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Abstract

While pretrained language models have ex-
hibited impressive generalization capabilities,
they still behave unpredictably under certain
domain shifts. In particular, a model may
learn a reasoning process on in-domain train-
ing data that does not hold for out-of-domain
test data. We address the task of predicting out-
of-domain (OOD) performance in a few-shot
fashion: given a few target-domain examples
and a set of models with similar training perfor-
mance, can we understand how these models
will perform on OOD test data? We start from
the baseline of looking at model accuracy on
the few-shot examples, then investigate how
to incorporate analysis of the models’ behav-
ior using feature attributions to improve our
understanding of generalization. Specifically,
we explore a set of “factors” designed to re-
veal model agreement with certain pathologi-
cal heuristics that may indicate worse gener-
alization capabilities. On textual entailment,
paraphrase recognition, and a synthetic classi-
fication task, we show that attribution-based
factors can help rank relative model OOD per-
formance. However, accuracy on a few-shot
test set is a surprisingly strong baseline, par-
ticularly when the system designer does not
have in-depth prior knowledge about the do-
main shift.

1 Introduction

The question of whether models have learned the
right behavior on a training set is crucial for gener-
alization. Deep models have a propensity to learn
shallow reasoning shortcuts (Geirhos et al., 2020)
like single-word correlations (Gardner et al., 2021)
or predictions based on partial inputs (Poliak et al.,
2018), particularly for problems like natural lan-
guage inference (Gururangan et al., 2018; McCoy
et al., 2019) and question answering (Jia and Liang,
2017; Chen and Durrett, 2019). Unless we use eval-
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Figure 1: Our setting: a system developer is trying
to evaluate a collection of trained models on a small
amount of hand-labeled data to assess which one may
work best in this new domain. Can baselines / attribu-
tions help?

uation sets tailored to these spurious signals, accu-
rately understanding if a model is learning them
remains a hard problem (Bastings et al., 2021; Kim
et al., 2021; Hupkes et al., 2022).

This paper addresses the problem of predicting
whether a model will work well in a target domain
given only a few examples from that domain. This
setting is realistic: a system designer can typically
hand-label a few examples to serve as a test set,
but labeling more may be burdensome. Computing
accuracy on this small set and using that as a proxy
for full-test set performance is a simple baseline for
our task, but has high variance, which may cause us
to incorrectly rank two models that achieve some-
what similar performance. We hypothesize that
we can do better if we can interpret the model’s
behavior beyond accuracy. With the rise of tech-
niques to analyze post-hoc feature importance in
machine-learned models (Lundberg and Lee, 2017;
Ribeiro et al., 2016; Sundararajan et al., 2017), we
have seen not just better interpretation of models,
but improvements such as constraining them to
avoid using certain features (Ross et al., 2017) like
those associated with biases (Liu and Avci, 2019;
Kennedy et al., 2020), or trying to more generally
teach the right reasoning process for a problem
(Yao et al., 2021; Tang et al., 2021; Pruthi et al.,
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2022). If post-hoc interpretation can strengthen a
models’ ability to generalize, can they also help us
understand it?

Figure 1 illustrates the role this understanding
can play. We have three trained models and are
trying to rank them for suitability on a new do-
main. The small labeled dataset is a useful (albeit
noisy) indicator of success. However, by checking
model attributions on our few OOD samples, we
can more deeply understand model behavior and
analyze if they use certain pathological heuristics.
Unlike past work (Adebayo et al., 2022), we seek
to automate this process as much as possible, pro-
vided the unwanted behaviors are characterizable
by describable heuristics. We use scalar factors,
which are simple functions of model attributions,
to estimate proximity to these heuristics, similar
to characterizing behavior in past work (Ye et al.,
2021a). We then evaluate whether these factors
allow us to correctly rank the models’ performance
on OOD data.

Both on synthetic (Warstadt et al., 2020), and
real datasets (McCoy et al., 2019; Zhang et al.,
2019), we find that, between models with similar
architectures but different training processes, both
our accuracy baseline and attribution-based factors
are good at distinguishing relative model perfor-
mance on OOD data. However, on models with
different base architectures, we discovering inter-
esting patterns, where factors can very strongly
distinguish between different types of models, but
cannot always map these differences to correct pre-
dictions of OOD performance. In practice, we find
probe set accuracy to be a quick and reliable tool
for understanding OOD performance, whereas fac-
tors are capable of more fine-grained distinctions
in certain situations.

Our Contributions: (1) We benchmark, in sev-
eral settings, methods for predicting and under-
standing relative OOD performance with few-shot
OOD samples. (2) We establish a ranking-based
evaluation framework for systems in our problem
setting. (3) We analyze patterns in how accuracy
on a few-shot set and factors derived from token
attributions distinguish models.

2 Motivating Example

To expand on Figure 1, Figure 2 shows an in-depth
motivating example of our process. We show three
feature attributions from three different models on
an example from the HANS dataset (McCoy et al.,

The manager knew the athlete mentioned the actor

The manager knew the athlete mentioned the actor

The manager knew the athlete mentioned the actor

Hypothesis: The manager knew the athlete

M1

M2

M3

M1 > M2 > M3
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Pathological Heuristic:

M1 < M2 < M3

OOD Performance:

(subseq attributions) = 0.31∑

(subseq attributions) = 0.253∑

(subseq attributions) = -0.04∑
Predict Ranking

Figure 2: Explanations generated on the same sample
for HANS subsequence data models M1, M2, M3 (have
ascending OOD performance). The factor (shaded un-
derlines) from knowledge of the OOD allows us to in
this example predict the model ranking.

