, eg and ey involving the store, the thief, or
the rifle can be considered a next event.

control codes using automatically derived training
sequences and demonstrate its utility for describing
complex scenarios in an interactive setting.

3 Question-guided Event Language
Modeling

Event language models aim at predicting the prob-
ability of an event given a set of events via a con-
ditional probability distribution. Formally, these
models try to find an event é by maximizing the
probability of a function parameterized by a model
over a given context including a set of events:

é = argmax,.pPg(e | context)

where F is the set of all events. A model trained
with this objective learns to generate the most prob-
able event based on a set of cooccurring events
from discourse. Suppose that shooting scenario
events are extracted as shown in Figure 2. Given
the first event in the sequence, a typical language
model is trained to generate the next event, es,
which does not include any entities from the prior
context. What if we are interested in looking for
events regarding the initial participants (the thief,
a rifle, or the store) in this example? Given the
same context, we can have multiple next events
depending on the participant and the role they can
have (agent or theme). If we are interested in know-
ing what the thief did, eg should be the next event,
what happened to the thief is described in e5. We
can have some information about the store with ey
as the next event and finally, the fate of the rifle is
described in e;. Controlling the model to generate
the outputs based on the participants involved can-
not be easily achieved with unguided (text ordered)
event language models. However, we will show

2470

Document

took |a rifle from | the super store| on February 19

and was able to start firing it as soon as |he| left, something
that should have been impossible due to the gun locks that are

required on all weapons. The stolen weapon should have still

been locked andchasing the man were toldEl could not
fire the loaded g\ln were even told the gun was locked
by employees at as pursued but just

seconds later he|began firing into the air according to CNN. ..

Events Tuples

‘ t Context: Mario Valencia took a rifle
Question: What did Mario Valencia do?
Answer: Mario Valencia start firing it

e4: Mario Valencia took a rifle
Obj
e,: Mario Valencia start firing LH
Obj

Context: Mario Valencia took a rifle

. Question: What happened to Mario Valencia?
e3: they pursued Valencia Answer: they pursued Valencia
Obj

e4: he began firing into the air Context: Mario Valencia took a rifle

» Question: What happened to a rifle?
Answer: Mario Valencia start firing it

Figure 3: Data processing to create instances for a question-guided event language model. Given a document,
we extract all the coreferring clusters (color-coded in the document). Next, we extract OpenlE tuples as events
representations. By identifying the roles of noun phrases in the events as well as knowing which cluster they belong
to, we create questions for each one of them and similarly find the events that can serve as the answers to those
questions. The context can be of any length whereas the answer event is of length 1.

how the language models can be guided such that
given the same context, they can directly generate
events for its participants.

3.1 Problem Definition

We propose a new framing in which an event lan-
guage model can be guided to generate events by
not only conditioning on the events but also on
specific entity-based questions of interest.

These entity-aware event language models also
look to find é, but by maximizing the probability of
a function parameterized by a model over a given
context and a question regarding an entity:

é = argmax,.pPg(e | context, question)

The objective now conditions on a question as well,
and the goal is to use the question to train a system
to generate the most probable event for a specific
entity (or a noun phrase referring to that entity) in a
specific role (agent or theme). As shown in Figure
1, questions can either ask about what an entity
did as an agent of an action (what did X do?) or
what happened to an entity as a theme of an action
(what happened to X?). By conditioning on the
question as well, the system will learn to generate
an event with the entity in question as well as the
role specified by that question.

3.2 Question-guided Training

Event language models are typically trained using
event sequences extracted from documents. Our
goal, however, is to train event language models
to generate events as answers to questions about
entities from a given context. To this end, we con-
vert event sequences in text to (Context, Question,
Answer) tuples (CQA instances) that can be used
as training data for question-guided generation.

Consider a sequence e, eg,...e, of OpenlE
event tuples extracted from a document D. We
create (Context, Question, Answer) tuples for each
event e; in the sequence as outlined in Algorithm 1
in Appendix A.1 and Figure 3. The key idea behind
this process is as follows: Suppose we observe an
entity in an event e;. If this entity also appears in a
subsequent event e, then we can see this new event
as an answer to a role-based question about the en-
tity (what did the entity do or what happened to the
entity), given what we know about all the events
that have been observed thus far in the sequence as
context. For example, as shown in Figure 3, the en-
tity Mario Valencia appears in two events e and
e2. Given the context e;, we can create the ques-
tion What did Mario Valencia do? for which the
answer is eg i.e., Mario Valencia started firing it.
Formally, for each entity (any noun phrase) np that
appears as an argument in the event e;, we do the
following. If np appears in an agentive role in some
subsequent event e;, (k > i), then we associate the
question What else did np do? with the context and
use event e as the answer to the question. If np
appears in a non-agentive role, we associate What
else happened to np? as the question and ey as
the answer. In either case, for the next step the
context is extended to include ey, and the process is
repeated for all arguments in ej. To handle events
e that introduce new entities as arguments, we use
What else happened? as the question.

We use automatically identified coreference clus-
ters to locate event mentions involving a specific
entity. We use simple dependency-based heuristics
to determine the role of an entity in an event. Given
the noun phrases of an event, we use a dependency
parser to identify their roles. An entity is deemed
to appear in an agentive role if it appears as a sub-

2471

18 {-== ELM :
-o- EGELM
16 || —e- QGELM

14 1

12 -

Self-BLEU3

10

Sequence length

Figure 4: Diversity of generated sequences of events
with varying lengths. Lower Self-BLEU scores are bet-
ter as they represent more diverse sequences. QGELM
is the most diverse across all sequence lengths.

ject and in a non-agentive role if it appears as an
object. We only use these two broad categories
(subject and object) to identify events as responses
to specific questions. This process will automati-
cally filter out the nonsensical questions as for such
questions, no event can be found within the given
sequence of events.

