
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2350–2356
May 2-6, 2023 ©2023 Association for Computational Linguistics

Parameter-Efficient Korean Character-Level Language Modeling

Marco Cognetta
Tokyo Institute of Technology

cognetta.marco@gmail.com

Sangwhan Moon
Tokyo Institute of Technology

sangwhan@iki.fi

Lawrence Wolf-Sonkin
Google

wolfsonkin@google.com

Naoaki Okazaki
Tokyo Institute of Technology
okazaki@c.titech.ac.jp

Abstract

Character-level language modeling has been
shown empirically to perform well on highly
agglutinative or morphologically rich lan-
guages while using only a small fraction of
the parameters required by (sub)word models.
Korean fits nicely into this framework, except
that, like other CJK languages, it has a very
large character vocabulary of 11,172 unique
syllables. However, unlike Japanese Kanji and
Chinese Hanzi, each Korean syllable can be
uniquely factored into a small set of subcharac-
ters, called jamo.

We explore a "three-hot" scheme, where we ex-
ploit the decomposability of Korean characters
to model at the syllable level but using only
jamo-level representations. We find that our
three-hot embedding and decoding scheme al-
leviates the two major issues with prior syllable-
and jamo-level models. Namely, it requires
fewer than 1% of the embedding parameters
of a syllable model, and it does not require
tripling the sequence length, as with jamo mod-
els. In addition, it addresses a theoretical flaw
in a prior three-hot modeling scheme.

Our experiments show that, even when reduc-
ing the number of embedding parameters by
> 99.6% (from 11.4M to just 36k), our model
suffers no loss in translation quality compared
to the baseline syllable model.

1 Introduction

Subword modeling has been used for Korean to re-
duce the required vocabulary size due to its aggluti-
native nature and morphological richness. Several
works have characterized the many subword tok-
enization strategies for Korean (Park et al., 2020;
Moon and Okazaki, 2020).

(Sub)character modeling has been employed for
translation in Asian languages (Nguyen et al., 2017;
Ngo et al., 2019; Yu et al., 2017). Likewise, it has
found use in generic Korean NLP tasks (Cho et al.,
2019; Choi et al., 2017). Further, Stratos (2017)

investigated exploiting the hierarchical nature of
Korean characters for modeling. However, nearly
all of these works are restricted to the input side
only, either because the downstream task is a classi-
fication task or it is a translation task where Korean
is the source language, and so syllable generation
is unnecessary. An exception is Song et al. (2018),
where the authors propose a "multi-hot" scheme
that appears on both the embedding and decoding
sides of a sequence-to-sequence denoising autoen-
coder applied to Korean spelling correction.

The baseline approaches of syllable- and jamo-
level modeling each have downsides. Syllable mod-
els must have embeddings for all 11,172 syllables
to provide full coverage, which requires an enor-
mous number of parameters. On the other hand,
jamo-level modeling requires fewer than 70 embed-
dings, but the sequence lengths become 3x longer,
which greatly slows inference in attention-based
models. Here, we propose a three-hot model1 that
addresses both of these issues, as well as an issue
in the architecture from Song et al. (2018).

We emphasize that our goal is specifically to
investigate parameter-efficient character-level mod-
eling, and not to compare with (sub)word models.

1.1 Korean Syllabary

Vi ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋ
ㅌㅍㅎ

Vv ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞ
ㅟㅠㅡㅢㅣ

Vf ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿ
ㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ⊘

Table 1: The three jamo classes. ⊘ ∈ Vf represents the
absence of a final consonant.

1Our three-hot implementation has been packaged
as a library alongside code to reproduce our ex-
periments: https://github.com/mcognetta/
ThreeHotKoreanModeling.

2350

https://github.com/mcognetta/ThreeHotKoreanModeling
https://github.com/mcognetta/ThreeHotKoreanModeling


기계번  역

ㄱㅣ∅ㄱㅖ∅ㅂㅓㄴ  ㅇ  ㅕ  ㄱ

(ㄱ,ㅣ,∅)(ㄱ,ㅖ,∅)(ㅂ,ㅓ,ㄴ)  (ㅇ,ㅕ,ㄱ)

a)

b)

c)

Figure 1: Modeling scenarios for predicting the syl-
lable 역 (yeok:‘decode’), from the context "기계
번"(gigyebeon:‘machine translate’) using a) syllable,
b) jamo, and c) three-hot modeling. Notice that in jamo
modeling, the prediction is spread over three time-steps.

