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Abstract

Multilingual transformer-based models demon-
strate remarkable zero and few-shot trans-
fer across languages by learning and reusing
language-agnostic features. However, as a
fixed-size model acquires more languages, its
performance across all languages degrades.
Those who attribute this interference phe-
nomenon to limited model capacity address the
problem by adding additional parameters, de-
spite evidence that transformer-based models
are overparameterized. In this work, we show
that it is possible to reduce interference by in-
stead identifying and pruning language-specific
attention heads. First, we use Shapley Values, a
credit allocation metric from coalitional game
theory, to identify attention heads that intro-
duce interference. Then, we show that pruning
such heads from a fixed model improves perfor-
mance for a target language on both sentence
classification and structural prediction. Finally,
we provide insights on language-agnostic and
language-specific attention heads using atten-
tion visualization.1

1 Introduction

Cross-lingual transfer learning aims to utilize a nat-
ural language processing system trained on a source
language to improve results for the same task in a
different target language. The core goal is to main-
tain relevant learned patterns from the source while
disregarding those which are inapplicable to the
target. Multilingual pretraining of transformer lan-
guage models has recently become a widespread
method for cross-lingual transfer; demonstrating re-
markable zero and few shot performance across lan-
guages when finetuned on monolingual data (Pires
et al., 2019; Conneau et al., 2019; Xue et al., 2021).

However, adding languages beyond a threshold
begins to harm cross-lingual transfer in a fixed-
size model as shown in prior work (Conneau et al.,
2019; Xue et al., 2021). This phenomenon, termed

1We release code to compute Shapley Values on GitHub

interference, has been addressed with additional
parameters, both language-specific (Pfeiffer et al.,
2020) and broadly (Conneau et al., 2019; Xue et al.,
2021). Wang et al. (2020) justifies this by showing
that competition over limited capacity drives inter-
ference. This seems to contradict the lottery ticket
hypothesis, which has shown that pretrained lan-
guage models are highly overparameterized (Fran-
kle and Carbin, 2019; Chen et al., 2020).

We offer an alternate hypothesis that interfer-
ence is caused by components that are special-
ized to language-specific patterns and introduce
noise when applied to other languages. To test
this hypothesis, we introduce a methodology that
selectively removes noisy components to improve
language-specific performance without updating
or adding additional language-specific parameters.
Our work builds on prior research studying mono-
lingual models that shows they can be pruned ag-
gressively (Michel et al., 2019; Voita et al., 2019).

We leverage Shapley Values, the mean marginal
contribution of a player to a collaborative reward, to
identify attention heads that cause interference. Un-
like prior methods, Shapley Values map each head
to positive and negative values in a way that abides
by all axioms of fair attribution (Ali et al., 2022).
Therefore, negative values soundly mark interfer-
ing heads where removal will improve performance.
We approximate Shapley Values in a computation-
ally tractable but functionally accurate manner us-
ing truncation and multi-armed bandit sampling
following prior work in computer vision (Ghorbani
and Zou, 2020). We contribute the following:

1. Attention Head Language Affinity: Even
when computed from aligned sentences, At-
tention Head Shapley Values vary based
on the language of input. This high-
lights that a subset of attention heads has
language-specific importance, while others
are language-agnostic as shown in Figure 1.
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Figure 1: Attention Head Shapley Values for 3 Languages computed from 512 aligned examples for XLM-R
finetuned on English XNLI. Each value represents the mean marginal effect an attention head has on accuracy for
the test set in that language. The set of harmful heads changes for language, with the most distinct set for Swahili.

2. Improving through Pruning: Model prun-
ing according to Shapley Values improves
performance without updating parameters on
the Cross-Lingual Natural Language Infer-
ence corpus (Conneau et al., 2018) and the
Universal Dependencies Part-of-Speech cor-
pus (Nivre et al., 2020). This opens a path of
work to reduce interference through pruning
rather than scaling.