Note this training data has two properties that
are different from standard auto-regressive training
over event sequences. First, for the same condi-
tioning context of event tuples, the model learns to
generate multiple subsequent events depending on
the question being asked, thus ensuring better con-
trol and diversity. Second, the model also learns to
generate events that are not always adjacent to the
end of the current sequence, which can be seen as
a form of data augmentation shown to be effective
(Koupaee et al., 2021).

4 Experimental Setup
4.1 Models

All models used in our experiments are trained
using event sequences, which are OpenlE (Mausam
et al., 2012) tuples extracted from articles in their
discourse order.

ELM Our baseline is an Event Language Model
trained such that given a context (a set of events),
it will generate the next event. The baseline model
follows the existing mechanisms used in recent
prior ELM work (Manshadi et al., 2008; Rudinger
et al., 2015; Pichotta and Mooney, 2016; Weber
et al., 2018a,b). We train a TS5 base model to learn

P(e,, | context) where context = e, ..., €,_1.

beam sampling
Criteria System Fail % + | Fail % » Y87
samples

ND 45.63 - -
Any ELM 79.29 26.05 17.21
presence EGELM 43.39 2.73 4.47
QGELM 3892 1.53 3.51

Role ND 69.84 - -
wecific ELM 85.55 3500 21.57
rpegence EGELM 59.04 6.34 8.42
pres QGELM 43.03 2.78 4.54

Table 1: Controllability Assessment: Fail % denotes the
number of instances where the model fails to generate
the specified entity. For sampling, we also show the
average number of samples needed before an event with
the specified entity is generated. ND denotes Neuro-
Logic decoding (Lu et al., 2021), a beam-search based
controllable method with no sampling strategy.

EGELM The Entity-Guided Event Language
Model generates the next event conditioned both
on the context and one of its entities by learning
the following probability distribution:

P(ey | context, entity)

In this setting, the system learns to maximize the
probability of the next event with respect to a spe-
cific entity from the context but without consider-
ing the specific role in which the entity appears
in the generated event. The training instances in
this case are (Context, Entity, Answer) tuples that
are obtained by replacing the question with the en-
tity mention present in the question in the training
instances described in Section 3.2.

QGELM The Question-Guided Event Language
Model generates the next event conditioned both
on the context and a question regarding one of the
entities in the context and a role the entity plays
in the event. Here, the system learns the following
probability distribution:

P(ey | context, question)

The main difference with the entity-only system is
the different roles an entity can have through the
question’s surface form.

4.2 Data Statistics

We train all the models on the 2007 portion of the
Annotated NYT corpus (Sandhaus, 2008). This
subset contains a total of around 38k articles span-
ning over a 6 month period. Following the steps

2472

System Perplexity v NC Accuracya
ELM 24.64 46.2%
EGELM 22.45 48.6%
EGELM (margin) 25.06 46.8%
QGELM 22.11 49.3%
QGELM (margin) 26.63 46.0%

Table 2: Perplexity and the narrative cloze accuracy.
Lower perplexity and higher accuracy is desirable.

described earlier on these number of articles, we
end up having over 700k instances (consisting of
(context:eq, ea, ..., €41, question:q, answer:e;) tu-
ples) used to train the guided systems. For more
details on the data statistics and experimental set-
tings, please refer to the Appendix A.1.1 and A.2.
The code will be released upon acceptance.

5 Evaluation

We assess the utility of the question-guided event
language modeling in terms of four aspects: (i)
Diversity: are they able to generate diverse sets of
events that relate to a scenario? (ii) Control: do they
generate events involving the specific entities in
desired roles? (iii) Sequence modeling ability: how
well can it predict observed events?, (iv) Interactive
Utility: do users generate better sequences when
using the model to collect events that fit a scenario?

5.1 QGELM Improves Diversity

We want event language models to generate diverse
sequences covering different aspects of a scenario.
To assess diversity in generation, we first sample
multiple sequences from the models. Given a con-
text (starting with a context of length 1), we incre-
mentally generate events by sampling one event
at a time until we generate a sequence of a prede-
fined length. We repeat this process to generate
multiple sequences. We then measure the diversity
of these sequences using Self-BLEU (Zhu et al.,
2018), which is the average of the BLEU scores (Pa-
pineni et al., 2002) when using one of the generated
sequence as the output and the rest as references.
First, we collected test instances that had a con-
text length of one, which amounted to 938 in-
stances. The models were used to generate five
sequences of lengths one through ten (i.e., five
sequences of length one, five of length two and
so on). For EGELM and QGELM we randomly
choose an entity/question to generate the next event.
For each model, we then compute the Self-BLEU

Metric ELM QGELM change
accepted eventsa 6.2 3.8 42% 1
rejected stepsv 5.2 3.2 38% |
% rejected stepsv 41.0 26.6 35% |
resamplesv 49 32 35% |
total stepsa 11.3 12.0 6% 1

tree deptha 5.8 8.8 52% 1

Table 3: Quantitative analysis of schema generation
using the ELM and QGELM models. With QGELM,
users accepted more of its suggested events, rejected
fewer steps, used fewer resamples for a given context,
and produced longer event sequences. The higher the
average the better a system is for metrics with 4 whereas
lower values are desired for metrics with v.

score of its five sequences of a specific length. Fig-
ure 4 shows the average Self-BLEU over the test
instances when generating sequences of different
lengths. Lower Self-BLEU scores represent more
diverse sequences. Self-BLEU of question-guided
outputs are lower compared to that of the other two
models showing improved diversity. With longer
sequences Self-BLEU increases for all models as
there is more potential for overlap. However, the
question-guided model retains higher levels of di-
versity compared to the rest. Standard event lan-
guage modeling tends to cover the same types of
events across different samples and to some extent
conditioning on entities helps improve this to a
small degree. Conditioning on the questions, how-
ever, yields significant gains in diversity showing
promise for improved coverage of scenarios.

