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Abstract

Recent work on predicting category structure
with distributional models, using either static
word embeddings (Heyman and Heyman, 2019)
or contextualized language models (CLMs)
(Misra et al., 2021), report low correlations
with human ratings, thus calling into question
their plausibility as models of human semantic
memory. In this work, we revisit this question
testing a wider array of methods for probing
CLMs for predicting typicality scores. Our ex-
periments, using BERT (Devlin et al., 2018),
show the importance of using the right type of
CLM probes, as our best BERT-based typical-
ity prediction methods substantially improve
over previous works. Second, our results high-
light the importance of polysemy in this task:
our best results are obtained when using a dis-
ambiguation mechanism. Finally, additional
experiments reveal that Information Content-
based WordNet (Miller, 1995), also endowed
with disambiguation, matches the performance
of the best BERT-based method, and in fact cap-
tures complementary information, which can
be combined with BERT to achieve enhanced
typicality predictions.

1 Introduction

The empirical success of contextual language mod-
els (CLMs) (Peters et al., 2018; Devlin et al., 2018;
Liu et al., 2019) has led to much research analyzing
their functionality (Rogers et al., 2020; Wu et al.,
2020; Ethayarajh, 2019) and how they acquire se-
mantic and world knowledge (Petroni et al., 2019).
It also raises the question of their plausibility as
models of human semantic memory (Chronis and
Erk, 2020; Ettinger, 2020; Gari Soler and Apidi-
anaki, 2021). The study of categorical knowledge,
in particular typicality, provides a window into this
question (Murphy, 2004). As initially observed by
Rosch (1975), native speakers of English consider
that certain exemplars (e.g., robin, crow) are more
representative than others (e.g., penguin, ostrich)

of a conceptual category (birds). That is, categor-
ical knowledge is organized along a graded struc-
ture. According to prototype theory (Rosch, 1975),
the structure follows from the fact that properties
frequently shared among category members tend
to be integrated into its prototype.

The main question we raise in this paper is
whether distributional models, and CLMs in par-
ticular, are indeed aware of category structure, as
captured in existing human typicality norms for
English. The broader question for cognitive sci-
ence is whether or not this type of knowledge can
be learned through text-based exposure alone, thus
contributing to the larger debate on the role of lan-
guage in learning semantic knowledge (Lupyan and
Lewis, 2019). But there are also more practical mo-
tivations for this work, as many NLP tasks (such as
information retrieval, question answering, natural
language inference) can arguably benefit from typi-
cality relations by understanding which exemplars
are more relevant to particular concepts.

Previous work on this topic provide mostly neg-
ative results. Heyman and Heyman (2019) use
classical static embeddings and represent typical-
ity scores between categories and their exemplars
as the cosine distance between their correspond-
ing word embeddings. They conclude that static
embeddings poorly account for human typicality
scores, as obtained from Morrow and Dufty (2005).
More recently, Misra et al. (2021) use various
CLMs to predict typicality. While CLMs have
a larger, more expressive parameter space and are
tuned over larger corpora with arguably better learn-
ing objectives than static word embeddings, Misra
et al. (2021) report only slightly better, and still
modest, correlations with human typicality judge-
ments (in this case, Rosch (1975)). Their probing
approach uses a Cloze test formulation over taxo-
nomic sentences (e.g., A robin is a bird).

We revisit this question by first introducing an ex-
panded suite of methods to extract typicality scores
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from CLMs, some of which improve correlations
with human norms, showing the importance of us-
ing the right probe for typicality. How to reliably
and efficiently probe CLMs is still an open ques-
tion, including supervised and unsupervised ap-
proaches (Rogers et al., 2020; Elazar et al., 2021;
Wu et al., 2020). The problem is exacerbated by
the fact that typicality is a relation between pairs
of concepts, abstracted away from contexts, while
CLMs produce representations for contextualized
word tokens (not types). We consider a wider array
of approaches, all unsupervised, for predicting typ-
icality from CLMs, using BERT as representative
test case. Our probing approaches fall into two
main classes: (i) BERT as a probabilistic language
model, and (ii) generating "static" word embed-
dings from contextual BERT embeddings.

Our second contribution is showing the impor-
tance of polysemy (e.g., orange can be a fruit, a
color, or a company) for typicality, an issue that has
been largely overlooked in previous works. When
judging category-exemplar pair typicality, humans
arguably don’t consider all the senses of the cate-
gory and exemplar words. Instead they consider
the senses of the category and exemplar that are
most compatible with one another, in effect per-
forming a joint disambiguation. Polysemy is prob-
lematic for static word embeddings as they col-
lapse word senses into a single vector. CLMs, on
the other hand, provide some form of sense selec-
tion through contextualization (Ethayarajh, 2019;
Gari Soler and Apidianaki, 2021), but there are
many possible ways to use CLMs and to provide
contexts to these models (such as sampled or tax-
onomic sentences). We find that using a simple
disambiguation mechanism, such as the method of
deriving multi-prototype embeddings introduced in
Chronis and Erk (2020), leads to typicality predic-
tions more closely correlated with human rankings.