3. Interpreting Multilingual Heads: In a
qualitative study, we find that the most
language-agnostic heads identified have a vis-
ible language-agnostic function, while lan-
guage differences can be measured meaning-
fully for language-specific heads.

2 Related Work

2.1 Multilingual Learning
A large amount of work has studied both the the-
oretical underpinnings of learning common struc-
tures for language and their applications to cross-
lingual transfer. Early works exploited commonal-
ity through the use of pivot representations, created
either by translation (Mann and Yarowsky, 2001;
Tiedemann et al., 2014; Mayhew et al., 2017) or
language-agnostic task formulations (Zeman, 2008;
McDonald et al., 2011).

As NLP has increasingly used representation
learning, dense embedding spaces replaced ex-
plicit pivots. This led to methods that identified
the commonalities of embedding spaces and ways
to align them (Joulin et al., 2018; Artetxe et al.,
2018; Artetxe and Schwenk, 2019). Recently, many
works (Pires et al., 2019; Conneau et al., 2019;
Liu et al., 2020; Xue et al., 2021; Hu et al., 2021)
have trained multilingual transformer models as

the basis for cross-lingual transfer. These models
both implicitly and explicitly align the embedding
space across languages, although they empirically
achieve stronger alignment between closely related
languages (Artetxe et al., 2020; Conneau et al.,
2020).

With language-specific data, further work has
studied how to reduce interference by adding
a small number of language-specific parameters.
These works adapt a model for the target language
by training only Adapters (Wang et al., 2020; Pfeif-
fer et al., 2020; Ansell et al., 2021), prompts (Zhao
and Schütze, 2021), or subsets of model parame-
ters (Ansell et al., 2022).

Ma et al. (2021) previously investigated prun-
ing in multilingual models using gradient-based
importance metrics to study variability across at-
tention heads. However, they used a process of
iterative pruning and language-specific finetuning.
This iterative process is not consistent since there
are many trainable subnetworks within large mod-
els (Prasanna et al., 2020). Our method is the first
to address interference and improve cross-lingual
performance purely by pruning, without updating
or adding additional language-specific parameters.

2.2 Model Pruning

Model pruning has largely been focused on re-
ducing the onerous memory and computation re-
quirements of large models. These techniques are
broken into two approaches: structured and un-
structured pruning. Unstructured pruning aims to
remove individual parameters, which allows for
more fine-grained removal. This process often has
minimal effects even at extremely high degrees of
sparsity. To efficiently prune a large number of pa-
rameters, many techniques propose using gradients

2417



or parameter magnitude (Sundararajan et al., 2017;
Lee et al., 2019; Frankle and Carbin, 2019; Chen
et al., 2020) as importance metrics.

Structured pruning, or removing entire structural
components, is motivated by computational ben-
efits from hardware optimizations. In the case of
Transformers, most of this pruning work targets
removal of attention heads, either through static
ranking (Michel et al., 2019) or through iterative
training (Voita et al., 2019; Prasanna et al., 2020;
Xia et al., 2022). These pruning methods have also
been used to study model behavior, but methods
with iterative finetuning are not consistent as many
sub-networks can deliver the same level of perfor-
mance once trained (Prasanna et al., 2020).

Our work studies pruning without updating
model parameters, which aligns with Michel et al.
(2019) which was able to remove up to 40% of total
attention heads without impacting accuracy on En-
glish Natural Language Inference. However, their
gradient-based importance metric does not meet
key criteria of efficiency in fair allocation, which
states that the sum of the metric across all heads
should sum to the model’s total performance (Ali
et al., 2022). Furthermore, Kovaleva et al. (2019)
found that pruning attention heads could sometimes
improve model performance without further fine-
tuning. We build on this to develop a methodology
for consistently identifying pruned models which
improve performance.