5.2 QGELM Controls for Entity Roles

To quantify controllability, we introduce a metric
that measures how many times a system is capable
of generating an event in which a specified entity
of interest is present. We generate a fixed number
of outputs from each model under two decoding
strategies: sampling and beam decoding. We re-
port the percentage of times the specified entity or
a coreferent mention? of it fails to appear in the out-
puts. In addition to ELM, we also use NeuroLogic
decoding (ND) (Lu et al., 2021), a state-of-the-art
controllable generation system as a baseline.

The top block of Table 1 (Any presence) com-
pares the models on the number of times they failed
to generate an event with the specified entity within
a beam of size 40 or within 40 sampling attempts

2A mention is considered coreferent to the input noun
phrase if the mention and original noun phrase appear in the
same coreference cluster extracted from the sampled sequence
of events which includes the original context event.

2473

i
Enters a seed H
—

- o]
g event

Requests a
g seed event

—

;
i

— _ Enters an entity —— éﬂdidate events
i

System returns to step x and shows previously generated events

Selects “stop

—@

g generation”
Selects “backto _ |~ Requeststhe _ | Enters the step
Generates g‘an earlier step” Qstep number g number x
gives 4 options Selects
ga “regenerate”

Selects an
event

System adds the event to context and goes to the next step |

System stays in the same step

Figure 5: The overview of the interactive schema generation tool. The dashed box is only used for QGELM. The
interaction starts by system asking for a seed event and the user entering an event. For QGELM, the user is asked
for an entity of interest. This part is shown with a dashed box (this part is not needed for ELM). The system then
samples 4 events (If QGELM, it automatically creates questions for the given entity and generates two responses per
question.) These 4 events will be presented to the user where they can select an option out of 4 choices. 1. Select
one of the given events. 2. Ask the system to generate a new set of events. 3. Return to an earlier step to explore a
different path by entering the step number and 4. Stop the generation for the given seed.

(%Fail), and the average number of events that had
to be sampled to see the entity or its coreferent
mention in the output when sampling (Avg #sam-
ples). With beam decoding, ELM performs the
worst since it has no control over the generation.
NeuroLogic decoding does a better job at search-
ing for events that meet the entity constraints in the
model’s beam. EGELM which is trained to gen-
erate events with the given entity does better even
with standard beam decoding. QGELM fares even
better outperforming all methods by a significant
margin. With sampling, ELM works better but still
fails to produce events with the input entity in more
than a quarter of the cases. Both entity and ques-
tion guided models respond to the input control,
almost always yielding events with the input entity
and much earlier in the ranked list.

The bottom block of Table 1 (Role specific pres-
ence) compares the models when we are look-
ing for events where the input entity is expected
to appear in a specific role. We use the same
dependency-based heuristics we described in Sec-
tion 3.2 for determining the role of an entity in a
given event. With beam decoding, NeuroLogic de-
coding (ND) is worse than QGELM with a larger
margin since it can only be constrained to generate
the entity but not in specific position and role. The
larger gap here shows the superiority of our ques-
tion control codes to not only generate an entity
but also to generate it in a specific role. ELM fares
even worse, with more failures and requiring even
more samples to generate the entity in the specified
role. Also, as expected, EGELM has a larger gap
compared to QGELM which is trained to account
for the roles in which the entities appear.

Note that the coreference resolution system and

the dependency parser are not perfect and therefore
our heuristics for deciding both when a entity is
mentioned in an event and when it appears in a
specific role can be faulty. A manual inspection
of the outputs for 50 entities across all systems
showed that the heuristic is more than 75% accurate
and the mistakes are uniform across the models.

5.3 QGELM is a good event LM

How does question-guided training affect the raw
ability to generate "standard" event sequences?
Predicting observed events in a discourse can be
seen as a downstream evaluation. To assess this,
we compare the perplexities as well as the narra-
tive cloze task accuracy of the models using the
event sequences we observe in the test set. The
results are presented in Table 2. One way to turn
the question guided-model into a standard event
language model is to marginalize its probabili-
ties for outputs over all possible questions we can
ask at every step (marked as margin in the table):
Plen | C) = Xeq Pla | C)P(en | ¢, C), where
we assume a uniform prior distribution P(q | C)
over questions that can be asked. Similarly, for the
entity guided model we can marginalize over the
set of noun phrases in the most recent event in the
context (this setting is similar to how we created
the training instances). While this allows for fair
comparison as a standard event language model,
this is likely a lower bound for the model’s ability
for its intended use as a controllable model.