2019). These models have (unknown) varied OOD
performance but similar performance on the in-
domain MNLI data (Williams et al., 2018). Our
task is then to correctly rank these models’ perfor-
mance on the out-of-domain HANS dataset in a
few-shot manner.

We can consider ranking these models via simple
metrics like accuracy on the small few-shot dataset,
where higher-scoring models are higher-ranked.
However, such estimates can be high variance on
small datasets. In Figure 2, only M3 predicts non-
entailment correctly, and we cannot distinguish the
OOD performance of M1 and M2 without addi-
tional information.

Thus, we turn to explanations to gain more in-
sight into the models’ underlying behavior. With
faithful attributions, we should be able to determine
if the model is following simple inaccurate rules
called heuristics (McCoy et al., 2019). Figure 2
shows the heuristic where a model predicts that the
sentence A entails B if B is a subsequence of A.
Crucially, we can use model attributions to assess
model use of this heuristic :we can sum the attribu-
tion mass the model places on subsequence tokens.
We use the term factors to refer to such functions
over model attributions.

The use of factors potentially allows for the au-
tomation of detection of spurious signals or short-
cut learning (Geirhos et al., 2020). While prior
work has shown that spurious correlations are hard
for a human user to detect from explanations (Ade-
bayo et al., 2022), well-designed factors could auto-
matically analyze model behavior across a number
of tasks and detect such failures.

2386



3 Attributions to Predict Performance

In this section, we formalize the ideas presented
thus far. Token-level attribution methods (a subset
of post-hoc explanations) are methods which, given
an input sequence of tokens x

def
= x1, x2, ..., xn

and a model prediction ŷ
def
= M(x) for some task,

assign an explanation ϕ(x, ŷ)
def
= a1, . . . , an where

ai corresponds to an attribution or importance score
for a corresponding xi towards the final prediction.
For cases where the model, prediction, and inputs
are unambiguous, we abbreviate this simply ϕi ≡
ϕ(x)

def
= ϕ(x,Mi(x)).

We assume that the model is trained on an in-
domain training dataset DT and will be evaluated
on some unknown OOD set DO. Given two models
M0 and M1, with a small amount of data D(O,t) ⊂
DO (t = 10 examples or fewer in our settings), our
task is to predict which model will generalize better.
We break the process into 2 steps (see Figure 2):

1. Hypothesize a heuristic. First we must iden-
tify an underlying heuristic H that reflects patho-
logical model behavior in the OOD dataset. For
example, the subsequence heuristic in Figure 2
corresponds to a heuristic which always predicts
entailed if the hypothesis is contained within the
premise. Let h(Mi) abstractly reflect how closely
the ith model’s behavior aligns with H . Let
s(Mi) be the true OOD performance of model Mi.
If we then assume that h(Mi) faithfully models
some pathological heuristic H , we should have
that h(M0) > h(M1) > . . . > h(Mm) implies
s(M0) < s(M1) < . . . < s(Mm) . In other words,
the more a model Mi agrees with a pathological
heuristic H , the worse it performs.

2. Measure alignment. We now want to predict
the ranking of s(Mi); however, with few labeled
examples there may be high variance in directly
evaluating these metrics. We instead use factors
f(x, ϕi) which map tokens and their attributions
for model Mi to scalar scores that should corre-
late with the heuristic H . Factors can be designed
to align with known pathological heuristics, where
higher scores indicate strong model agreement with
the associated heuristic. We then estimate the rank-
ing of s(Mi) using the relative ranking of the cor-
responding h(Mi) approximated through factors.

Concretely, to measure the alignment, we first
compute for each input xj ∈ D(O,t) the predic-
tion Mi(xj) and the explanation ϕ(xj) for that

prediction. These ϕ(xj) are used to compute
the score f(xj , ϕ(xj)) for model M . We take
the overall score of the model to be F (i) =
1
t

∑t
j=1 f(xj , ϕ(xk,Mi(xk))), the mean over the

t examples in D(O,t). We then directly rank models
on the basis of the F (i) values: the higher the aver-
age factor value (the more it follows the heuristic),
the lower the relative ranking: F (0) > F (1) =⇒
s(M0) < s(M1). Therefore we can sort the mod-
els by these values and arrive at a predicted rank-
ing. We later also consider factors which to not
intuitively map to specific heuristics.

Baselines We also consider three principle
explanation-agnostic baselines. A natural baseline
given D(O,t) is to simply use the accuracy (ACC)
on this dataset: 1

n

∑n
i=1 1[yi = M(xi)], however

this may be noisy on only a few examples, and
frequently leads to ties.1

We also assess model confidence (CONF), the
softmax probability of the predicted label, as well
as looking at CONF-GT, the softmax probability of
only the ground-truth label.

4 Experimental Setup

4.1 Models Compared

In this work, we compare various models across
different axes yielding different DO performance.
The first approach we use is inoculation (Liu
et al., 2019a), which involves fine-tuning models
on small amounts or batches of DO data alongside
in-domain data to increase model performance on
OOD data. The second approach we use is varying
the model architecture and pre-training (e.g., using
a stronger pre-trained Transformer model).