3 Methods

To identify and remove interference, we need a
metric that can separate harmful, unimportant, and
beneficial attention heads. Prior work (Michel et al.,
2019; Ma et al., 2021) utilized the magnitude of
gradients as an importance metric. However, this
metric measures the sensitivity of the loss function
to the masking of a particular head. Defined in
this way, importance will spike indiscriminately for
both harmful and beneficial heads. Therefore, we
develop a simple yet effective method to separate
these classes.

Shapley Values (Shapley, 1953) have often been
applied in model interpretability since they are the
only attribution method to abide by the theoretical
properties of local accuracy, missingness, and con-
sistency laid out by Lundberg and Lee (2017). In
our setting, Shapley Values have two advantages
over gradient-based importance metrics. Firstly,
gradient-based approaches require differentiable re-

laxations of evaluation functions and masking, but
Shapley Values do not. Therefore, we can instead
use the evaluation functions and binary masks di-
rectly. Secondly, Shapley Values are meaningfully
signed which allows them to distinguish beneficial,
unimportant, and harmful heads rather than just im-
portant and unimportant heads. This latter property
is essential for our goal of identifying interference.

We apply Shapley Values to the task of structural
pruning. In order to compute Shapley Values for
each head, we first formalize the forward pass of
a Transformer as a coalitional game between at-
tention heads. Then, we describe a methodology
to efficiently approximate Shapley Values using
Monte Carlo simulation combined with truncation
and multi-armed bandit search. Finally, we propose
a pruning algorithm using the resulting values to
evaluate the practical utility of this theoretically
grounded importance metric.

3.1 Attention Head Shapley Values
We formalize a Transformer performing a task as
a coalitional game. Our set of players A are at-
tention heads of the model. In order to remove
self-attention heads from the game without retrain-
ing, we follow Michel et al. (2019) which aug-
ments multi-headed attention with an added gate
Gh = {0, 1} for each head Atth in a layer with
Nh heads as follows:

MHAtt(x, q) =

Nh∑

h=1

GhAtt
h
(x, q) (1)

With Gh = 0, that attention head does not con-
tribute to the output of the transformer and is there-
fore considered removed from the active coalition.

Our characteristic function V (A) is the task eval-
uation metric Mv(A) over a set of validation data
within a target language, adjusted by the evalua-
tion metric with all heads removed to abide by the
V (∅) = 0 property of coalitional games:

V (A) = Mv(A)−Mv(∅) (2)
With these established, the Shapley Value φh for

an attention head Atth is the mean performance
improvement from switching gate Gh from 0 to 1
across all P permutations of other gates:

φh =
1

|P |
∑

A∈P
V (A ∪ h)− V (A) (3)

3.2 Approximating Shapley Values
The exact computation of Shapley Values for N at-
tention heads requires 2N evaluations of our valida-
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tion metric, which is intractable for the number of
heads used in most architectures. The computation
becomes more tractable with Monte Carlo simula-
tion as an approximation (Castro et al., 2009). This
replaces the full permutation set P in Equation 3 a
randomly sampled subset of permutations.

Computing low-variance Shapley Value esti-
mates with Monte Carlo simulation alone is com-
putationally expensive and provides no clear metric
for convergence. Therefore, we follow Ghorbani
and Zou (2020) to accelerate our computations.
We add a truncation heuristic using priors about the
behavior of neural networks and formulate estima-
tion as a multi-armed bandit problem of separating
harmful heads from all others. We show in Section
4.3 that this approximation not only reduces the
number of samples but explicitly converges to a
consistent set of harmful heads across runs, show-
ing consistency even across languages.

Truncation Heuristics Truncation stops sam-
pling the marginal contributions from the rest of a
permutation of features once a stopping criterion
is reached for that permutation of the Monte Carlo
simulation. Prior work selects stopping criterion
based on either total performance (Ghorbani and
Zou, 2020) or marginal improvements (Ghorbani
and Zou, 2019). To avoid tailoring a threshold to
each dataset, we instead choose to truncate based
on the percentage of remaining attention heads. For
all experiments, we truncate when less than 50% of
attention heads remain in the coalition. This biases
our estimations towards the effect of heads when
the majority of the full network is present.