We compute the average per token perplexities
for the instances of the test set (including (C,Q,A)
tuples) which are shown in Table 2. Although the
marginalized performance is lower because the
model is forced to generate the event given sub-

2474

Crimes Outbreak Disaster Kidnapping Cyberattck IED Shooting Conflict | Overall
ELM 10.71 16.39 23.81 8.00 11.11 13.89 21.05 30.56 16.24
QGELM 28.57 27.87 33.33 14.00 16.67 16.67 23.68 25.00 23.22

Table 4: Percentage of the overlap between system-generated events and manually curated schemas. Overall, the
QGELM system generates more diverse set of events, therefore having a higher recall (higher percentage of overlap)
compared to the ELM (for all domains except one). More details can be found in Appendix A.3.4

Domain ELM QGELM
police evacuated the surrounding buildings af- police evacuated the surrounding buildings after the shooting. he identified as a man. a
ter the shooting. the area resuscitated as soon detective questioned the suspect. the police identified the gunman. the officers heard noise
as officials arrived. the area in search of sur- from the building. they spoke with him. he moved in an apartment that was recently renovated.
mass vivors. a police helicopter carrying three of- they worked on the scene to identify the gunman. the officers involved in an investigation. he
shooting ficers fired at the shooting center. the police notified about the shooting. the police found no weapon in the apartment. officers searched
still searching for victims. the police found two buildings in the immediate area near the building. the shooting began on saturday. police
the bodies of four people. the bodies of two of officers questioned him about the shooting. The officer called victims at 6:45. the officer
them found in a second car. questioned again in the area. the shooter shot two times. the shooting began with three or
four shots of the gunman. he started firing slowly his gun
the kidnapper ambushed the target. the kidnap- the kidnapper ambushed the target. the kidnapping triggered by an act of rebellion. he left
pers shot in the arm. they shot the men. he still ~ the scene. the target captured by a surprise attack. the kidnapping of the target essentially
kidnapping not identified by the authorities. the other men a symbolic step in the long struggle. mr. seymour to talk about the kidnapping. the police

also gunshot wounds. the attack left six people
in critical condition and his condition.

found a handgun. the hideout an informal area of community groups in rural part of town

Table 5: Generated examples through human interaction. A mass shooting scenario in the first example, can include
high level schemas such as planning, occurrence, immediate response, investigation, etc. The QGELM covered
more aspects compared to the ELM. As for the QGELM, the entities can easily be tracked based on the questions
asked, and therefore there are fewer ambiguous red entities (not clear what/who they are referring to.) compared to
ELM in the second example. More examples can be found in Appendix A.3.6.

optimal conditions, we see that with appropriate
guidance (the question from the dataset itself), the
perplexity of the true event is lower. Moreover,
QGELM achieves the lowest perplexity in these set-
tings, indicating that its control is most fine-grained
and allows users the highest degree of control. We
also computed the accuracy of the cloze task in
which each system has to correctly predict the gold
output from a fixed set of events. Following We-
ber et al. (2018b), for each article from the test set,
we randomly select an instance (context, question,
answer) and then for each instance we create 5 con-
founding events as answers by randomly selecting
instances from other documents. The task would
be then picking the correct option from the given
six choices (gold+confoundings). The results show
that the accuracy trends align with the perplexity
trends indicating that QGELM is comparable as a
event language model to the baselines we build on.

5.4 Interactive Schema Generation

Event language models can be used to generate
event sequences that approximate a schematic de-
scription of how events typically happen in cer-
tain scenarios (i.e. event schemas) (Weber et al.,
2018a,b; Pichotta and Mooney, 2016).

Task setup We evaluate the utility of our new
question-driven models when used in an interactive
system, where a user collects a set of output events

from the model that they think best describes a
scenario. The overview of the system is depicted
in Figure 5. We manually selected 35 seeds from
8 common domains and asked 7 users (graduate
students from NLP and non-NLP labs) to spend 4
minutes interacting with each system. They were
asked to generate sequences of events for given
seeds using ELM and QGELM systems in a ran-
domized order. For each scenario, the user is given
a seed event and is tasked with collecting a set of
events that best describe the scenario. At each
step the user is presented with a set of generated
events from the model and the user selects one of
the events to add it to their collected set. The added
events optionally become part of the conditioning
context for more events. The user has the option
to either regenerate events for the same context
or go back and choose a subset of context from
which to generate events. For the guided model,
the events are generated by conditioning on ques-
tions. Since this is a timed practice, instead of
asking the users to type in a full question, we only
ask them to provide the system with an entity of
interest. The system then automatically forms two
questions (agentive, non-agentive) with the entity
and outputs a mix of the events generated with
all the questions. Additional details of this study
including the settings, motivations for the timed
version as well as instructions for the users are

2475

listed in Appendix A.3.

At each step the user selects the best event
that meets the following criteria: (i) Sensibleness:
whether the generated event is grammatically cor-
rect, sensible and easy to understand. (ii) Unique-
ness: events do not duplicate each other and de-
scribe different subevents. (iii) Relatedness: events
are related to the domain. (iv) Typicality: the events
are quite common for things in this domain and not
too niche. For each event, the users make a binary
judgment on whether each criteria is satisfied. If
any of the criteria is not satisfied then the event is
not selected. If no event meets all these criteria then
the user either regenerates from the same context or
moves to an earlier context. Each user interaction
with the system results in a sequence of events in
the form of a tree, as users might have explored
different paths by selecting different events at each
step. Table 5 shows example outputs.

Analysis Table 3 shows that with the QGELM
based interactive system, users accept more of the
system suggested events, which means that more
events meet the criteria we set for good events.
They ask for fewer resampling steps, require fewer
returns to earlier steps and thus having fewer reject
steps or wasted steps in their interaction. They
also produce longer descriptions of the scenarios
with higher tree-depth i.e. the length of the longest
sequence they generated within a domain.