Korean syllables are made up of three subcharac-
ters: an initial consonant, a vowel, and an optional
final consonant, collectively known as jamo. There
are 19, 21, and 28 initial consonants, vowels, and
final consonants (including the lack of a final con-
sonant, represented by ⊘), denoted Vi,Vv, and Vf ,
respectively, shown in Table 1. These classes are
disjoint, and even visually similar jamo in Vi and
Vf (e.g.,ㄱ) are distinct subcharacters.

Any Korean syllable can be uniquely decom-
posed into three jamo, and any choice (i, v, f) ∈
Vi ×Vv ×Vf corresponds to a unique syllable. For
example,한: (ㅎ,ㅏ,ㄴ) and무: (ㅁ,ㅜ,⊘).

Specific details about Korean jamo and their Uni-
code representations are in Appendix A.

2 Three-hot Modeling

Naïve syllable-level and jamo-level modeling use
one-hot encodings to represent each token. We pro-
pose a three-hot scheme, where jamo triplets rep-
resenting syllables are consumed and generated at
each step. Figure 1 gives examples of each of the
considered modeling schemes.

2.1 Embedding

In three-hot modeling, we learn embeddings for
jamo and combine them to produce a syllable em-
bedding as:

embs = embi + embv + embf ,

where + is vector addition. We also experimented
with combining embi,v,f via concatenation, but this
method requires more parameters and we observed
no performance difference.

Similar factored embeddings have been consid-
ered before in language-agnostic settings (Sven-
strup et al., 2017) and for Korean specifically
(Stratos, 2017).

2.2 Independent Three-hot Decoding
Song et al. (2018) proposed a three-hot decoder
for a sequence-to-sequence autoencoder which pro-
duces syllables by predicting three jamo subchar-
acters as a three-hot vector. In their scheme, they
predict the individual jamo independently, as:

P(s | h) ≈ P(i | h)× P(v | h)× P(f | h).

However, a syllable’s jamo are not independent,
and thus this method does not capture the true joint
probability distribution:

P(s | h) = P(i, v, f | h).

2.3 Conditional Three-hot Decoding
To properly model the true joint distribution, we
factor it as:

P(s | h) = P(i | h)×P(v | i, h)×P(f | i, v, h).

Given a context embedding h from a base lan-
guage model, we first predict the initial consonant,
πi, from softmax(I(hi)), where I : Rd → R|Vi|

and hi is a vector generated from h and an initial
vector h0. Then, we generate a continuous embed-
ding for πi via embeddingi : R|Vi| → Rd. The
continuous embedding is combined with hi and
used to predict the vowel jamo, πv. Likewise, πv
is re-embedded and used to predict the final conso-
nant, πf . As such, a triplet (πi, πv, πf ) is generated
similarly to a three-step, unrolled RNN:

hi = tanh(Weh+Whh0)

πi ∼ softmax(I(hi))

embi = embeddingi(πi)

hv = tanh(Weembi +Whhi)

πv ∼ softmax(V (hv))

embv = embeddingv(πv)

hf = tanh(Weembv +Whhv)

πf ∼ softmax(F (hf ))

(1)

In the decoding layer, we define embeddingi,v,
but not embeddingf . This is because once the
prediction πf has been made, decoding for that
time-step is done, and so an embedding embf is
not needed to generate any more jamo.

2.3.1 Parameter Reduction via Weight
Sharing and Diagonal RNNs

A common way to reduce parameter counts is to
share weights between the embedding and decod-
ing layers. For jamo and syllable models, this is

2351



a) b) c)

Figure 2: The three decoding types: a) one-hot decod-
ing (jamo or syllable), b) independent three-hot decod-
ing (Song et al., 2018), and c) conditional three-hot
decoding (ours). The light pink box is a contextual em-
bedding h, while red, green, and blue are Vi, Vv, and
Vf , respectively.

straightforward, as the one-hot embedding table
can be reused for the final linear output layer.