Multi-Armed Bandit Sampling The multi-
armed bandit optimization stops sampling the
marginal contributions of a particular player once
a stopping criterion has been reached according to
the variance of that player. Our stopping criterion
is based on Empirical Bernstein Bounds (Maurer
and Pontil, 2009), a confidence interval based on
variance estimation. For t samples with observed
variance σt and a maximum variance range of R,
there is a probability of 1− δ that the difference be-
tween the observed mean µ̂ and true mean µ abides
by the following inequality formulated by Mnih
et al. (2008):

|µ̂− µ| ≤ σt

√
2 log(3/δ)

t
+

3R log(3/δ)

t
(4)

We stop sampling for a particular head once this

bound is less than |µ − 0|, meaning that we have
identified the Shapley Value as positive or negative
with probability 1 − δ. This saves us significant
computation while confidently separating heads
into helpful and harmful buckets. For all experi-
ments, we use R = 1 since the model’s worst-case
performance is zero and δ = 0.1 to give a 95%
confidence lower and upper bound.

3.3 Importance-Based Structured Pruning
Our pruning procedure works with any signed im-
portance metric. Specifically, we test the utility of
the Shapley Values metric for removing interfer-
ence and helping multilingual models generalize to
unseen test data.

Our hypothesis is that attention heads with neg-
ative Shapley Values introduce interference. Our
pruning method reflects this by using the sign of
our approximation directly. We remove all atten-
tion heads whose Shapley Value is negative with
probability 1 − δ by the Empirical Bernstein in-
equality from Equation 4. This is a parameter-free
approach for deciding the number of heads to pre-
serve. This approach is consistent, with the same
set of negative heads identified for pruning across
3 separate runs.

Alternatively, once Shapley Values are computed
the model could be pruned to any sparsity level.
Unlike prior pruning approaches besides Michel
et al. (2019), we do not perform any weight updates
following or during pruning and leave all parame-
ters fixed. This provides constant time pruning to
the desired size. We evaluate performance in this
configurable pruning setting in 4.6.

4 Experiments

4.1 Datasets
We evaluate our methodology on the Cross Lingual
Natural Language Inference (XNLI) and Univer-
sal Dependencies Part-Of-Speech (UDPOS) tasks.
These allow us to analyze the applicability of At-
tention Head Shapley Values to both sequence clas-
sification and structured prediction. We provide a
description of dataset sizes in Table 1.

Cross-Lingual Natural Language Inference
(XNLI) We use the Cross Lingual Natural Lan-
guage Inference (XNLI) Benchmark (Conneau
et al., 2018). This dataset is aligned which allows
us to control for possible confounding semantic
variation in the content. Given a premise and a hy-
pothesis and tasks, XNLI is the task of classifying
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Dataset EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH
XNLI 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
UDPOS 5.4 1.7 1.1 22.4 2.8 3.1 9.5 2.7 11.3 N/A N/A 4.8 0.5 0.8 5.5

Table 1: Size of the test sets for the datasets in thousands of sentence pairs and sentences respectively. We use a
512-example subset of the released development sets to compute Shapley Values in all languages for all datasets.

whether the hypothesis is entailed by the premise,
contradicted by the premise, or neither.

Universal Dependencies Part-of-Speech (UD-
POS) For structured prediction, we evaluate on
the Part-of-Speech (POS) tags from the Univer-
sal Dependencies (UD) v2 corpus (Nivre et al.,
2020), which has the largest cross-lingual gap in
the XTREME benchmark (Hu et al., 2020). The
authors suspect that structured prediction requires
more language-specific knowledge than many clas-
sification tasks.

For direct comparison with our experiments on
XNLI, we only retain the 13 languages from UD-
POS which have a development and test split,
which also exist in XNLI. Unlike XNLI, each lan-
guage in UDPOS hasa different number of exam-
ples which are not aligned across languages.