In Section 5, we use inoculation to create 5
RoBERTa-base (Liu et al., 2019b) models of vary-
ing DO performance for each of the three MSGS
sets. In Section 6 where we consider the HANS and
PAWS datasets, we inoculate a variety of models.
For HANS, we inoculate 5 RoBERTa-large models.
We additionally examine DeBERTa-v3-base (He
et al., 2021b,a) and ELECTRA-base (Clark et al.,
2020) models fine-tuned on in-domain MNLI data.
For PAWS, we inoculate 4 RoBERTa-base mod-
els on the in-domain DT set. We also inoculate
ELECTRA-base and DEBERTA-base models. We
include complete details for these models in Ap-

1Most considered datasets are constructed to mislead mod-
els following the heuristic, so this baseline directly measures
agreement with a heuristic h.
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pendix A. The generated models represent a realis-
tic problem scenario: a practitioner may have many
different models with similar DT performance, but
different DO performance. We specifically crafted
suites of models which have both near pairs (mod-
els with similar DO performance) and far pairs.

4.2 Attribution Methods

We experiment using several token-level attribu-
tions methods: LIME (Ribeiro et al., 2016) com-
putes attribution scores using the weights of a lin-
ear model approximating model behavior near a
datapoint. SHAP (Lundberg and Lee, 2017) is sim-
ilar to LIME, but uses a procedure using Shapley
values. Finally, Integrated Gradients (TOKIG)
(Sundararajan et al., 2017) compute ϕi by perform-
ing a line integral over the gradients with respect to
token embeddings on a path from a baseline token
to the ground truth token; commonly, this baseline
token is chosen to be <MASK>. While intuitively
sensible, Harbecke (2021) has voiced concerns re-
garding the use of TOKIG in NLP.

4.3 Evaluation Setup

Because model ranking using a small D(O,t) may
be unstable, we conduct all experiments over a
number of different sampled D(O,t) sets. We first
sample M examples from each set (in the range of
200-600), then generate explanations for all models
on each example. We then take 400-500 bootstrap
samples of size n (we report results for n = 10, as
experimental results were similar for sizes 5 and
20), simulating many few-shot evaluations. For
each bootstrap sample, we analyse

(
m
2

)
model pairs.

Details can be found in Appendix B.
We define a “success” as a technique correctly

ranking a model pair, when measured by DO per-
formance (on the full set); otherwise is a “failure”.
We define pairwise accuracy as the accuracy for a
method ranking a particular model pair across all
bootstrap samples. We define few-shot accuracy
(or just accuracy) as the average of the pairwise
accuracies over the

(
m
2

)
model pairs. By reporting

ranking accuracy across a diverse set of models, we
ensure a comprehensive evaluation.

5 MSGS: A Proof of Concept

We first show experiments on the Mixed Sig-
nals Generalization Set (MSGS) dataset presented
in Warstadt et al. (2020) as a proof of concept
for our methodology. MSGS is a synthetic clas-
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Train on MSGS: DI
<latexit sha1_base64="VV7FFp4+050D1Crs1n9DzHrJQpA="></latexit>

y = 1
<latexit sha1_base64="4IwwEUAWeHN0AkQ9TSdA0wpNEvw=">AAACZ3icdVFNa9tAEF0pbeKqTeIkpRR62cQYEjBCcoKdSyG0PbSnuhAnAUuY1XrkLFl9sDsKEUL9kb313kv/RVeOC/kc2OXNmzfM7Nsol0Kj5/227JUXL1fXWq+c12/WNzbbW9tnOisUhzHPZKYuIqZBihTGKFDCRa6AJZGE8+jqc1M/vwalRZaeYplDmLB5KmLBGRpq2v7ZHe0HCcPLKK7KmgaJmNH/+U194HQDhBtczKkiWUBdfZl+r+/SEzWPwsrree7RwFzD/uBZjTvsNbphI/hWO+VHf9rueK63CPoY+EvQIcsYTdu/glnGiwRS5JJpPfG9HMOKKRRcQu0EhYac8Ss2h4mBKUtAh9ViiZp2DTOjcabMSZEu2LsdFUu0LpPIKBsL9MNaQz5VmxQYH4eVSPMCIeW3g+JCUsxoYzqdCQUcZWkA40qYXSm/ZIpxNF/jGBP8h09+DM76rn/o9n8cdU4+Le1okQ9kj+wTnwzJCflKRmRMOPljOdaO9db6a2/a7+z3t1LbWvbskHth7/4DE5e2Jg==</latexit>

DO
<latexit sha1_base64="B2c2U8yiWRZBS5mhcuNh4eown6o="></latexit>

1) Evaluate on          : M0 = M1 = M2 

2) Evaluate on              : M0 < M1 < M2 (noisy)

3) A7ribu:ons on              : M0 < M1 < M2 (correct)

DI
<latexit sha1_base64="VV7FFp4+050D1Crs1n9DzHrJQpA="></latexit>

D(O,t)

<latexit sha1_base64="QPr4Ro3LeXB2bZHiWXoC8rkrWhU=">AAACEXicbVDLSgMxFM3UV62vUZduBotQoZSZUlrdFXThzhbsA6bDkEnTNjTzILkjlmF+wY2/4saFIm7dufNvTB8LbT1ww+Gcm9yb40WcSTDNby2ztr6xuZXdzu3s7u0f6IdHbRnGgtAWCXkouh6WlLOAtoABp91IUOx7nHa88dXU79xTIVkY3MEkoo6PhwEbMIJBSa5e6AF9gNk7thh6TmIWzVKlqo5auZom125SuC3CeZq6et4smTMYq8RakDxaoOHqX71+SGKfBkA4ltK2zAicBAtghNM014sljTAZ4yG1FQ2wT6WTzDZJjTOl9I1BKFQFYMzU3zcS7Es58T3V6WMYyWVvKv7n2TEMLpyEBVEMNCDzQYOYGxAa03iMPhOUAJ8ogolgaleDjLDABFSIORWCtfzlVdIul6xK6bJZydeb9XkcWXSCTlEBWaiG6ugGNVALEfSIntEretOetBftXfuYt2a0RYTH6A+0zx+k/Zvh</latexit>