For independent three-hot models, the embed-
ding weights from Section 2.1 can also be reused
in the final output layers. For conditional three-hot
models, the embedding weights can be used for
both embeddingi,v and I, V, F in Equation 1, so
that only the matrices We and Wh are unshared. Ad-
ditionally, we hypothesize that, due to the strictly
bounded context length Equation 1, a fully dense
RNN transition matrix may be excessive, and so
we experiment with replacing We and Wh with
diagonal matrices (Sübakan and Smaragdis, 2017).

2.4 Prediction Order

In multi-label classification, it has been observed
that the order in which labels are generated can
impact a model’s accuracy (Read et al., 2021). For
three-hot decoding, we experiment with the six
triplet-generation permutations to see if there is
any significant difference. This does not require any
modification of the training data or architecture, as
we need only permute the order of Equation 1.

2.5 Triplet Representation

Three-hot decoding models output jamo triplets rep-
resenting a full syllable. However, the model may
need to process non-Korean characters, which do
not have a three-hot jamo decomposition. To unify
the representations of Korean and non-Korean to-
kens, we add all non-Korean tokens to Vi and in-
troduce a padding character x ∈ Vv,f . Then, a
non-Korean token c is represented by (c,x,x).

To ensure a fair comparison between the three-
hot decoding schemes and the jamo model, no logic
is used to prohibit the generation of degenerate
triplets, such as a non-Korean symbol followed by
jamo subcharacter. Syllable and jamo models do

not generate x when predicting non-Korean tokens,
but jamo models are trained to predict ⊘ if a sylla-
ble does not have a final consonant.

3 Parameter Counts

Table 2 shows the parameter counts for each of
the architectures. Since the three-hot models use
jamo embeddings, they have the same number of
embedding parameters as the jamo-level models.
The conditional three-hot models have additional
parameters for the three-stage decoding step: two
internal transition matrices We and Wh (Equation
1), which dominate the decoding layer’s param-
eter count. But, when the transition matrices are
diagonalized and weight sharing is used, the to-
tal number of parameters is only 1k more than
the shared-weight jamo and independent three-hot
models.

The syllable models contain several orders of
magnitude more parameters than any other archi-
tecture. In the most extreme case, unshared syllable
vs. shared, diagonal three-hot, the latter has only
36k

11.4M ≈ 0.32% as many embedding parameters.
Our underlying LM is a transformer model with

15.7M parameters on the target side2, not counting
those for embedding or generation. Thus, the un-
shared syllable-level embedding/decoding layers
increase the target-side parameter count by 73%,
while the unshared jamo, independent, and diag-
onal conditional three-hot increase it by less than
2%, and non-diagonal conditional three-hot by less
than 6%.

4 Evaluation Metrics

Since we are modeling at two different granulari-
ties, perplexity is not immediately comparable be-
tween the different architectures. To unify them, we
use bits-per-jamo (BPJ) as our granularity-agnostic
metric.

We use BLEU and chrF to evaluate the quality of
the translations produced by our models. Since our
models work on different granularities, we canoni-
calize their outputs for comparison.

For syllable-level modeling, we split all syllables
into their jamo subcharacters and leave all non-
Korean-syllable tokens as is. For three-hot models,
triplets are flattened to a string of three charac-
ters. We remove the x pad from non-Korean tokens
and replace degenerate triplets with a special BAD
token. For all models, all jamo are converted to a

2See Appendix B for architecture details.