Finally, another research question we address in
this paper is whether categorical structure is present
in lexical semantic networks, such as WordNet
(Miller, 1995). The hierarchical concept organi-
zation in WordNet was indeed initially inspired
by theories of human semantic memory (Beckwith
et al., 2021). Note that polysemy is also an issue
in using WordNet, as we need to map category
and exemplars to specific synsets. However, using
the structure of WordNet, a simple disambiguation
heuristic, and taking into account word frequency
information leads to competitive results. Further-

more, we find that WordNet-based and BERT-based
typicality predictions contain complementary infor-
mation, and creating a simple ensemble method of
the two further increases performance.

In summary, our main contributions are:

* We introduce and compare a large array of un-
supervised probing approaches for assessing
whether BERT capture the internal structure
of semantic categories.

* Our experiments reveal BERT can predict hu-
man typicality rankings more reliably than
previously found in Heyman and Heyman
(2019) and Misra et al. (2021), but only when
endowed with a disambiguation mechanism.

* Similarly, typicality predictions based on the
structure of WordNet (again with a disam-
biguation mechanism) can achieve similar but
complementary performance.

* A simple combination of BERT and WordNet
predictions leads to a higher level of correla-
tion (Spearman greater than 0.5) with human
typicality rankings.

2 Related Work

Recent years have seen an ever growing body of
work on assessing whether distributional models
constitute realistic models of human semantic mem-
ory, within both NLP (Chronis and Erk, 2020; Et-
tinger, 2020) and Cognitive Science (Hollis, 2017;
Hollis and Westbury, 2016; Mandera et al., 2017;
Giinther et al., 2019; Lupyan and Lewis, 2019; Ku-
mar, 2021). In this context, the study of categori-
cal knowledge, and specifically graded typicality,
plays a crucial role, given it is one of the most
reliable findings in the study of human categori-
cal knowledge (Rosch, 1975; Murphy, 2004). The
first work on using distributional models to predict
typicality scores is Heyman and Heyman (2019),
who estimate these scores, in English and Dutch,
using cosine distances between the static embed-
dings of the exemplar and category words. These
show that static embeddings, whether trained in a
counted- or prediction-based fashion, yield poor
correlations with human typicality norms. On the
related task of lexical entailment (LE), Vuli¢ et al.
(2017) evaluated different unsupervised and super-
vised methods that use static word embeddings.
They also found a significant gap between static
word embeddings and human norms. While LE
is closely related to typicality, it differs in that LE
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predicts the relationship between two words, while
typicality compares the relationship between two
concepts (in which words are used as a proxy, in our
case). Also, LE ratings are not restricted to pairs of
words belonging to the same category. We differ
from these earlier work on typicality by consider-
ing more expressive CLMs instead of static em-
beddings. The most closely related work is Misra
et al. (2021) who probe a wide range of CLMs
(i.e., different variants of BERT and GPT) for pre-
dicting typicality scores: these are extracted using
a Cloze task formulation over hand crafted taxo-
nomic sentences (e.g. A robin is a bird.). They
report better correlation scores with human norms,
although still modest, which they take as indication
that text exposure is not sufficient to learn category
structure. Our focus in this work is different and
somewhat broader in that we consider a wider array
of probing methods of CLMs, though restricted to
unsupervised ones. Supervised probing approaches,
based on classifiers taking CLM representations as
inputs, are problematic as they provide a less di-
rect probing approach, possibly adding additional
confounds (Elazar et al., 2021; Wu et al., 2020).
Another distinctive aspect of our work is that we
compare CLMs to lexical networks like WordNet
(Miller, 1995). Furthermore, we study the impact
of polysemy in typicality, which was not controlled
in Misra et al. (2021) or in Heyman and Heyman
(2019). The work of Apidianaki and Gari Soler
(2021) shares some similarities with (Misra et al.,
2021): they also use BERT under a Cloze task
setting to study typicality, but they focus on identi-
fying whether the model has access to prototypical
properties of concepts (e.g., a ball is round).