D(O,t)

<latexit sha1_base64="QPr4Ro3LeXB2bZHiWXoC8rkrWhU=">AAACEXicbVDLSgMxFM3UV62vUZduBotQoZSZUlrdFXThzhbsA6bDkEnTNjTzILkjlmF+wY2/4saFIm7dufNvTB8LbT1ww+Gcm9yb40WcSTDNby2ztr6xuZXdzu3s7u0f6IdHbRnGgtAWCXkouh6WlLOAtoABp91IUOx7nHa88dXU79xTIVkY3MEkoo6PhwEbMIJBSa5e6AF9gNk7thh6TmIWzVKlqo5auZom125SuC3CeZq6et4smTMYq8RakDxaoOHqX71+SGKfBkA4ltK2zAicBAtghNM014sljTAZ4yG1FQ2wT6WTzDZJjTOl9I1BKFQFYMzU3zcS7Es58T3V6WMYyWVvKv7n2TEMLpyEBVEMNCDzQYOYGxAa03iMPhOUAJ8ogolgaleDjLDABFSIORWCtfzlVdIul6xK6bJZydeb9XkcWXSCTlEBWaiG6ugGNVALEfSIntEretOetBftXfuYt2a0RYTH6A+0zx+k/Zvh</latexit>

Figure 3: Example from the MSGS train and OOD test
sets. The training data conflates a surface and linguistic
generalization as described in Warstadt et al. (2020), re-
sulting in models that learn a range of behaviors. Direct
evaluation OOD on small data can tell us this, but expla-
nations can also differentiate which of the two patterns
is learned and how strongly they are learned.

sification dataset. The training (in-domain) set is
composed of sentences where both some linguistic
feature (e.g., the presence of an adjective) and a spu-
rious surface feature (e.g., the word “the” being in
the sentence) are always associated with a positive
label y = 1. This data is ambiguous, which means
the model could rely on either the linguistic or sur-
face feature completely yet still get 100% accuracy
on in-domain data. Warstadt et al. (2020) then cre-
ate sets of OOD data where the linguistic feature
becomes associated with the y = 1 positive label,
and the surface feature with a y = 0 label. The
resulting test accuracy reflects model reliance on
one feature or the other. Warstadt et al. (2020) use
this to investigate what generalizations are learned
at which stages of model pre-training; we investi-
gate whether information from small probe sets can
help assess model reliance on the surface feature.

We consider three linguistic features: MORPH
(presence of an irregular past verb like “drew”),
ADJECT (presence of an adjective), and VERB
(if the main verb is an -ing verb), each paired with
the surface feature of “the” being in the sentence.

We design factors which look at attributions on
the tokens corresponding to these linguistic fea-
tures, including the tokens surrounding these fea-
tures as well to account for feature dependence
on surrounding words. Our factor f(x, ϕ) =
−∑m+2

i=(m−2) ϕ(xi), where m is the index of the
feature-critical word for that dataset (e.g., “slept”
for IRREG) and ϕ(xi) is the attribution at an in-
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Feature Method Accuracy

MORPH

ACC 90.9
CONF 50.9
CONF-GT 90.1

TOKIG SHAP LIME
IRREG 89.2 90.6 92.8†

VERB

ACC 94.5
CONF 58.0
CONF-GT 93.3

TOKIG SHAP LIME
VERB 92.1 94.0 94.9

ADJECT

ACC 89.9
CONF 50.5
CONF-GT 91.3

TOKIG SHAP LIME
ADJ 87.4 92.1 93.5†

Table 1: Few-shot ranking accuracy metric results on
D(O,t) for MSGS. IRREG, VERB, and ADJ are detailed in
Section 5. † indicates statistically significant improve-
ment over accuracy (paired bootstrap test: p < 0.05)

dex. This factor corresponds closely to the heuris-
tic that the dataset was designed for, or alternately,
we can see this factor as inversely proportional to
what other information the model is using (that
is, information outside of this window). We name
the factors IRREG, VERG, and ADJ for the MORPH,
VERB, ADJECT sets respectively.

Note that this approach assumes that a system de-
signer has prior knowledge of the relevant linguistic
and surface feature. This is a generous assumption,
and for this dataset is almost sufficient to formulate
the rule used to construct it, hence why we call this
a proof of concept. We will show more realistic
conditions in Section 6.

Models To create a suite of models with varying
DO performance, we inoculate following the steps
outlined in Section 4.1. We evaluate our factors via
accuracy as described in Section 4.3. More details
about the inoculation is present in Section A of the
appendix.

Results Table 1 shows the results on this dataset.
Our ACC baseline performs well: when models dif-
fer greatly in performance (e.g., one gets 50% and
another gets 90% on the DO), accuracy on the
small D(O,t) ranks these correctly even despite the
small subset size. The high regularity of the dataset
also means that a model’s behavior does not vary
greatly from example to example, further reducing
variance. However, this ranking is nevertheless still
not perfect. We see that CONF performs very poorly,
by contrast, showing that confidence is not helpful

for measuring model behavior.
Overall, we see that methods using explanations

are able to beat the ACC baseline, with the excep-
tion of TOKIG. We additionally found trends within
the explanation techniques themselves, with LIME

reliably performing the best, and TOKIG being the
worst. But generally, all techniques can offer rel-
evant information, and in the best case, the attri-
butions can tell us more reliably what a model is
learning than evaluation on a small set of D(O,t)

data can. In Section 6, we investigate if these re-
sults generalize to real-world datasets.