2352



Embedding Decoding Total BPJ BLEU chrF
Syllable (unshared) 5.7M 5.7M 11.4M 33.9 14.1 38.1
Syllable (shared) 5.7M - 5.7M 0.342 14.0 38.1
Jamo (unshared) 35k 35k 70k 0.355 13.7 37.8
Jamo (shared) 35k - 35k 0.356 14.1 38.0
Three-hot (Ind., unshared) 35k 35k 70k 0.555 7.9 28.9
Three-hot (Ind., shared) 35k - 35k 0.556 8.3 29.4

Embedding Decoding Total BPJ BLEU chrF
Three-hot (IVF, unshared) 35k 579k 614k 0.287 14.3 38.1
Three-hot (IVF, shared) 35k 524k 559k 0.292 14.1 38.1
Three-hot (IVF, diag., unshared) 35k 71k 106k 0.293 14.2 38.2
Three-hot (IVF, diag., shared) 35k 1k 36k 0.306 14.0 38.0
Three-hot (FIV, unshared) 35k 579k 614k 0.289 14.0 37.9
Three-hot (FIV, shared) 35k 524k 559k 0.294 14.1 37.8
Three-hot (FIV, diag., unshared) 35k 71k 106k 0.294 14.0 37.9
Three-hot (FIV, diag., shared) 35k 1k 36k 0.304 13.8 37.8

Table 2: Parameter counts (when d = 512, as in our experiments) and metrics (BPJ, BLEU, and chrF) for each of
the architectures. For brevity, only some decoding orders are listed here. The decoding column lists only parameters
that are not shared with the embedding layer. A complete set of metrics is given in Appendix C.

canonical compatibility jamo format (see Appendix
A). Finally, we remove all punctuation.

For BLEU, we use the standard n-gram order of
4, since this operates on the word-level (in our ex-
periments, contiguous token sequences surrounded
by whitespace). The default chrF character n-gram
order is 6, which we interpret as meaning 6 syl-
lables for Korean. Since we measure our metrics
on decomposed jamo sequences, we use a jamo
n-gram order of 18.

5 Experiments

We use an English-Korean news translation dataset
from AI Hub3 with 400k sentences. We remove all
sentence pairs that have more than 100 syllables
on the Korean side, leaving 365k , from which we
select 5k and 5k for testing and validation.

As our only goal is to evaluate the effectiveness
of three-hot modeling compared to naïve syllable-
and jamo-level modeling, we use the same base
transformer model architecture and hyperparame-
ters in all experiments and only change the target-
side embedding and decoding layers. The complete
hyperparameter list is given in Appendix B.

In total, we train 30 models: unshared and shared
weights for syllable, jamo, and three-hot indepen-
dent modeling (6 total) and {unshared, shared} ×
{dense, diagonal} for each of the 6 conditional
three-hot prediction orders (24 total). Each model
is trained for 50 epochs, and the epoch with the
lowest bits-per-jamo on the validation set is used.

For inference, we use a beam size of 15 for syl-
lable models and 8 for jamo models. Three-hot
decoding is two-staged: an internal beam search
constructs triplets jamo-by-jamo, and the highest
probability triplets are added to the outer beam as
syllables. For the independent three-hot models,
we use beam size of 5 and an internal beam size
of 3. For the conditional three-hot models, we use
a beam size of 15 and an internal beam size of

3https://aihub.or.kr/

4. These hyperparameters were determined by a
sweep search on the validation set.

6 Results and Analysis

Table 2 lists the metrics for each model type.
Independent three-hot modeling performs the

worst across all metrics. On translation in partic-
ular, we suspect that it is because the model can
generate high probability but meaningless triplets,
especially in scenarios where several reasonable
syllable continuations exist. The highest probability
triplet may contain individual jamo that come from
each of the true high probability syllable continua-
tions, but which are combined in a way that forms
a meaningless character. Such triplets quickly satu-
rate the beam with gibberish contexts and degrade
the translation quality.

For bits-per-jamo, conditional three-hot models
vastly outperform all other architectures. However,
this has some caveats. Since the syllable model
must predict all three jamo simultaneously, the bits-
per-jamo is spread evenly throughout the compo-
nent jamo. On the other hand, conditional three-hot
modeling has a relatively difficult time predicting
the first jamo, but the subsequent elements are in-
creasingly easy due to the additional condition-
ing (Appendix C lists BPJ-per-jamo-class for each
model). Jamo models must deal with a longer con-
text (and thus less focused attention) and the output
layer can output any class of jamo or non-Korean
tokens at any time step, which makes modeling
less structured and more difficult than conditional
three-hot and syllable-level models.