3 Problem Setting and Framework

This section presents our general framework for
assessing whether a lexical representation model
(i.e., a CLM or semantic network) is aware of cate-
gory structure; the specific probing approaches will
be described in Sec. 4. Let us assume a generic
conceptual space consisting of a set C of categories
as well as a set £ of exemplars of these categories.
For each category c in C, we assume a set of n,
exemplars ef in & for ¢ = 1 to n.. Following the
findings of Rosch (1975), we posit that this concep-
tual space has a graded structure, in that certain ex-
emplars (e.g., robin, crow) are more closely repre-
sentative of their category (e.g., birds) than others
(e.g., penguin, ostrich). This can be expressed

through a typicality score t; € R, often an or-
dinal scale, for each ef, where ¢7 > t7 indicates
that exemplar e is more typical of category c than
ej. These typicality scores can be obtained from
human subjects through various kinds of stimuli,
such as direct scoring of category-exemplar word
pairs (e.g., robin-bird) and scoring of a taxonomic
sentence (e.g., A robin is a bird.)(see Sec. 5.1).

To assess whether a lexical representation model
is aware of such a structure, three main components
are needed. As the conceptual space is latent, we
first need a concept-to-word mapping function
from category and exemplar concepts to words.
As is done in human studies and previous work,
we assume that categories and exemplars are reli-
ably accessed through their corresponding singular
words: the concepts robin and bird are accessed
via the words robin and bird, respectively. This is a
simplification, as the same concept can be realized
by plural forms, as well as by different (synony-
mous) words. Given this functional mapping, we
will conflate a category c with its category word c
and an exemplar e with its exemplar word ef.

Second, we define a typicality scoring function
over exemplar-category word pairs, which captures
how typical the exemplar is of the category. Each
model will assign a typicality score s§ to each cate-
gory c and exemplar e pair. Some of our methods
will make use of a text corpus, denoted .S, taking
the form of a pre-extracted set of sentences contain-
ing exemplar and/or category words. This corpus
S can be viewed as an extra parameter of the typ-
icality scoring function, as it will directly impact
the predicted typicality values s;. Such a corpus is
required to be able to fully leverage CLMs, whether
they are used as probabilistic language models
or to produce word vector representations. It is
also through this corpus that one hopes to capture
contextual word realizations that approximate the
different senses associated with the exemplar and
category words. Indeed, we hypothesize that one
important aspect of assessing typicality between
category and exemplar words is to be able to deal
with the polysemy of these words, predicting that
the best methods should be able to disambiguate
these words in such a way that the exemplar word
is interpreted in a category-compatible sense and
the category word in an exemplar-compatible sense.
Using WordNet synsets as a proxy for senses, we
find that on average, category words are linked to
4.2 and 4.9 senses, while exemplars are linked to
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3.3 and 4.7 senses on the typicality datasets of Mor-
row and Duffy (2005) and Rosch (1975), respec-
tively1 (see Sec. 5.1 for dataset details). This shows
the depth of the polysemy problem for typicality,
as each word on average has multiple meanings.
Finally, we need an evaluation metric for mea-
suring how well the predicted typicality scores s
are able to mirror the human judgements ¢7. The
most obvious choice for this metric is to use Spear-
man rank correlation (Spearman, 1904), as this
correlation measure is non-parametric and makes
no strong (e.g., linear) assumption on the data dis-
tribution or the underlying scoring functions.

4 Methods

We distinguish two classes of methods, de-
pending on whether they use CLMs or Word-
Net. For CLM-based methods, we use BERT
(bert-base-uncased specifically) as a prototypi-
cal CLM to assess whether CLMs are aware of cat-
egory structure. The framework and methods easily
generalize to other CLMs. While the concept-to-
word mapping is the same for these methods, the
scoring function and the probing corpus are differ-
ent. The BERT methods fall into two categories: (i)
those that use BERT as a language model (BERT-
MLM, BERT-SentEmb, BERT-MLM-Taxo), and
(i1) those that extract word vectors from BERT
(BERT-Avg, BERT-MPro). Note that these are all
unsupervised probing methods: when an additional
corpus S is used, it is only used to probe BERT, not
to fine-tune it. These methods embody different
linguistic hypotheses and adopt different ways of
dealing with polysemy. Note that for embedding
methods, we test all layers.

Secondly, we consider lexical semantic net-
works to compute typicality scores, using WordNet
(Miller, 1995) specifically. For this, we use the
Shortest-Path and the Lin (Lin et al., 1998) similar-
ity measures computed on WordNet (Miller, 1995).
We compute the information content (IC) values
(Resnik, 1995) used in the Lin measure using the
additional corpus S. We deal with polysemy by us-
ing the maximum similarity between exemplar and
category synset pairs to compute typicality scores.