4.2 Experimental Setup
As the basis for our experiments, we finetune XLM-
R Base (Conneau et al., 2019) using the Trans-
formers library (Wolf et al., 2020) on only En-
glish data. Evaluation is done using the Datasets
library (Lhoest et al., 2021) implementation of the
accuracy metrics. Finetuning and Shapley Value
computation were both done on a single NVIDIA
GeForce 12GB RTX 2080 Ti. We finetune the fol-
lowing hyper-parameter tuning procedures from
prior work: using Hu et al. (2020) for XNLI and
de Vries et al. (2022) for UDPOS.

For all tasks and languages, we use the accuracy
on 512 examples of the development set as the char-
acteristic function for our coalitional game. Our
pruning baselines include the gradient-based impor-
tance metric of Michel et al. (2019) and the average
of 10 randomly pruned networks. We prune the
same number of heads pruned by our method for
all strategies since our baselines require selecting
the number of heads to prune.

4.3 Language Affinity
First, we analyze the Attention Head Shapley val-
ues for XNLI. We focus only on the role of the
source language by using an aligned sample from

Figure 2: Spearman ρ of Attention Head Shapley Values
across languages in XNLI using XLM-R finetuned on
the English training split.

XNLI to control our results for differences inde-
pendent from language variation. In Figure 1, we
visualize the results across English, Chinese, and
Swahili. As expected from prior work (Michel
et al., 2019; Voita et al., 2019), many heads have
low magnitude Shapley Values indicating that they
play no significant role in the final network. We
compare the similarity of Shapley Values learned
across languages using Spearman’s ρ in Figure 2
and find that Shapley Values are heavily correlated
between all languages but Swahili, which is a ma-
jor outlier. This cross-lingual consistency across
languages is juxtaposed with inconsistency of meth-
ods that utilize finetuning as shown by Prasanna
et al. (2020).

Despite this consistency, we find some attention
heads demonstrate high language-specificity. Most
notably, the fifth attention head in layer six is posi-
tive for Swahili but strongly negative for all other
14 languages. This indicates that this head serves a
function specific to Swahili within the model. We
investigate the behavior of language-specific and
language-agnostic heads further in Section 5.

It is worth noting that the outlier, Swahili, is the
language with the fewest number of examples in the
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XNLI Accuracy
Pruning Strategy EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH

No Pruning 84.1 70.6 76.7 76.8 75.4 79.8 77.7 70.0 74.7 63.4 70.6 71.9 65.9 73.3 73.5
Random 81.5− 67.2− 72.7− 72.7− 71.3− 75.5− 73.0− 66.3− 70.5− 63.5 67.4− 68.4− 61.6− 69.7− 70.8−

Michel et al. (2019) 84.3 71.0 77.3 77.4 72.8− 80.2 78.4 71.5+ 75.2 63.1 70.7 71.7 66.9+ 73.3 77.2+

Shapley Value (φi) 85.1+ 72.0+ 77.8+ 78.3+ 76.3 80.6 79.7+ 71.5+ 76.5+ 63.8 73.3+ 73.2+ 67.6+ 75.3+ 77.2+

Pruned Heads (K) 4 6 6 5 4 5 5 7 5 5 7 5 6 6 9
UDPOS Accuracy

Pruning Strategy EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH
No Pruning 95.7 75.1 90.9 88.8 71.5 89.8 81.3 73.9 88.2 - - 78.7 67.3 66.3 50.2

Random 95.7 74.3− 90.9 88.8 71.8 89.8 81.4 73.7 88.2 - - 78.7 67.5 66.3 55.3+

Michel et al. (2019) 95.7 75.1 90.9 88.8 71.1 89.8 81.1 73.8 88.2 - - 78.7 67.3 66.3 48.9−