We further analyze the output generated using
the interactive system to assess their utility in creat-
ing complex schematic knowledge. The seeds we
use come from 8 different domains relevant to the
intelligence analysis community. For each domain
we have access to manually curated schemas cre-
ated by ten language experts in collaboration with
the intelligence analysis experts over multiple days.
An example of such schema is presented in Table
9 in Appendix A.3.5. We used these schemas as
references and compared the percentage of over-
lap between system generated events selected by
the users (within the four minute interaction) and
the events in the reference schemas. The results
in Table 4 show that both automatic systems can
generate events that are expected to describe cer-
tain scenarios, however, the events generated by
QGELM tend to have higher recall compared to
the ELM (in 7 out of 8 domains).

6 Conclusion

Controlling event language models to generate
events with respect to the participants is not triv-
ial. We propose a simple yet effective question-
guided approach that learns to generate events by
not only conditioning on the events but also on
specific entity-based questions of interest. Our em-
pirical analysis shows that this approach can be
used to generate more diverse sequences with bet-
ter coverage and controllability allowing for better
modeling of complex scenarios.

7 Limitations

One of the limitations of our proposed approach is
the coverage of the entity roles. We have used two
broad categories of roles, mainly agentive (subject)
and non-agentive (object) roles, however, there can
be more fine-grained semantic roles for the partici-
pating entities in the events such as agent, patient,
theme, manner, etc. Considering this taxonomy of
semantic roles can lead to finer-grained questions
which might lead to even richer descriptions of the
scenarios. Also, the human evaluation setting is
limited since it is timed and users can not explore
the models to their fullest extent. However, our
analysis of the systems, when not timed, shows
even a higher margin in terms of performance with
the QGELM model.

8 Ethics Statement

The models presented in the paper make use of
the existing pretrained systems that train on large
collections of data and are known to inherit biases
that are existent in the training data. The event
language models we train are also susceptible to
these biases, which can result in generation of event
sequences with these biases.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful feedback and suggestions. This material
is based on research that is supported by the Air
Force Research Laboratory (AFRL), DARPA, for
the KAIROS program under agreement number
FA8750-19-2-1003. The U.S. Government is au-
thorized to reproduce and distribute reprints for
Governmental purposes.

2476

References

Niranjan Balasubramanian, Stephen Soderland, Oren Et-
zioni, et al. 2013. Generating coherent event schemas
at scale. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1721-1731.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1797-1807.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789-797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 602-610.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language mod-
els: A simple approach to controlled text generation.
arXiv preprint arXiv:1912.02164.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. arXiv preprint arXiv:1803.07640.

Rujun Han, I-Hung Hsu, Jiao Sun, Julia Baylon, Qiang
Ning, Dan Roth, and Nanyun Peng. 2021. ESTER: A
machine reading comprehension dataset for reason-
ing about event semantic relations. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7543-7559, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Junxian He, Wojciech KrySciiski, Bryan McCann,
Nazneen Rajani, and Caiming Xiong. 2020. Ctrl-
sum: Towards generic controllable text summariza-
tion. arXiv preprint arXiv:2012.04281.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Chenyang Huang, Osmar Zaiane, Amine Trabelsi, and
Nouha Dziri. 2018. Automatic dialogue generation
with expressed emotions. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 49-54, New Orleans, Louisiana. Association
for Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ayal Klein, Jonathan Mamou, Valentina Pyatkin,
Daniela Stepanov, Hangfeng He, Dan Roth, Luke
Zettlemoyer, and Ido Dagan. 2020. QANom:
Question-answer driven SRL for nominalizations. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 3069-3083,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Mahnaz Koupaee, Greg Durrett, Nathanael Chambers,
and Niranjan Balasubramanian. 2021. Don’t let dis-
course confine your model: Sequence perturbations
for improved event language models. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 599-604, Online.
Association for Computational Linguistics.

Heeyoung Kwon, Nathanael Chambers, and Niranjan
Balasubramanian. 2021. Toward diverse precondi-
tion generation. In Proceedings of* SEM 2021: The
Tenth Joint Conference on Lexical and Computa-
tional Semantics, pages 160-172.

Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang,
Kyunghyun Cho, Heng Ji, Jiawei Han, and Clare
Voss. 2021. Future is not one-dimensional: Graph
modeling based complex event schema induction for
event prediction. arXiv preprint arXiv:2104.06344.

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare
Voss. 2020. Connecting the dots: Event graph
schema induction with path language modeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 684-695, Online. Association for Computa-
tional Linguistics.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
Logic decoding: (un)supervised neural text genera-
tion with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288-4299,
Online. Association for Computational Linguistics.

Mehdi Manshadi, Reid Swanson, and Andrew S Gor-
don. 2008. Learning a probabilistic model of event
sequences from internet weblog stories. In FLAIRS
Conference, pages 159-164.

Mausam, Michael Schmitz, Robert Bart, Stephen Soder-
land, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CONLL).

2477

https://doi.org/10.18653/v1/2021.emnlp-main.597
https://doi.org/10.18653/v1/2021.emnlp-main.597
https://doi.org/10.18653/v1/2021.emnlp-main.597
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/N18-2008
https://doi.org/10.18653/v1/N18-2008
https://doi.org/10.18653/v1/2020.coling-main.274
https://doi.org/10.18653/v1/2020.coling-main.274
https://doi.org/10.18653/v1/2021.acl-short.76
https://doi.org/10.18653/v1/2021.acl-short.76
https://doi.org/10.18653/v1/2021.acl-short.76
https://doi.org/10.18653/v1/2020.emnlp-main.50
https://doi.org/10.18653/v1/2020.emnlp-main.50
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339

Julian Michael and Luke Zettlemoyer. 2021. Induc-
ing semantic roles without syntax. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4427-4442, Online. Association
for Computational Linguistics.