4.1 Using BERT’s Language Model

The first class of methods relies on the language
modeling abilities of BERT, using the following
'Tf restricting synsets to only nouns, the average number

of category senses 2.9 and 3.4 for the two respective datasets,
and 2.4 and 3.1 for exemplars.

hypothesis: the more central (or peripheral) an ex-
emplar is to a category, the more (or less) likely
it is to be used in the category context(s). This
hypothesis can be turned into two different distribu-
tional hypotheses, depending on whether we take
a paradigmatic perspective (i.e., how likely can
the exemplar word be substituted for the category
word in the category contexts) or a syntagmatic
perspective (i.e., how likely can the exemplar be
used next to its category). Our first two probing
methods take a paradigmatic perspective and are
reminiscent of the Distributional Inclusion Hypoth-
esis, first proposed by Geffet and Dagan (2005).
They compute typicality scores that reflect how suc-
cessful the substitution of a category word by an
exemplar is, measured by conditional word proba-
bility (BERT-MLM) or by cosine distance between
sentence embeddings before and after substitution
(BERT-SentEmb). In both, the set of sentences
is restricted to sentences that contain the category
words and is denoted by .S..

4.1.1 Masked Language Modeling
(BERT-MLM)

Under this approach, typicality is computed as the
conditional probability of seeing the exemplar word
in its category’s contexts. Specifically, for each
sentence in S, the category name is masked us-
ing the [MASK] token and the resulting sentence
is passed through BERT and the MLM classifica-
tion, yielding MLM logits for each subtoken in the
vocabulary, which are softmaxed to probabilities.
Typicality scores are obtained by averaging across
sentences the MLM probabilities for each exem-
plar subtoken sequence. Formally, the typicality
score s for an exemplar e{ with [; subtokens and
category ¢, given BERT and masked sentences S.,
is computed by

0}

20 M

where Sgk is the kth subtoken of exemplar € in the
jth sentence of S., and BERTyrp(+) gives the
probability of this subtoken.

4.1.2 Sentence Embedding Modeling
(BERT-SentEmb)

In this method, typicality is taken to be a measure
of how well a category word can be substituted by
its exemplars in sentences .S, without altering the
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overall sentence meaning, which we approximate
as the sentence embedding. Recall that in BERT’s
NSP objective, the [CLS] sentence classification
token is input to the NSP classification head. For
each category name sentence, we compute layer
wise activations of this sentence token. Then, for
each exemplar, we replace the category word in
each sentence with the exemplar and obtain the
same activations. The typicality score is the cosine
similarity of the original sentence embedding and
that of the replaced sentence, averaged across sen-
tences. The sentence embeddings can be obtained
from any layer in the model; we test the method
separately for all layers. Formally, given a cate-
gory c and an examplar ef, a set of sentences .S,
containing the category word ¢, and a SE(-) func-
tion which outputs a sentence embedding from a
specific layer, the typicality score is computed by

|Se|

¢ = |S’Zcos (SE(S SE(sg% ) ()

j
where S;_, .

¢ is $7 with ¢ replaced by e¢, and
cos(+,+) is the cosine similarity operator.

As they rely on paradigmatic substitution, nei-
ther BERT-MLM nor BERT-SentEmb explicitly at-
tempt to disambiguate exemplar or category words,
but one can argue that some form of sense selection
happens through BERT’s contextual modeling and
the selection of category contexts. This ensures
that the word orange is used in fruit compatible
contexts, thus hopefully filtering out contexts com-
patible with other senses (e.g. color), when predict-
ing typicality within the fruit category. But there
is no disambiguation of the category word, as all
of its contexts are randomly sampled. This might
introduce some noise as category examples with
another sense (e.g., fruit of their labor) or even
POS (e.g., the trees fruit early) might be sampled.

4.1.3 Masked Language Modeling with
Taxonomic Sentences
(BERT-MLM-Taxo)

Inspired by Misra et al. (2021)’s Taxonomic Sen-
tence Verification method, our third CLM-based
method is similar to BERT-MLM, but different
in that it uses faxonomic propositions instead of
sampled sentences. These propositions are in the
form "A(n) X is a(n) Y", where X and Y are ex-
emplars e and categories c, respectively. Typical-
ity scores are obtained in the same way as BERT-
MLM: exemplar subtokens are masked in the taxo-

nomic proposition, MLM logits are obtained from
the model, then the product of the softmaxed log-
its (probabilities) is the typicality score (same as
Eq. 1). While these sentences provide only narrow
contexts, and are somewhat artificial and different
from the BERT’s training data, they are informa-
tive in providing implicit mutual disambiguation of
both the exemplar and category words.