6 Realistic OOD Settings

We now consider two datasets corresponding to
realistic OOD settings treated in past work.

First, HANS (McCoy et al., 2019) targets spuri-
ous heuristics within MNLI (Williams et al., 2018),
such as the hypothesis being a subsequence of the
premise, with balanced test sets that can be used to
detect model reliance on these heuristics. Models
following these heuristics always predict entailed
for the hypotheses, and will perform at random
chance accuracy on the dataset. We use MNLI as
our in-domain training set in this setting.

Second, PAWS (Zhang et al., 2019) is a para-
phrase identification task. PAWS-QQP is an OOD
dataset for Quora Question Pairs (QQP) (Iyer et al.,
2017) that is composed of pairs with swapped con-
tent words/phrases (e.g., I ran from the Grand
Canyon to California to I ran from California to
the Grand Canyon). A paraphrase model that relies
heavily on lexical overlap will not be sensitive to
these changes, and will always predict the label of
y = 1 to indicate paraphrase. We use QQP as our
in-domain training set in this setting.

Details regarding models used in this section are
presented in Section 4.1. From the test sets of the
corresponding datasets, we randomly sample 400
examples from PAWS and 600 from HANS-CON
and HANS-SUB each for use in bootstrap sam-
pling, as detailed in Section 4.3. Table 9 provides
additional dataset information.

6.1 Factors

General Factors Both HANS and PAWS in-
volve comparing two sequences a,b of tokens,
unlike MSGS which is classification over a sin-
gle sequence. We can define our input x =
a1, a2, ...an, b1, b2, ..., bm as composed of these
two sequences a and b with respective attributions
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ϕa, ϕb. We evaluate a number of factors that gen-
erally target sensitivity to both sequences and their
differences, which represent a broad class of poten-
tial heuristics.

MAX-DIFF: The difference between maximum at-
tribution in a and b, i.e. max(ϕa)−max(ϕb).

SUM-DIFF: the difference of the sum of attribu-
tions, i.e.

∑n
i=1 ϕa,i −

∑m
i=1 ϕb,i.

INDEX-DIFF: The difference of attributions be-
tween shared words in a and b.

FIRST-TOK: The attribution at the the first <SEP>
token.

We explicitly note that this is the exhaustive set of
factors we experimented with, not a cherry-picked
set, in order to provide a comprehensive view of
what does and doesn’t work. We crafted these by
manually examining attribution patterns on vari-
ous datasets rather than trying a large number and
keeping the best ones.

HANS Factors We look at the “subsequence”
heuristic discussed in Section 2 and the constituent
heuristic, which assumes that the premise entails
all complete subtrees in its parse-tree. For the sub-
sequence OOD set (HANS-SUB) we note that
the INDEX-DIFF factor, which specifically exam-
ines tokens in the shared subsequence, captures the
setting’s pathological heuristic.

On the constituent OOD set (HANS-CON) we
evaluate a factor that examines the attribution on
the control words of the premise. For example, for
the premise “Unless the doctors ran, the lawyers
encouraged the scientists” and the hypothesis “The
doctors ran”, we would consider the attributions
on the word “Unless”.

PAWS Factors We further investigate two in-
tuitive heuristics that are based on the construc-
tion of the OOD set. SWAP-AVG uses the av-
erage attribution across all swapped tokens and
SWAP-MAX-DIFF subtracts the highest magnitude
attribution of swapped tokens in the first sentence
and the highest magnitude attribution of swapped
tokens in the second sentence. For example, for
the pair (“What factors cause a good person to be-
come bad ?”, “What factors cause a bad person
to become good ?”), SWAP-AVG would consider the
attributions on “good” and “bad”. SWAP-MAX-DIFF
is analogous.

6.2 Inoculated Results
We first evaluate models that differ primarily
through inoculation, as described in Section 4.1.

D(O,t)

Ranking Method PAWS HANS-SUB HANS-CON

Baselines
ACC 88.7 90.6 81.6
CONF 9.2 40.4 52.8
CONF-GT 34.9 20.2 38.9
RANDOM 50.7 51.4 49.6

Factors
CONST − − 87.1
SWAP-MAX-DIFF 76.2 − −
SWAP-AVG 91.4 − −
INDEX-DIFF 60.5 91.3 68.6

MAX-DIFF 65.9 69.2 50.6
SUM-DIFF 56.6 60.0 75.2
FIRST-TOK 74.3 50.4 55.6

Table 2: Few-shot heuristic ranking performance
on OOD samples for HANS/MNLI and QQP/PAWS,
specifically when comparing inoculated models (SHAP
explanations). We divide rows by baselines, dataset-
specific factors, and general factors.

Results are shown using SHAP in Table 2 which
we selected through experiments in this setting as
being the best performing. The conclusions here
differ somewhat from those on MSGS. We note
that the ACC baseline remains strong, while CONF is
near random. We find that certain attribution fac-
tors are able to outperform the ACC baseline, with
SWAP-AVG the best on PAWS (91.4%), INDEX-DIFF
the best on HANS-SUB (91.3%), and CONST on
HANS-CON (87.1%).

This shows that even in settings more realistic
than MSGS, the right choice of factor reveals
meaningful information about model general-
ization. Moreover, the heuristics that work well
are those hand-designed for these datasets, confirm-
ing that measuring association with a heuristic via
a factor may reveal something about performance.