Shapley Value (φi) 95.7 76.6+ 90.9 88.8 72.8+ 89.8 82.6+ 75.6+ 88.2 - - 78.7 69.5+ 66.3 62.6+

Pruned Heads (K) 0 4 0 0 4 0 2 2 0 - - 0 4 0 18

Table 2: Accuracy for UDPOS and XNLI after pruning according to importance metrics. For all metrics, we remove
the Bottom-K heads (K = |{Hi | φi < 0}|) according to that metric. + and − indicate significant (P < 0.05)
improvement and harm by a pairwise bootstrap test. Model parameters remain fixed for all methods.

data used in the pretraining of XLM-R. Whether the
large variation between Swahili and all other lan-
guages is induced by linguistic features or the train-
ing dynamics of low-resource languages within
multilingual models is unclear. We leave this to be
explored further in future work.

4.4 Targeted Pruning

To understand the practical applicability of the re-
sulting Shapley Values, we evaluate models before
and after pruning all attention heads with negative
Shapley Values as described in Section 3.3.

Each resulting language-specific model can be
represented with only the 144 mask parameters
which indicate whether each attention head is re-
moved or kept. Therefore, this pruning can be
seen alternatively as a parameter-efficient learning
method, using 1 ·10−6% of the parameters it would
require to finetune the model for each language2.

XNLI In Table 2, we report the accuracy of mod-
els after targeted pruning across all languages for
both XNLI and UDPOS. For XNLI, we see that
targeted pruning improves performance by an av-
erage of +1.59 across all 15 languages with the
maximum improvement being in Chinese (+3.78)
and the minimum improvement in Swahili (+0.37).
We might expect that languages closely related to
our finetuning language of English would benefit
less from pruning, even closely related languages
such as French (+1.97) and German (+1.53) are
improved significantly.

2144 parameters compared to 1.25 ·108 for full finetuning.

UDPOS Improvements in UDPOS vary to a
higher degree. Only 6 out of 13 languages im-
prove after pruning, with the rest identical with no
negative Shapley Values. Surprisingly, this indi-
cates that attention heads do not introduce inter-
ference for these languages. We hypothesize that
interference for these languages may instead lie
largely within the Transformer feed-forward layers,
which we do not study in this work. The largest
improvement is again in Chinese (+12.4) and the
smallest in French (+1.3). In the case of Chinese,
this is a 24.7% improvement purely by removing
attention heads. Across the languages which were
pruned, the average improvement is 3.4 – reducing
the cross-lingual gap (Hu et al., 2020) by 0.7.

Comparison to Baselines Randomly pruning is
ineffectual or harms performance in both tasks, in-
dicating that pruning alone is not the source of our
improvement. Pruning according to the gradient-
based metric proposed by Michel et al. (2019) main-
tains rather than improves performance. This sup-
ports our hypothesis that methods that use the mag-
nitude of gradients largely identify non-impactful
heads as opposed to harmful heads.

4.5 Zero-Shot Pruning
Given the high rank correlation between many of
the languages, we evaluate transferability by using
the Shapley Values for English to prune the model
for all languages. We report results in Table 3.

XNLI On XNLI, surprisingly, this transferred
pruning across languages has similar benefits to our
targeted pruning results despite only being learned
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Pruning Strategy EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH
No Pruning 84.1 70.6 76.7 76.8 75.4 79.8 77.7 70.0 74.7 63.4 70.6 71.9 65.9 73.3 73.5

Random 81.7− 67.1− 72.3− 72.9− 71.1− 75.1− 73.5− 65.7− 71− 60.7− 67− 68.3− 61− 69.7− 70.7−

Michel et al. (2019) 84.3 70.3 76.7 77.1 75.9 80.1 77.9 70.1 75.1 62.9 71.6 72.5 66.1 74.7+ 74.5+

Shapley Value (φi) 85.1+ 72.0+ 77.8+ 79.4+ 76.3 80.6 79.7+ 71.5+ 76.5+ 63.3 73.1+ 73.1+ 68.4+ 75.2+ 76.3+

Table 3: Accuracy for XNLI after pruning using importance metrics from English. For all metrics, we remove
the Bottom-K heads (K = |{Hi | φi < 0}|) according to that metric. + and − indicate significant (P < 0.05)
improvement and harm by a pairwise bootstrap test.

for English. Two languages (Urdu and German)
achieve better results in the zero-shot pruning than
they did in the targeted pruning, five achieve worse
results, and the remaining eight are equivalent.