We observed that the independent three-hot mod-
els had the highest perplexity on Vv, followed by
Vi, then Vf . Since this family generates jamo inde-
pendently, it approximates the true entropy of the
marginal subcharacter distributions. Thus, we con-
jectured that (f, i, v) order would be the best and
(v, i, f) the worst for model accuracy, but found
that no prediction order consistently outperformed

2353

https://aihub.or.kr/


the others.
For translation, the BLEU and chrF scores for

jamo, syllable, and conditional three-hot models
are extremely close. We found that, as we moved
from unshared, dense three-hot models to shared,
diagonal models, there was a slight loss in BPJ per-
formance, but even in the diagonal, shared case, all
three-hot models perform on-par with syllable mod-
els on translation (± 0.3 BLEU and ± 0.3 chrF),
supporting our claims that the syllable models are
massively overparameterized, and using fully dense
We and Wh matrices in Equation 1 is unnecessary.

7 Conclusion

We presented a conditional three-hot decoder
for Korean character-level language models. Our
model addresses several issues with other Korean
(sub)character-level modeling schemes. Compared
to syllable-level models, it uses only a small frac-
tion of the number of parameters, and, unlike jamo-
level models, it does not triple the sequence length,
avoiding the resulting inference time increase with
attention mechanisms. It also addresses a theoret-
ical flaw in a prior three-hot decoding scheme,
where a syllable’s subcharacters were generated
independently. Finally, we proposed several vari-
ants of our model to further reduce parameters.

On a character-level translation task, we found
that all of our conditional three-hot models perform
on-par with jamo and syllable models, even when
using as little as ∼0.3% of the embedding parame-
ters of a syllable model. They also outperform the
prior independent three-hot model in every metric.

These results suggest that conditional three-hot
modeling is an efficient and principled method of
character-level Korean language modeling.

8 Acknowledgments

These research results were obtained partially from
the commissioned research (No. 225) by National
Institute of Information and Communications Tech-
nology (NICT), Japan.

9 Limitations

One limitation of this work is that it is specific
to the writing system typically used in Korean,
Hangul. A similar idea could be used for subword
modeling in other scripts, but the idea presented
here draws specifically on the hierarchical and com-
positional nature of Hangul syllables that is unique

to the script itself. A second is that we did not com-
pare to state-of-the-art non-character-level Korean
translation models. However, this was on purpose,
as the point of this paper is specifically to investi-
gate efficient character-level modeling.

References
Won-Ik Cho, Seok Min Kim, and Nam Soo Kim.

2019. Investigating an effective character-level em-
bedding in korean sentence classification. CoRR
abs/1905.13656.

Sanghyuk Choi, Taeuk Kim, Jinseok Seol, and Sang-
goo Lee. 2017. A syllable-based technique for word
embeddings of Korean words. In Proceedings of
the First Workshop on Subword and Character Level
Models in NLP. Association for Computational Lin-
guistics, Copenhagen, Denmark, pages 36–40.

Sangwhan Moon and Naoaki Okazaki. 2020. Jamo
pair encoding: Subcharacter representation-based ex-
treme Korean vocabulary compression for efficient
subword tokenization. In Proceedings of the 12th
Language Resources and Evaluation Conference. Eu-
ropean Language Resources Association, Marseille,
France, pages 3490–3497.

Thi-Vinh Ngo, Thanh-Le Ha, Phuong-Thai Nguyen, and
Le-Minh Nguyen. 2019. How transformer revitalizes
character-based neural machine translation: An inves-
tigation on japanese-vietnamese translation systems.
CoRR abs/1910.02238.

Viet Nguyen, Julian Brooke, and Timothy Baldwin.
2017. Sub-character neural language modelling in
Japanese. In Proceedings of the First Workshop on
Subword and Character Level Models in NLP. Asso-
ciation for Computational Linguistics, Copenhagen,
Denmark, pages 148–153.

Kyubyong Park, Joohong Lee, Seongbo Jang, and Da-
woon Jung. 2020. An empirical study of tokenization
strategies for various korean NLP tasks. Association
for Computational Linguistics, pages 133–142.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2021. Classifier chains: A review and
perspectives. J. Artif. Intell. Res. 70:683–718.