BERT-MLM-Taxo is similar to Misra et al.
(2021), but it differs in two ways. First, Misra et al.
(2021)’s method uses CLMs to compute the proba-
bility of the category word in the taxonomic propo-
sition (i.e. P(c|ef)), while our method does the
opposite (P(ef|c)) to more resemble how humans
are probed for the task. Second, Misra et al. (2021)
calculates conditional probabilities for masked lan-
guage models such as BERT using the formulation
introduced in Wang and Cho (2019): separately
masking each subtoken in the word and passing
these separately masked variants of the taxonomic
sentence through the model, summing the masked
subtokens across variants. While this method is
more theoretically founded (as BERT is not an
incremental language model and cannot compute
probabilities through the chain rule), it is subject
to skewed MLM logits if used on exemplars?, as a
result of words being broken into subtokens (exam-
ple from Misra et al. (2021): if the word ostrich is
segmented into ostr and ich, then the probability of
ich given that it is preceded by ostr is anomalously
high, skewing the sequence probability). Thus, we
mask all subtokens of the exemplar and treat the
resulting probabilities as a sequence.

4.2 BERT-Based ''Static'' Representations

The next CLM-based methods derive static word
representations from contextual representations
computed over a corpus S which includes sen-
tences containing category words as well as sen-
tences containing exemplar words. We use cosine
similarity between category and exemplar embed-
dings for typicality scores s§ = cos(R(ef), R(c)),
where R(-) provides the static representations of
the category and exemplar. We derive static word
representations by averaging all hidden state activa-
tions of a word over S (BERT-Avg), or clustering
these hidden states, allowing for sense modulation
(BERT-MPro). For this set of methods, our hypoth-
esis is that the vectorial space induced by BERT
captures typicality, as opposed to the language mod-

2All category words are treated as one subtoken.
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eling capabilities used in the methods of Sec. 4.1.

4.2.1 Averaged Contextual Embeddings
(BERT-Avg)

The first approach for generating static word type
vectors from contextualized word foken embed-
dings is to simply average them (Bommasani et al.,
2020). For each sentence in S, we compute and
store the contextual representations of the word at
each layer of the BERT model. We then average
these representations over sentences for each word,
giving a static embedding for each layer, for each
category and exemplar. The typicality score of a
pair (e§,c) is computed as the cosine similarity
between the static embeddings of the representa-
tion of ef and of the representation of c. As with
BERT-SentEmb, we test the method separately for
all layers. Note that this approach inherits the prob-
lem found in classical static embeddings that it
conflates all possible senses of a word.

4.2.2 Multi-Prototype Contextual
Embeddings (BERT-MPro)

To further exploit context, we use multi-prototype
BERT embeddings (Chronis and Erk, 2020). For
each category name and exemplar, we use k-means
to cluster the word’s contextual embeddings com-
puted from its sampled sentences, yielding, for a
given k, k cluster centroids for each layer, which
disambiguate the k different possible meanings of
the word. Following Chronis and Erk (2020), we
predict scores using the maxsim(-, -) function be-
tween the cluster centroids of the category name
and exemplar, which yields the maximum similar-
ity value of category-exemplar centroid pairings.
Formally, for a given k and layer [, and set of cluster
centroids 7(w)}...7(w)} for category ¢ and exem-
plar e, the similarity s is defined by

7(€5)k)

3)
where cos(-,-) is the cosine similarity measure.
Following Chronis and Erk (2020), we sidestep
tuning the number of clusters k and simply take
as input to the maxsim operator the union of all
clusters from £ < 15. Furthermore, we also test
the embeddings from all layers separately.

max  cos(7(c)

. C
maxstmic,e;) = .
(c,) 1<j<k,1<t<k 77

4.3 WordNet-Based Methods

Our second class of methods uses WordNet (Miller,
1995) to compute typicality scores. Let us sup-

pose that a category word c and exemplar word
e$ are mapped to synsets s(c) and s(ef), respec-
tively. Only noun synsets are considered for ¢ and
es. The hypothesis here is that the more closely
linked s(c) and s(ef) are in the WordNet graph, the
more the exemplar is typical of the category. To
measure this "linkage" between exemplars and cat-
egories, we use two WordNet similarity measures,
thus yielding two sets of WordNet-based methods.