It is likely that the strength of zero-shot trans-
fer is largely due to the removal of the fifth head
of layer six, which is one of the top 2 most neg-
ative heads for all languages barring Swahili. In-
terestingly, the Attention Head Shapley Values for
Swahili also have the lowest rank correlation with
English of any language.

UDPOS However, UDPOS highlights the ma-
jor shortcoming of zero-shot pruning: all attention
heads receive a positive Shapley Value for English
for UDPOS. This means that no zero-shot prun-
ing is performed despite targeted pruning finding
benefits for languages shown in Table 2.

4.6 Iterative Pruning of Attention Heads

Finally, we evaluate the effectiveness of Shap-
ley Values as a ranking methodology for the it-
erative pruning evaluation performed by Michel
et al. (2019). Iterative pruning evaluates how
well each importance ranking captures the com-
binatorial effects of removing attention heads at
different compute budgets. We compare random
pruning, the gradient-based approach from Michel
et al. (2019), and Shapley Values computed through
plain Monte Carlo simulation and Shapley Values
using Truncation and Multi-Armed Bandit opti-
mization (TMAB). We plot results in Figure 3.

Averaged across all levels of sparsity, our
method outperforms the Random baseline (+5.8),
Monte Carlo Shapley Values (+1.6), and the Gradi-
ent baseline (+0.6). At different stages. Depending
on the target sparsity of interest however, Shapley
Values and Gradient-based pruning have different
levels of sparsity. Our method is the only method
that identifies strongly harmful heads, with perfor-
mance improving compared to the unpruned model
for the first 6 heads removed. Our method achieves

Figure 3: Evolution of XNLI Accuracy as Heads are
removed according to different pruning strategies.

the largest performance gap at 44% of model ca-
pacity outperforming the Gradient baseline, Monte
Carlo Shapley Values, and the Random Baseline by
+12.2, +15.1, and +20.9 respectively. However, the
gradient baseline outperforms our method when
more than 80% of heads are pruned, although nei-
ther method performs well above chance at this
sparsity.

5 Qualitative Attention Analysis

In order to provide intuition into the function of
attention heads, prior work has turned to attention
visualization as the basis for qualitative analysis of
the inner workings of transformer models. Clark
et al. (2019) and Hoover et al. (2020) both explore
patterns within attention heads.

We visualize the attention patterns of outlier at-
tention heads using BertViz (Vig, 2019) from our
model to give a qualitative understanding of the
attention head patterns associated with language-
agnostic and language-specific heads.

5.1 Language-Agnostic Heads

We define the set of language-agnostic heads as
the intersection of the the top 20 attention heads
for each language. In Figure 4, we visualize the
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English HindiMandarin Turkish Swahili

English HindiMandarin Turkish Swahili

Figure 4: Attention of Layer 2, Head 9 of our XNLI model which is identified as language-agnostic. The attention
pattern links synonyms in the premise and hypothesis for all languages. For clarity, we connect the left token to the
token on the right which receives the largest attention weight.

English HindiMandarin Turkish Swahili

English HindiMandarin Turkish Swahili

Figure 5: Attention of Layer 6, Head 5 of our XNLI model which is identified as language-specific to Swahili.
Unlike the language-agnostic head, there is no obvious pattern in visualisation. However, in Section 5.2 we measure
a significant difference in Swahili’s attention to separator tokens compared to other languages.
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attention pattern of the highest-ranked of the 4
heads which meet this criterion. The visualiza-
tion highlights the same attention pattern across all
languages: words from the premise are matched to
near-synonyms in the hypothesis and vice versa.