Chisung Song, Myungsoo Han, Hoon Young Cho, and
Kyong-Nim Lee. 2018. Sequence-to-sequence au-
toencoder based korean text error correction using
syllable-level multi-hot vector representation. In Pro-
ceedings of HCLT (in Korean). pages 661–664.

Karl Stratos. 2017. A sub-character architecture for
korean language processing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017. Association for
Computational Linguistics, pages 721–726.

2354



Y. Cem Sübakan and Paris Smaragdis. 2017. Diagonal
rnns in symbolic music modeling. In 2017 IEEE
Workshop on Applications of Signal Processing to
Audio and Acoustics, WASPAA 2017, New Paltz, NY,
USA, October 15-18, 2017. pages 354–358.

Dan Svenstrup, Jonas Meinertz Hansen, and Ole
Winther. 2017. Hash embeddings for efficient word
representations. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA. pages 4928–4936.

Jinxing Yu, Xun Jian, Hao Xin, and Yangqiu Song. 2017.
Joint embeddings of Chinese words, characters, and
fine-grained subcharacter components. In Proceed-
ings of the 2017 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics, Copenhagen, Denmark, pages
286–291.

A Hangul and Jamo

Korean is divided into three Unicode blocks: sylla-
bles4, jamo5, and compatability jamo6.

The syllable block contains a codepoint for
each of the 11,172 unique syllables and the jamo
block contains one codepoint for each of the ini-
tial, vowel, and final jamos, separated by class. Ta-
ble 1 shows all of the jamo. Note that some vi-
sually identical jamo exist in both the initial and
final consonant classes (e.g.,ㄱ). These are techni-
cally distinct jamo, hence the need for two unique
codepoints. The compatibility jamo block contains
a codepoint for each consonant and vowel, but
merges visually identical ones from across differ-
ent classes. In total there are 51 compatibility jamo.
Conversion from syllables to jamo and compati-
bility jamo is deterministic using basic modular
arithmetic on the codepoints7. Likewise, it is trivial
to recompose jamo into syllables. Since compatibil-
ity jamo has ambiguities about which class a spe-
cific jamo belongs to, it must be composed greedily
from left to right using a state machine. However,
in all cases, assuming that that jamo sequence is
valid, both jamo and compatibility sequences can
be unambiguously recomposed into syllables.

In our experiments, we always convert from
syllables/triplets/jamo to compatibility jamo, and
never from compatibility jamo, so all ambiguities

4https://en.wikipedia.org/wiki/Hangul_
Syllables

5https://en.wikipedia.org/wiki/Hangul_
Jamo_(Unicode_block)

6https://en.wikipedia.org/wiki/Hangul_
Compatibility_Jamo

7https://en.wikipedia.org/wiki/Korean_
language_and_computers#Hangul_in_Unicode

are avoided even in the case of invalid jamo se-
quences.

B Baseline Transformer LM

A single baseline transformer model configuration
was used across all experiments, with only the tar-
get side embedding and decoding layers swapped
out. Table 3 lists the relevant hyperparameters. All
models were trained on an NVIDIA RTX A6000
GPU using PyTorch 1.12.

Hyperparameter Value
English Vocabulary 30k BPE

Embedding Dimension 512
Feed Forward Dimension 512

Encoder Layers 6
Decoder Layers 6

Heads 8
Optimizer ADAM

Learning Rate 1e-4
Betas (0.9, 0.98)

Batch Size (tokens) 4k (10k for Jamo)
Epochs 50

Table 3: Hyperparameters for the base transformer lan-
guage model.

C Full Metrics

The full metrics for all experients are listed in Table
4. This is the complete version of Table 2.