We qualify these results by noting that in a true
few-shot setting, there is some uncertainty regard-
ing whether a chosen factor is truly the best one.
As a coarse option, we find ACC to be reliable. How-
ever, these high-performing factors would still be
useful in conjunction with accuracy, or if we had
previously validated a factor as ranking models
well and we wanted to apply it to rank new mod-
els in this domain; the factors will generalize to
new models even if they do not generalize to new
datasets necessarily.

6.3 Architectural Change Results

We further examine our approach when ranking
the performance of different pre-trained models
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D(O,t)

Ranking Method HANS/PAWS POOLED

Baseline
ACCURACY 61.0
GUESS 72.0

Factors
SET-DEPENDENT 75.5

MAX-DIFF 72.6
INDEX-DIFF 83.0
SUM-DIFF 83.1
FIRST-TOK 69.4

Table 3: Few-shot heuristic ranking performance
on OOD samples for HANS/MNLI and QQP/PAWS,
specifically when comparing non-inoculated models
(SHAP explanations), where we take the mean of pair-
wise accuracies for 3 pairs (for 3 models) on each set.

(RoBERTa, ELECTRA, and DeBERTa).
Table 3 shows that a heuristic GUESS based on the

expectation across choosing a best model and then
randomly guessing consistently with that, gives a
strong baseline of 72%. Factors also seem to do
well in this setting, with all of the general heuristics
outperforming the very low ACC baseline.

This suggests that in few-shot factors are able
to capture distributional information that baselines
can’t. However, to qualify this, given that each
set only compares between 3 pairs of models, it’s
easier for factors to happen upon strong accuracy
patterns by chance.

Thus, in Table 4, we analyze this further by show-
ing resuts on some individual model pairs. (R1, R2
are RoBERTa; E is Electra; D is DeBERTa) R1-E
and D-R2, have different architectures, but similar
OOD accuracy (see Table 6 in the Appendix). R1-
D, E-D and E-R2 are different model types with
more distant accuracy. Accuracy values for a sin-
gle pair on this single dataset therefore only reflect
differences across bootstrap samples. What we find
in common across these types of pairings is that
while some values are close to 50%, including the
ACCURACY baseline, each column has several fac-
tors achieving very distinct (0%, 100%) accuracy
values, consistently differentiating these models.
As we note in Figure 4 (Appendix), this pattern of
strong distinctions is quite common when different
types of models are compared. We further discuss
this in Section 7.

7 Analysis / Discussion

Accuracy is reliable, but factors can pro-
vide more fine-grained distinctions. On MSGS,

Model Pair (M1-M2)

Ranking Method R1-E R1-D E-R2 D-R2 E-D

Baseline
ACCURACY 77.4 54.6 55.2 67.2 64.4

Factors
SWAP-MAX-DIFF 57.6 57.6 70.6 65.6 42.6
SWAP-AVG 93.4 93.4 65.0 47.6 17.0

MAX-DIFF 63.2 63.2 39.2 4.8 0.2
INDEX-DIFF 0 0 99.6 99.6 15.0
SUM-DIFF 99.8 100 0 0 88.0
FIRST-TOK 1.2 100 99.6 0 0

Table 4: SHAP pairwise accuracies, different types of
models, PAWS. Model R1 (69.7%), R2 (82.9%), Model
E (80.5%), and Model D (71.8%)

where factors beat strong accuracy baselines, we
notice that these pairwise accuracies are consis-
tently high. For example, on the MORPH setting,
for two models with 95% and 98% accuracy, our
factors IRREG is 100% accurate, while the accu-
racy baseline here is only 58%, as test accuracy
on D(O,t) does not discriminate well between two
models with such close overall accuracy.

This holds at the fine-grained pairwise level as
well. Figure 5 (also see Figure 6 in appendix)
shows the baseline D(O,t) accuracy against a spe-
cific factor’s accuracy for each model pair in
MSGS. Each datapoint in the scatterplot represents
a model pair and a point’s vertical distance from
the red line represents how much better or worse
a given factor does compared to the baseline on
a specific pair. We see a regular trend: explana-
tions seem to systematically outperform the base-
line across various pairs, with a few significant
deviations for low-performing pairs.

These results suggest that explanations can be
useful and do add information otherwise miss-
ing from accuracy probing alone, especially when
the underlying model architecture is held constant.
With differing architectures (Figure 6), the problem
is made more difficult, and selecting the right fac-
tor is less obvious; few-shot accuracy may be more
reliable in this setting. Note, however, that these
successes from any technique are in spite of us only
inspecting 10 examples from the target domain.

Factors differentiate models strongly, though
not always in a way aligned with OOD perfor-
mance. Figure 4 and Table 4 both show that fac-
tors will often consistently decide in favor of a
certain model regardless of the choice of D(O,t),
especially when dealing with models with different
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Figure 4: Distributions of pairwise accuracies on PAWS
SHAP non-inoculated, all model pairs (left for accuracy
baseline, right for all factors).
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Figure 5: LIME pairwise factor against baseline accura-
cies for MSGS. Additionally see Figure 6.

base architectures. Since ranking accuracy cor-
relates with whether these strong alignments are
consistent across a spectrum of models and choose
the models with higher OOD performance, the ten-
dency for factors to strongly favor a specific model
doesn’t necessarily correlate with strong overall
performance, but does heavily imply that these
factors extract meaningful information about the
model from the attributions. Looking close at Ta-
ble 4, we can see that that even between differ-
ent model architectures, certain factors are more
(INDEX-DIFF) or less (SWAP-MAX-DIFF) capable of
making these distinctions.