4.3.1 Shortest Path (WNSP, WNSP-noWSD)

Our first similarity is the shortest path between
s(c) and s(ef) along hypernym/hyponym edges
of WordNet. Given that exemplars and category
words might be linked to multiple synsets, we need
to aggregate the similarities between synsets. A
first method, called WNSP-noWSD, is to aver-
age the similarities between all synsets s(c) and
s(ef). The second method (WNSP) tries to disam-
biguate between possible synsets, relying on the
maxsim(-, -) operator, but defined over synset sim-
ilarities (instead of cosine similarity over clusters,
as in BERT-MPro). Formally, for a category name
c and exemplar e, the typicality score s{ is equated
to maxsim(c, e ), which is defined by

mazsim(c,ef) = max sim(s(c),s(ef)) (4)

5(c),s(ef)
where sim(-) denotes the shortest path similarity.
Note that, irrespectively of the disambiguation
process, the shortest path similarity possibly lacks
expressivity, as synsets of different exemplars can
be at the same distance of the category synset.

4.3.2 Lin Similarity (WNIC, WNIC-noWSD)

For a more expressive method, we use the Lin sim-
ilarity measure (Lin et al., 1998), which computes
similarity using the most specific ancestor node and
Information Content (IC) (computed via Wikipedia
text dump), a measure of specificity for a concept
closely linked to frequency (Resnik, 1995), thus
combining frequency with hierarchical semantic
knowledge. Pedersen (2010) show that augment-
ing WordNet with IC results in higher correlation
with human judgments on similarity and related-
ness tasks. Formally, let /C(-) and les(-, -) denote
information content and least common subsumer
(specific ancestor node), respectively, the similarity
between synsets s(c) and s(ef) is defined by

. ey 2% IC(les(s(c), s(ef)))
Hints(), 50 = TFes() + 100 (es)

(2

®)
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We then can aggregate similarities by averaging,
which defines the method WNIC-noWSD, or by
using Equation 4 where sim(+) is chosen to be the
Lin similarity. This latter method is called WNIC.

5 Experiments

5.1 Datasets

As ground truth typicality ratings, we use three
datasets of human typicality ratings, one from
Rosch (1975) (young adult ratings) and two from
Morrow and Duffy (2005) (young and older adult
ratings). The two dataset sources were produced
at different time periods (1975 for Rosch and 2005
for M&D), with different sample sizes (209 partic-
ipants and 54, respectively) and potential cultural
differences (US residents and UK residents, respec-
tively) and with different protocols. Human ratings
were obtained by scoring a taxonomic sentence for
Rosch and by scoring category-exemplar pairs for
M&D. The datasets contain varying number of cat-
egories (11 for M&D, 10 for Rosch) and exemplars
per category (29-128 for M&D, 42-54 for Rosch),
with 7 overlapping categories between the two
sources.’ The human ratings between the two splits
of M&D are strongly correlated (average category
Spearman correlation: 0.857, see Appendix A.2).
However, the correlation between the Rosch rank-
ings and M&D rankings on the category-exemplar
intersection of the datasets are much lower, likely
because of the differences outlined above (average
category Spearman: 0.656 and 0.574 for Rosch vs
M&D young and older adults, respectively). We
follow the preprocessing procedure of Heyman and
Heyman (2019), (see Appendix A.1). Our auxiliary
corpus S is extracted by sampling sentences from
Wikipedia, described in Appendix A.3.

5.2 Baseline and Competing Methods

Word Frequency The first baseline is typicality
scores as the exemplar’s number of occurrences in
the corpus S. It is natural to think that more typical
examples are more popular words, and Heyman
and Heyman (2019) show that frequency partly
accounts for human ratings in the M&D datasets.

PPMI-SVD, Word2Vec Other baselines are the
cosine similarities between the category-exemplar
static word embeddings from count-based (singular
value decomposition of positive pointwise mutual

3See Table 4 in Appendix for category/exemplar statistics.

information matrix: PPMI-SVD) and prediction-
based (Word2Vec skip-gram negative sampling)
algorithms. For baseline details, see Appendix A.4.

Taxonomic Sentence Verification We use the
Taxonomic Sentence Verification method of Misra
et al. (2021), using bert-base-uncased. The dif-
ferences with BERT-MLM-Taxo can be found in
Sec. 4.1.3.