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor
Berg-Kirkpatrick. 2022. Mix and match: Learning-
free controllable text generationusing energy lan-
guage models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 401-415,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ashutosh Modi. 2016. Event embeddings for seman-
tic script modeling. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 75-83.

Raymond J Mooney and Gerald DeJong. 1985. Learn-
ing schemata for natural language processing. In
IJCAI, pages 681-687.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Karl Pichotta and Raymond J Mooney. 2016. Learning
statistical scripts with Istm recurrent neural networks.
In Thirtieth AAAI Conference on Artificial Intelli-
gence.

Valentina Pyatkin, Paul Roit, Julian Michael, Yoav Gold-
berg, Reut Tsarfaty, and Ido Dagan. 2021. Asking
it all: Generating contextualized questions for any
semantic role. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1429-1441, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Mehdi Rezaee, Francis Ferraro, et al. 2021. Event rep-
resentation with sequential, semi-supervised discrete
variables. In Annual Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Paul Roit, Ayal Klein, Daniela Stepanov, Jonathan
Mamou, Julian Michael, Gabriel Stanovsky, Luke
Zettlemoyer, and Ido Dagan. 2020. Controlled
crowdsourcing for high-quality QA-SRL annotation.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7008—
7013, Online. Association for Computational Lin-
guistics.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681-1686.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Roger C Schank and Robert P Abelson. 1977. Scripts,
plans, goals, and understanding: an inquiry into hu-
man knowledge structures.

Michael Schmitz, Stephen Soderland, Robert Bart, Oren
Etzioni, et al. 2012. Open language learning for
information extraction. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 523-534.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating diverse translations with sentence
codes. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1823-1827, Florence, Italy. Association for Compu-
tational Linguistics.

Noah Weber, Niranjan Balasubramanian, and Nathanael
Chambers. 2018a. Event representations with tensor-
based compositions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Noah Weber, Leena Shekhar, Niranjan Balasubrama-
nian, and Nathanael Chambers. 2018b. Hierarchical
quantized representations for script generation. arXiv
preprint arXiv:1808.09542.

Nathaniel Weir, Jodo Sedoc, and Benjamin Van Durme.
2020. COD3S: Diverse generation with discrete se-
mantic signatures. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5199-5211, Online. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
SIGIR.

2478

https://doi.org/10.18653/v1/2021.findings-acl.389
https://doi.org/10.18653/v1/2021.findings-acl.389
https://aclanthology.org/2022.acl-long.31
https://aclanthology.org/2022.acl-long.31
https://aclanthology.org/2022.acl-long.31
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2020.acl-main.626
https://doi.org/10.18653/v1/2020.acl-main.626
https://doi.org/10.18653/v1/P19-1177
https://doi.org/10.18653/v1/P19-1177
https://doi.org/10.18653/v1/2020.emnlp-main.421
https://doi.org/10.18653/v1/2020.emnlp-main.421
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A Appendix

A.1 Data Processing Details

QGELM uses the data in the form of (Context,
Question, Answer) tuples. The details of the data
processing is outlined in Algorithm 1.

Algorithm 1 Data Processing

Input: D, Document, Output: T, List of (Context, Question, Answer)
tuples
extract OpenlE event tuples E from D
find co-referring clusters Clusters from D
fore; in E:
find all nps Ne,i
for each np in N, :
generate Qnp
for each q; in Qpp for np with role r;
find an event e, (k > i) with np with role r;
add (81..61, qj, E}c) toT

WRRD N R

We use AllenNLP (Gardner et al., 2018) for
coreference resolution to find the clusters in a doc-
ument and the spaCy (Honnibal et al., 2020) depen-
dency parser to identify all the noun phrases and
their roles within an event.

A.1.1 Data Statistics

We initially extract Open IE event tuples from
37,924 articles from the 2007 portion of the NYT
Annotated Corpus using Ollie (Schmitz et al.,
2012). All the extracted events from a single doc-
ument are concatenated to form a single event se-
quence for that document. Therefore, we end up
having 37, 924 event sequences with average length
of 27 events.

Then, we run the data processing algorithm on
the extracted sequences to generate (Context, Ques-
tion, Answer) tuples. Table 6 shows the data statis-
tics of the dataset.

split Total Q1 Q2 Q3
All data 762,004 466,757 188,300 106,947
Train 752,004 460,573 185,582 105,579
Dev 5000 3,091 1212 697
Test 5000 3,093 1,236 671
Common eoss 11712 4412 2.829
Test

Table 6: Data Statistics of the (Context, Question, An-
swer) tuples for different types of questions. Q1 refers
to what else happened?, Q2 is what else did np do? and
Q3 is what else happened to np?

A.2 Experimental Settings

A.2.1 Input/Output format

For the ELM, the input will be the context and the
output will be the next event. For EGELM and

QGELM, the input will be the concatenation of
the context and the entity/question, separated by
[SEP] token. Since the input can be more than
512 tokens (in case of long contexts), we need
to truncate the input. Truncating the input from
its end (for EGELM and QGELM) will result in
input sequences without entity/question. To avoid
this, we instead truncate from the beginning of the
input sequence by removing the earlier events in
the context. We remove events and not tokens from
the context until its length is within the model input
size. The length of the output is also fixed at 50
tokens.

A.2.2 Systems Details

Our systems finetune a pre-trained T5-base model
and tokenizer with the implementation from Hug-
gingface library (Wolf et al., 2020). Adam opti-
mizer (Kingma and Ba, 2014) is used with an initial
learning rate of 6.25e — 5.