Factors as projections of model feature space.
Based on these results, we have evidence that the
distributions of attributions are unique to models:
in other words, a factor is like a scalar signature
for a model’s feature space with respect to some
relevant features. Methods like inoculation, that
change a model’s behavior in direct ways lead to
regular changes in that signature. In these cases,

factors align with OOD performance, which ex-
plains why factors are so strong in our inoculated
experiments. For our non-inoculated experiments
(i.g. ELECTRA vs DeBERTa), the feature spaces
are fundamentally different, so factor signatures
will still capture these differences, but in a way less
aligned with ranking on OOD performance. Future
work may be able to expand on these differences
and what they tell us beyond OOD performance.

8 Related Work

This paper relates to a long line of work on un-
derstanding explanations, including explanations’
human interpretability (Miller, 2019; Jacovi and
Goldberg, 2020; Alqaraawi et al., 2020; Nguyen
et al., 2021), explanations’ faithfulness and ability
to detect shortcuts (Geirhos et al., 2020) or spuri-
ous features (Bastings et al., 2021; Madsen et al.,
2021; Zhou et al., 2021), and applications to OOD
data (Ye and Durrett, 2022; Choi et al., 2022), in-
cluding papers in the intersection of multiple direc-
tions (Adebayo et al., 2022; Kim et al., 2021).

Past work has also investigated performance pre-
diction (Xia et al., 2020; Ye et al., 2021b; Varsh-
ney et al., 2022), and using explanations to detect
spurious correlations (Kim et al., 2021; Bastings
et al., 2021; Adebayo et al., 2022). We are differ-
ent in that we focus on ranking an array of mod-
els which exhibit different levels of generalization
abilities, as opposed to giving a binary judgment
of whether a model is relying on some shortcuts
(Kim et al., 2021; Bastings et al., 2021; Adebayo
et al., 2022). In addition, we experiment with tasks
having nuanced shortcuts ‘in the wild’, contrary
to synthetically constructed datasets in Bastings
et al. (2021). In particular, Adebayo et al. (2022)
study the usefulness of explanations in detecting
unknown spurious features in an image classifica-
tion task involving (realistic) possible shortcuts, but
find that attributions are ineffective for detecting
unknown shortcuts in practice.

9 Conclusion

We establish a robust framework for evaluation of
fine-grained few-shot prediction of OOD perfor-
mance, benchmarking approaches in this setting
on a range of models. We find that accuracy is
a reliable baseline, but intuitive attribution-based
factors derived from explanations can sometimes
better predict how models will perform in OOD
settings, even when they have similar in-domain
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performance. We further analyze patterns of our
approaches, discovering the potential for factors
to represent views of model feature space, leaving
further exploration to future work.

10 Limitations

There are a large number of explanation techniques
and many domains these have been applied to. We
focus here on a set of textual reasoning tasks like
entailment where spurious correlations have been
frequently identified. However, correlations in
other settings like medical imaging (Adebayo et al.,
2022) could yield different results. We also note
that these datasets are all English-language and use
English pre-trained models, so different settings
may yield different results; additionally, our fac-
tors depend on how explanations are normalized
between different examples.

Our paper and analysis themselves comment on
the limitations of our methodology as well as ex-
planations as a whole: we find that while explana-
tions often can clearly distinguish different models,
knowing which factors will do so, or guarantee-
ing that explanations align with OOD performance,
remains difficult.
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VERB MORPH ADJECT

NO-INOC 12.0 95.0 51.0
2L 99.0 98.0 99.2
2S 0.0 0.0 0.0
2L 1S 80.0 68.0 73.0
1L 2S 33.0 57.0 32.0
2L 2S 53.7 49.0 56.0

Table 5: MSGS accuracies of various inoculated models.

A Details of Inoculation

One of the methods we used to obtain models
with different performances on the OOD sets was
inoculation (Liu et al., 2019a), which involves
fine-tuning or further fine-tuning models on small
amounts or batches of OOD data alongside in-
domain data to bring model performance on OOD
sets up.

MSGS We borrow notation from Warstadt et al.
(2020). Most of the fine-tuning data is ambiguous
data that doesn’t test the spurious correlation, but
we add in small percentages of non-ambiguous data
where the label favors either the surface or linguis-
tic generalization, tilting the model in that direction.
Here, for each set (VERB, MORPH, ADJECT),
we used the following inoculation splits. Linguistic
(L) and surface(S) are the features that the inocu-
lation data would favor: 2% L, 2% S, mixed (2%
L, 1% S), (1% L 2% S), (2% L, 2% S), in addition
to no inoculation. The results on DO are present in
Table 5.

HANS Specific innoculation results for
RoBERTa-large are present in Table 6. We
additionally use MNLI pre-trained ELECTRA
and DeBERTa models from huggingface. These
performance details are also located in Table 6.

PAWS We used several inoculation techniques
to get a variable number of models here. For
our RoBERTA-base model, we start with the base
model (35% OOD accuracy) and fine-tune it with
DT data with 2% of the data having DO data mixed
in. We trained this over several epochs to get mod-
els with 82.8% and 90.8% accuracy on DO. We
also tried fine-tuning our 35% model on batches
of pure DO data to get a model with 69% accu-
racy. For our ELECTRA and DeBERTA models,
we use similar batch-only inoculation (fine-tuning
on batches of only OOD data). More details are
present in Table 6.