5.3 Results and Analysis
5.3.1 Method Performance

Mean Spearman correlations for all methods are
reported in Table 1. #

BERT-based Methods Our first main result is
that the BERT-based methods’ all improve over
baselines on the M&D datasets. For the Rosch
dataset, only BERT-MPro and Misra et al. (2021)’s
method improve over Word2Vec. BERT-MPro has
the highest correlations of the BERT based methods
across datasets, with Misra et al. (2021)’s method
only slightly edging it on the Rosch dataset.
Comparing the substitution-based methods from
Sec. 4.1, BERT-SentEmb and MLM-Taxo have
similar performance. BERT-MLM-Taxo performs
better than BERT-MLM, showing that taxonomic
sentences provide narrow yet more informative con-
texts than a randomly sampled corpus simply based
on the category word, as they allow for mutual
disambiguation of category and exemplar words.
Misra et al. (2021)’s method performs worse than
BERT-MLM-Taxo on the M&D dataset but bet-
ter on the Rosch dataset.® These discrepancies
across datasets can be attributed to different proto-
cols for obtaining human ratings: scoring category-
exemplar pairs for M&D and scoring a taxonomic
sentence for Rosch. They also account for the per-
formance differences of the frequency baseline,
which yields higher correlation scores on M&D
than on the Rosch dataset. Typicality scores are
dissociable from lexical frequency when subjects
judge whether a sentence is a good example of their
idea of the category. Our results are in line with
Mervis et al. (1976), showing that Rosch dataset
scores are not correlated with frequency.
Comparing the word embedding methods from
Sec. 4.2, the performance increase from BERT-Avg
to BERT-MPro shows the importance of disam-

“See Table 7 in Appendix A.6 for results by category.
SRecall that we use bert-base-uncased.
This was the only dataset used in Misra et al. (2021).
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biguation. Layer-wise performance can be found
in Appendix A.8. It should be noted that for BERT-
MPro, the best performing layer was layer 10,
confirming Chronis and Erk (2020)’s claim that
similarity-based task performance peaks in layers
8-10,7. Later layers show more contextual vari-
ation (Ethayarajh, 2019) capturing finer-grained
sense differences. Inversely, for BERT-Avg earlier
layers perform best as they include less contextual
variation, making the mean more stable.

WordNet-based Methods For the WordNet-
based methods, WNIC achieves the highest cor-
relations across datasets, and is competitive with
the best BERT-based methods. This confirms the
findings of Pedersen (2010) on other intrinsic tasks
such as similarity. Disambiguation in the WordNet
methods seems crucial, as the variants using aver-
aging perform worse than their maxsim versions.
WNIC’s high performance shows the importance
of frequency information.

Conclusion The experimental results confirm the
importance of handling polysemy for both BERT-
and WordNet-based methods. Note that the best
performing method (last row), which combines
BERT-MPro and WNIC, is discussed in Sec. 6.

5.3.2 Polysemy Analysis

Experimental results show that disambiguation al-
lows the improvements of BERT-MPro over BERT-
Avg and WNIC over WNIC-noWSD. We now
study whether the improvement is larger when the
number of senses is larger. Our hypothesis is that
the more polysemous a word, the more imprecise
its representation without disambiguation, and the
larger the performance increase from using disam-
biguation with the maxsim operator. This analysis
is difficult to do because: (i) we don’t have access
to "true" senses, and (ii) both exemplar and cate-
gory words can be polysemous. One solution is to
use WordNet synsets as a proxy for senses.
Looking at the estimated polysemy degree for
the category words, we find that 8 of the 11 cate-
gory words are associated with 2 senses or more,
with the maximum ("tools") having 8 senses. Align-
ing with results for M&D-young-adults, we find
that BERT-MPro yields the largest correlation in-
creases over BERT-Avg for the categories asso-
ciated with polysemous category words: BERT-
MPro yields above-average p increase for 6 of

"They denote this as layers 7-9 in their paper (0-indexed);
we index starting at 1 to denote the embedding layer as 0.

the 8 polysemous categories, with the largest in-
crease (+0.2) for the most ambiguous category
word "tools". However, the same analysis on the
same dataset with WNIC and WNIC-noWSD does
not yield the same trend: while disambiguation
leads to a greater relative increase, some of the
category words with the least polysemy (animals,
insects) have the largest performance improvement
from noWSD to WSD (see Appendix A.9 for more
details). Looking at the average number of synsets
for exemplars, it is not easy to see a trend in the
performance improvements. Further analysis is
needed and we leave a detailed study on polysemy
and typicality for future work.

6 Combining CLMs and Lexical
Networks

Given that WNIC and BERT-MPro rankings
achieve the highest correlations, questions arise:
how similar are the rankings produced by the two
methods? If sufficiently different, how can we com-
bine them? To answer these questions, we perform
a series of analyses. We constrict this depth-first
analysis to just the younger adults M&D dataset.

6.1 Method Complementarity Study

BERT and WordNet provide different models of
lexical meaning: BERT is word-oriented and ex-
ploits distributional statistical patterns, while Word-
Net is sense-oriented and exploits more abstract
relations. To test whether this leads to different
predictions, we compute category-wise Spearman
correlations between BERT-MPro and WNIC rank-
ings. The results are given in the fourth column
in Table 2. The values range from 0.274 to 0.570
with six categories below 0.4. This moderate cor-
relation shows some complementarity between the
two rankings. Next, we present how different the
two methods’ rankings of certain exemplars can
be in the first four columns of Table 3, showing
how complementarity manifests on a granular level.
This study raises the question of combining BERT-
based methods with WordNet-based methods.