We use a batch size of 4. Each training epoch
takes almost 24 hours to run. We use the dev set
for early stopping. All the systems will converge
after 3 epochs.

A.3 Evaluation

A.3.1 Interactive Evaluation Setup

The details of the settings of the interactive evalua-
tion are presented in Table 7.

A.3.2 Interactive Evaluation Design Choices

Some design choices for this evaluation are con-
strained by practicalities that would ensure a fair
comparison. We initially had used an untimed ver-
sion where users could interact with the system
indefinitely. However, we found that users spent
different amounts of time working, making it near
impossible to do fair comparisons across systems.
Further, users found it difficult to retain focus over
longer periods of time.

As for using an entity of interest instead of typ-
ing questions, typing questions at every stage in-
duces a burden on the user and introduces variance
because of typing speeds. But note that even though
they only select an entity, the roles are used as part
of the questions we generate for the entity. Half
of the generated answers are with the entity in the
subject role and the other half are in the object role.
Users can pick whatever role they want to explore.

2479

Parameters Values
number of seed events 35

number of users 7
number of seeds per worker 5
allotted minutes 4
number of generated events per step 4
number of domains 8

domains: disease outbreak, cyberattack, ied,
international conflict, kidnapping, disaster,
mass shooting, financial crimes

Table 7: The parameters of the human generation task.

Domain # seeds # gold events
Crimes 4 28
Outbreak 6 61
Disaster 5 42
Kidnapping 4 50
Cyberattck 3 54
IED 3 36
Shooting 5 38
Conflict 5 36

Table 8: The statistics of the human evaluation in terms
of number of seeds and the number of gold sequence
events.

A.3.3 Instructions for Users

Below, you can find the guidelines that were pro-
vided to the users prior to starting the task.

User Manual This study is aimed at evaluating
the capabilities of the event language models in
generating a sequence of events with their partic-
ipating arguments that can be used to describe a
scenario. For each scenario, a seed event will be
given. Using the seed event, you can start gener-
ating the sequence incrementally by selecting the
best event at each step based on the following set
of criteria:

At each step select an event that is: gram-
matical/understandable non-redundant or unique:
events do not duplicate each other and describe
different subevents on-topic: events are related to
the domain and not unrelated typical: the events
are quite common for things in this domain and not
too niche (for example, earthquake could cause a
nuclear reactor to meltdown but it’s not common)

You will use two different systems to do this task.
For one system you only need to select the events
at each step while for the other, at each step you
initially type an entity of interest and then pick the

best event. This task will be timed, and you keep
interacting with the system for 4 minutes, exploring
different paths and entities. Once the time is over,
the generation stops automatically.

User Interface: Once you run the commands,
the system will load the pretrained models which
will take a few seconds and then it will ask you
to enter the seed event (The seeds will be given
to you). Then you need to follow the prompts at
each step for the allotted time. At each step there
will be 4 actions you can take: Choose a preferred
event generated at that step. You will be shown a
set of events from which you can pick the best one
according to the above criteria. Regenerate events
for the last step. If you feel none of the generated
events satisfy the criteria, you can choose this op-
tion so that the system will generate a different set
of events for this step. Please use this option if
NONE of the generated events satisfy the criteria.
Choose an earlier step to return to. If you get stuck
in one path and cannot generate events, you can
choose to go back to an earlier step and continue
the generation from a different path. Once you
choose to return, the current set of events will be
saved. Stop generation for the given seed event. If
you think the system has generated enough events
to describe the scenario or if it is no longer gener-
ating good events, then you can decide to stop the
generation even if the allotted time is not yet over.

Notes regarding the entities: If you are asked
for an entity, you can have the following things in
mind: You are given an initial set of entities that
are relevant to the given scenario. You can pick en-
tities from this set, think of other entities that might
be relevant, pick entities from already generated
events or just select ‘none’ if you cannot think of an
entity. You do not need to use all the given entities
and you can choose the same entity if you think
that is a main entity in the scenario or if you are
interested in knowing more about that entity. You
can generate a sequence which is centered around
one specific entity. For instance, you can have an
event sequence like this for the earthquake scenario
where ‘earthquake’ is an argument in all the gen-
erated events: earthquake struck city, earthquake
magnitude measured on scale, earthquake killed
people, earthquake injured people, earthquake dam-
aged buildings, earthquake disrupted services,...

2480

A.3.4 System-generated events VS
Manually-curated schemas

We tried to show the plausibility of the system-
generated events by comparing the system outputs
with schemas that are curated by a group of experts
for different domains. We initially used a number
of seed events from these domains and provided
the users with these seeds to interact with the sys-
tem. Then for all seeds from a single domain, we
grouped all the generated events and measured the
amount of overlap with human-written schemas.
The statistics of this experiment is presented in Ta-
ble 8. An event is considered to have an overlap
with an event from the gold set if it either shares the
exact predicate or a predicate with similar mean-
ing. To do this, we provided a user with the list of
system-generated events (not knowing which sys-
tem this is coming from) and asked them to find the
mappings between the gold set and the generated
set. We then counted the number of events that are
considered as overlapping with the gold events.