Tables 7-8 contain the same information as Ta-
ble 2, but for the other 2 studied explanation tech-
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nique.

B Bootstrapping Details

We now describe our process for bootstrapping
and evaluating the capability of explanations in our
setting.

For a sampled population of examples from the
DO set, for the m models that we’re examining at
a time, we generate explanations for each of the
m models on all of the sampled population. We
then repeatedly take a sample with replacement
(500 times) of 10 examples DO,t each, where we
have 500× 10×m total explanations we want to
examine. We calculate factors for each of the 10
explanations in each DO,t sample and pool them
to get a list of factor metrics for the DO,t, one for
each model.

For each pair, we then look at the ground-truth
DO ranking for models and their respective factor
metrics, getting successes where these match, and
failures otherwise. When we average these accu-
racies across our 500 bootstrap samples, we get
pairwise distributions (the distribution of successes
vs failures on a sample for a given pair), which we
can further aggregate to get few-shot accuracies.

Note, in practice, to prevent variance from run-
to-run, we fix the population of 500 DO,ts, but we
validated that re-running on new sampled popula-
tions didn’t impact any numbers greatly. Though
we tried using several (5, 10, 20) DO,t sizes, we de-
cided to use the probe size of 10 as a realistic probe
size for our setting, which wouldn’t be burdensome
to hand-craft in practice.

Our methodology can be run quickly in a post-
hoc manner as many times as needed on top of a
population of the necessary explanations.

C Additional Plots

Figure 4 shows additional information about the
distrbution of pairwise accuracies between differ-
ent model architectures.

D Reproducibility

D.1 Computing Infrastructure
All experiments were conducted on a desktop with
2 NVIDIA 1080 Ti (11 GB) and 1 NVIDIA Titan
Xp (12 GB).

D.2 Runtimes
For PAWS and MSGS fine-tuned models, we fine-
tuned for roughly 1 GPU hour per model. Since
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Figure 6: SHAP pairwise factor compared to ACC for
HANS-CON and PAWS. Each point represents a factor
accuracy (y-axis) for a pair of models in comparison
to ACC (x-axis) for the same pair. Points above the red
y = x line represent factors outperforming the accuracy
baseline. CONST and DIFF-SUM are for HANS-CON,
SWAP-AVG and SWAP-MAX-DIFF are for PAWS

HANS models were trained for very few steps, their
training time is inconsequential. Generating attri-
butions required for numerical evaluation took less
than 6 GPU hours.

D.3 Dataset Details
We used datasets in the JSONL format. We sim-
plified all our dataset settings to binary classifica-
tion for simplicity, and used data directly from the
downloads made available in the original papers.
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Dataset OOD Performance Huggingface Model Name LR Warmup Steps

HANS 99.8/99.4 roberta-large-mnli 1e−5 500 150
HANS 96.7/97.6 roberta-large-mnli 1e−5 500 100
HANS 87.1/70.1 roberta-large-mnli 1e−5 500 75
HANS 79.5/62.5 roberta-large-mnli 1e−5 500 50
HANS 69.9/58.7 roberta-large-mnli 1e−5 500 25
HANS 66.8/57.8 roberta-large-mnli − − −
HANS 63.5/72.5 howey/electra-base-mnli − − −
HANS 62.7/65.7 MoritzLaurer/DeBERTa-v3-base-mnli − − −
MSGS Table 5 roberta-base 1e−5 600 6000

PAWS 90.8 roberta-base 1e−5 1200 12000
PAWS 82.8 roberta-base 1e−5 1200 12000
PAWS 69.0 roberta-base 1e−5 1200 7600
PAWS 35.0 roberta-base 1e−5 1200 12000
PAWS 80.5 google/electra-base-discriminator 1e−5 1200 7700
PAWS 71.8 microsoft/deberta-base 1e−5 1200 7600

Table 6: Architecture details for our experiments. “Steps” indicates the number of gradient updates from the
specified dataset that are applied to the model. For HANS models, performance is on HANS-SUB/HANS-CON.
For all models, small batch sizes were used, with weight decay of 0.1.

PAWS HANS-SUB HANS-CON

Baselines
ACCURACY 88.7 90.6 81.6
CONFIDENCE 9.2 40.4 52.8
RANDOM 50.7 51.4 49.6

Explanations
CONST − − 79.4
SWAP-MAX-DIFF 80.6 − −
SWAP-AVG 98.2 − −
MAX-DIFF 70.1 67.2 58.3
INDEX-DIFF 70.5 88.5 67.2
SUM-DIFF 53.9 59.1 60.4
FIRST-TOK 55.4 51.0 81.3

Table 7: LIME version of Table 3

PAWS HANS-SUB HANS-CON

Baselines
ACCURACY 88.7 90.6 81.6
CONFIDENCE 9.2 40.4 52.8
RANDOM 50.7 51.4 49.6

Explanations
CONST − − 79.2
SWAP-MAX-DIFF 84.3 − −
SWAP-AVG 85.6 − −
MAX-DIFF 86.9 55.2 69.9
INDEX-DIFF 51.4 85.8 53.4
SUM-DIFF 51.6 77.4 68.1
FIRST-TOK 64.0 69.7 59.2

Table 8: Tokig numbers for Table 3

ID Set OOD Set DO Size D(O,t) Size

MSGS
MORPH 10000 10
VERB 10000 10
ADJECT 10000 10

MNLI
HANS-SUB 10000 10
HANS-CON 10000 10

QQP PAWS 677 10

Table 9: Information regarding our considered datasets.
For all datasets, the bootstrap sample size is fixed at 10.
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