The synonym-matching pattern clearly applies to
NLI, where synonyms critically participate in com-
monalities and contradictions between the premise
and hypothesis. Synonym linking is possible via to-
ken semantics and the separator tokens, so this pat-
tern does not require any knowledge of language-
specific syntax or morphology.

The visualization reveals a meaningful language-
agnostic pattern which may explain why the posi-
tive Shapley Value across all languages. This usage
highlights that while we utilize Shapley Values to
remove harmful learned patterns, they also can di-
rect mechanistic interpretability work to understand
the effectiveness of transformers for a particular
task (Wang et al., 2022).

5.2 Language-Specific Heads

As highlighted in Section 4.3, the fifth head of layer
six has a positive Shapley Value only for Swahili.
In Figure 5, we see that this head sometimes ex-
hibits unique behavior for Swahili, connecting the
incorrectly tokenized "ishi" suffix of "Mimi Huishi"
and "Ninaishi" meaning "I live" in the Habitual and
Present tense respectively. However, this use is
not found frequently in our Swahili examples, as
shown in the second example.

Therefore, we aim to understand whether the
head functions in a measurably different fashion
for Swahili across our entire dataset rather than
on specific examples. Using the hypothesis from
Clark et al. (2019) that attention to separator tokens
indicates an inapplicable learned pattern, we look
at the percentage of sentences where all tokens
attend primarily to separators. This criterion is
true in 56% Swahili XNLI inputs, but only 41% of
non-Swahili inputs on average (σ = 4.3%).

The frequency of separator attention combined
with the minimal negative performance impact
from removing this head for Swahili in Section
4.5 supports the idea that this head supports a rare
pattern, perhaps stemming from poor tokenization.
However, the relatively low rate of separator at-
tention indicates that this head does impact other
languages often, introducing noise.

6 Conclusions & Future Work

In this work, we developed a simple yet effective
approach to measure the impact of individual at-
tention heads on task performance by leveraging
Shapley Values. We used this to identify language-
specific and language-agnostic structural compo-
nents of multilingual transformer language models.
We demonstrated that the resulting values exhibit
language affinity, varying across languages. We
then applied these Attention Head Shapley Values
to improve cross-lingual performance through prun-
ing for both sequence classification and structured
prediction. Finally, we performed provided insights
on language-agnostic and language-specific atten-
tion heads using attention visualization.

We believe that attention head Shapley Values
have strong potential to systematically inform fu-
ture studies of multilingual models and transform-
ers broadly. Future work should explore the rela-
tionship between linguistic features, training data
volume, and the language-specificity of attention
heads. Additionally, the benefits of removing heads
motivates work that reduces cross-lingual interfer-
ence introduced by language-specific components
during pre-training, such as pruning during pre-
training or utilizing sparsely activated networks.

7 Limitations

Even with our optimizations, using Shapley Values
as an importance metric requires a significant com-
putational cost compared to gradient-based meth-
ods: gradient-based methods take approximately
3.33e14 FLOPs and our optimized Shapley Values
take approximately 3.27e16 FLOPs to converge.
While the computation is parallelizable, it took sev-
eral days on a single GPU to compute accurate
estimates. This expense is reasonable for under-
standing the behavior of base models more deeply
but limits the use of this method as a rapid itera-
tion tool. For those looking to reduce this com-
putational cost further, we recommend first using
gradient-based methods to identify a set of heads to
which the output is sensitive and then using Shapley
Values to interpret the direction of the effect. While
this may miss some harmful heads, it is likely to
find the most harmful heads for a reduced cost.

Additionally, we rely on analysis of attention
patterns to help ground our findings. However,
there is debate as to whether analysis of attention
patterns is a sound analytical tool (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019).
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