A.3.5 Manually curated schemas

Real-life scenarios can be described with a se-
quence of events and their relations. Manually
curated schemas represent the events that can un-
fold a scenario in a hierarchical structure. The
events in this structure can be either primitive or
non-primitive, depending on whether they can be
further expanded into additional events. We use
the term “schema” to refer to the non-primitive
events. Table 9 shows an example of such schemas
for the disaster domain. As can be seen, the events
are represented in multiple levels. For the sake
of the evaluation conducted in this work (to make
the comparison of the system-generated sequences
with curated schemas more compatible), we con-
sider the flattened representations of the schemas
which consists of concatenating all the primitive
events into a single sequence of events.

We also did the comparison on predicate level.
The reason is that the system-generated events are
instantiated events with specific arguments as the
models are trained on news articles whereas the
curated schemas are generalized forms of events.

A.3.6 System generated event sequences

Table 10 shows examples of generated event se-
quences through users interaction with the interac-
tive tool described in section 5.4.

2481

Schema name

Level

Events

natural disaster progression

detection and tracking*
preparations™

damages*

immediate responses™
rescue organization*
rescue™

rescue outcome*
economic assistance*
rebuild damaged property*

detection and tracking

scientists detect warning signs
scientists track progress
scientists assess threat
scientists warn public

media broadcasts information

preparations

government announce order
people buy supplies
preparations outcome*

damages

disaster hurts person/people
disaster kills person/people
disaster destroys buildings

disaster damages infrastructure
disaster causes food/water shortage
disaster causes power outage

immediate responses

government counts deaths
government sends equipment
government estimates damage
government requests aid
person obtains aid

person sheltered

rescue organization

government hold session to plan rescue
government command rescue teams
rescue teams travel

rescue

government hold rescuers locate survivors
rescuers assess
rescuers triage survivors

rescue outcome

victims found dead
recovery*

economic assistance

government request help
government estimate loss
government make assistance policies
people apply for assistance
government gifts aid

government gives loans

rebuild damaged property

people contact insurers
people repair damage
people rebuild

recovery

rescuers save survivors
rescuers transport survivors
rescuers treat survivors

preparations outcome

evacuation™
people shelter in place

evacuation

people hear evacuation order
rescuer evacuate people
people leave affected area

Table 9: Manually curated schemas. Each domain is represented through a set of high-level schemas which in turn
are expanded into multiple events. Here you can see the events of the disaster schema which are represented at
different levels. Events with * are non-primitive events that are expanded.

2482

Domain Seed System

Generated event sequence

he country and several members of its foreign relations committee
negotiated a peace agreement as part of the agreement. the agreement
called for more cooperation. the terms of the agreement announced
at the start of a yearlong talks. the talks took place in 2002. the
deal still subject to approval. the agreement formally announced on
saturday

peace take a major step. the accord a sign of change. the accord not
necessarily end war. the agreement calls for a gradual suspension of
all military combat and police operations. the accord also requests
immediate withdrawal of troops

international country agreed to ELM
conflict sign the accord.

QGELM
cyberattack the cyberattack dis- ELM

rupted services

the network crashed after a new attack. the virus affected internet
connections. the virus infecting computers that have computer pro-
cessors. two new attacks launched on thursday. the virus also infects
networks that used the same basic operating system. two new attacks
triggered an attack that affected 1 million internet users on tuesday.
both attacks exposed another email containing information about
a security company. one email message posted by an employee
of a security company. security engineers investigating the e-mail
messages. the other attack not affect the internet connection

the attack also infected some computer systems. at least 60 com-
puters affected by the cyberattack. the attacks continued across an
industrial network of 8. the attack started in friday. the attacks hit
at least five businesses and four hospitals. the network failed in this
attack. the attack attributed to an increase in unreported customer
data from two years earlier to more widespread attacks. one problem
the nature of these attacks. the attacks linked to an "antiviral attack.
the attackers focused to eliminate part of microsoft’s core operating
system that would detect the attack, and to prevent it from becoming
more sophisticated. the attacks aimed at businesses that
are vulnerable to any type of attack. the attacks caused significant
disruptions for internet service providers. they trying to improve the
security. the attack involved a variety of devices. the hackers asked
for information. the security department declined to comment about
the attack.

QGELM
disaster the heavy flooding ELM
disrupted the ser-
vices.
QGELM

the damage, which is estimated to cost about $2.5 billion annually
due to flooding and rainy weather largely a product of human error.
the department of agriculture forecasts the flood. two million people
killed in the flooding. a few roads halted on the west side. the
power grids closed down in some areas. the flooding also damaged
roads and bridges. the department of transportation and emergency
management put forward a plan. most of the roads closed in new
york. the department also announced at least 17 routes halted in the
same area as they were closed on oct. 26

the flooding resulted in a series of delays. the flooding also caused
problems. the federal emergency management agency and the emer-
gency maintenance team also monitoring damage from the flood.
the flooding continued as far as tuesday. the flood already brought
over from the south. the new york city fire department dispatched
officers and engineers to help in the flooding. the flooding worsened
on the west side. the flood occurred along the west side. about
3,000 people killed by the flooding. the flooding occurred north of
manhattan around 1:55 p.m.. the water caused by another flooding
a series of conditions. the flooding followed an investigation of a
suspected bribery. the flooding still also affected the emergency
management system. officials not expecting much rain until tuesday.
the firefighters remained on manhattan. firefighters and crews sent
out to assist residents with their tasks. the officials not identify a
cause of the flooding. the flooding came after a storm that had swept
up from manhattan. the rain caused by a river of soil. firefighters
began an investigation into possible obstructions. the emergency
crews working in all locations. they expected about eight feet of
water to be there by this morning. the flood affected at least seven
other areas. the flooding caused the agency to cut off access to the
subways. the agency attributed much of the flooding to human error

Table 10: Generated examples through human interaction with the system.

2483