2355

https://en.wikipedia.org/wiki/Hangul_Syllables
https://en.wikipedia.org/wiki/Hangul_Syllables
https://en.wikipedia.org/wiki/Hangul_Jamo_(Unicode_block)
https://en.wikipedia.org/wiki/Hangul_Jamo_(Unicode_block)
https://en.wikipedia.org/wiki/Hangul_Compatibility_Jamo
https://en.wikipedia.org/wiki/Hangul_Compatibility_Jamo
https://en.wikipedia.org/wiki/Korean_language_and_computers#Hangul_in_Unicode
https://en.wikipedia.org/wiki/Korean_language_and_computers#Hangul_in_Unicode


Embedding Decoding Total BPJ BPJ (i) BPJ (v) BPJ (f) BLEU chrF
Syllable (unshared) 5.7M 5.7M 11.4M 0.339 - - - 14.1 38.1
Syllable (shared) 5.7M - 5.7M 0.342 - - - 14.0 38.1
Jamo (unshared) 35k 35k 70k 0.355 - - - 13.7 37.8
Jamo (shared) 35k - 35k 0.356 - - - 14.1 38.0
Three-hot (Ind., unshared) 35k 35k 70k 0.555 0.588 0.599 0.478 7.9 28.9
Three-hot (Ind., shared) 35k - 35k 0.556 0.589 0.600 0.478 8.3 29.4
Three-hot (IVF, unshared) 35k 579k 614k 0.287 0.556 0.208 0.099 14.3 38.1
Three-hot (IVF, shared) 35k 524k 559k 0.292 0.561 0.214 0.103 14.1 38.1
Three-hot (IVF, diag., unshared) 35k 71k 106k 0.293 0.561 0.211 0.108 14.2 38.2
Three-hot (IVF, diag., shared) 35k 1k 36k 0.306 0.571 0.226 0.121 14.0 38.0
Three-hot (IFV, unshared) 35k 579k 614k 0.288 0.556 0.127 0.183 14.0 37.7
Three-hot (IFV, shared) 35k 524k 559k 0.293 0.563 0.131 0.186 13.9 37.8
Three-hot (IFV, diag., unshared) 35k 71k 106k 0.293 0.560 0.136 0.183 14.1 38.1
Three-hot (IFV, diag., shared) 35k 1k 36k 0.305 0.569 0.153 0.195 14.1 38.1
Three-hot (VIF, unshared) 35k 579k 614k 0.288 0.175 0.590 0.100 14.0 38.2
Three-hot (VIF, shared) 35k 524k 559k 0.293 0.179 0.597 0.102 14.0 38.3
Three-hot (VIF, diag., unshared) 35k 71k 106k 0.294 0.178 0.595 0.109 14.1 37.9
Three-hot (VIF, diag., shared) 35k 1k 36k 0.305 0.190 0.605 0.120 14.3 38.1
Three-hot (VFI, unshared) 35k 579k 614k 0.287 0.114 0.589 0.160 14.1 38.1
Three-hot (VFI, shared) 35k 524k 559k 0.292 0.119 0.596 0.162 14.3 38.2
Three-hot (VFI, diag., unshared) 35k 71k 106k 0.294 0.126 0.595 0.161 13.9 38.1
Three-hot (VFI, diag., shared) 35k 1k 36k 0.306 0.142 0.606 0.170 13.8 37.8
Three-hot (FIV, unshared) 35k 579k 614k 0.289 0.262 0.128 0.478 14.0 37.9
Three-hot (FIV, shared) 35k 524k 559k 0.294 0.266 0.132 0.484 14.1 37.8
Three-hot (FIV, diag., unshared) 35k 71k 106k 0.294 0.264 0.137 0.482 14.0 37.9
Three-hot (FIV, diag., shared) 35k 1k 36k 0.304 0.276 0.151 0.486 13.8 37.8
Three-hot (FVI, unshared) 35k 579k 614k 0.289 0.116 0.273 0.478 14.3 38.2
Three-hot (FVI, shared) 35k 524k 559k 0.293 0.120 0.277 0.482 14.1 38.3
Three-hot (FVI, diag., unshared) 35k 71k 106k 0.294 0.125 0.276 0.481 14.1 38.0
Three-hot (FVI, diag., shared) 35k 1k 36k 0.305 0.143 0.287 0.487 14.2 38.0

Table 4: The complete metrics for Table 2. For each model architecture and prediction order, parameter counts
(when d = 512, as in our experiments) and metrics (BPJ, BLEU, and chrF) are given. Additionally, for three-hot
models, the BPJ-per-jamo-class is provided. The decoding column lists only unshared parameters.

2356