6.2 A Simple Ensemble Method

As an ensemble method, we take the raw scores of
BERT-MPro and WNIC, convert them to z-scores
(separately for each method and category), then
sum them.® As shown in the last row of Table 1,

8As an alternative ensemble method, we present a short

study of KnowBERT, a CLM enhanced with WordNet knowl-
edge, in Appendix A.10.
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Method Class | Method M&D-Young | M&D-Old | Rosch
Baselines Frequency 0.323 0.296 0.059
PPMI-SVD 0.236 0.227 0.294
w2V 0.260 0.296 0.338
BERT BERT-SentEmb 0.381 0.373 0.289
BERT-MLM 0.354 0.358 0.238
BERT-MLM-Taxo 0.396 0.393 0.303
Misra et al 0.338 0.280 0.396
BERT-Avg 0.428 0.405 0.298
BERT-MPro 0.473 0.451 0.386
WordNet WNSP-noWSD 0.114 0.045 0.266
WNIC-noWSD 0.152 0.128 0.318
WNSP 0.213 0.136 0.295
WNIC 0.467 0.456 0.448
Ensemble BERT-MPro + WNIC 0.547 0.531 0.528

Table 1: Mean across categories (See Table 7 in Appendix A.6 for results by category) of Spearman correlations for each
method for the three datasets (p < .001). Largest correlations among singular methods for each dataset are bold-faced for
BERT-based methods and WordNet-based methods. The last line is the overall best method and scores are also bold-faced. Note
that for BERT-AVG, BERT-MPro, and BERT-SentEmb, the best performing layer is shown (layers 1, 10, and 11, respectively;
see Appendices A.7 and A.8 for a layer wise analysis).

Category MPro WNIC MPro + WNIC | MPro vs WNIC | Avg. Increase
Animals 0.665  0.522 0.697 0.524 0.125
Birds 0461  0.391 0.533 0.331 0.100
Clothes 0.498  0.491 0.541 0.570 0.024
Flowers 0.206  0.148 0.224 0.351 0.006
Fruits 0.486  0.365 0.469 0.397 0.076
Furniture 0.657  0.635 0.763 0.369 0.140
Insects 0.366  0.429 0.408 0.476 0.043
Instruments | 0.527  0.656 0.620 0.498 0.038
Tools 0.366  0.584 0.607 0.274 0.134
Vegetables | 0.579  0.600 0.739 0.346 0.102
Vehicles 0.389 0.314 0.418 0.529 0.053
Mean 0.473  0.467 0.547 0.424 0.077

Table 2: Category wise Spearman correlations between each method and human rankings from (first three columns),
Spearman correlations between BERT-MPro and WNIC rankings (fourth column), and the increase of performance
of the ensemble method over MPro and WNIC (increases are averaged over the two individual methods). Results
are shown for the Morrow and Duffy young adult dataset.

BERT-MPro combined with WNIC achieves the
highest correlation (greater than 0.5) with human
rankings across all datasets, closing the gap on
the human performance given by the inter-dataset
correlation between Rosch and M&D older adults.
The category Spearman correlations for BERT-
MPro, WNIC and the ensemble are shown in Table
2. We find that the lower the correlation between
the two methods (second from right column), the
larger the improvement by combining: we find
a rank correlation of —0.555 between the inter-
method correlation and the average correlation in-
crease of the ensemble (the last column of Table 2),
showing that the more different the two methods
rankings, the more ensembling increases perfor-
mance. In Table 3 are rankings of certain words
within their category, showing how the ensemble
improves rankings for exemplars that are badly
ranked by one of the methods.

7 Conclusion

We show that BERT and WordNet-based methods
are able to outperform previous methods in typi-
cality prediction, but only with a disambiguation

Category Word WNIC MPro WNIC + MPro | Human
Birds owl 15 5 4 12
Birds swallow | 5 22 11 11
Clothes shirt 10 4 3 6
Clothes suit 22 8 13 12
Vegetables  lettuce 7 16 11 11
Vegetables  sprout 17 11 12 12

Table 3: Rankings of certain exemplars within their
category, as scored by WNIC, BERT-MPro, WNIC +
BERT-MPro, and the human ranking. Examples are
from the Morrow and Duffy young adult dataset.

mechanism, either implicit through the selection of
contexts or explicit via the estimation of distinct
word senses. These results emphasize the impor-
tance of polysemy in assessing typicality, an issue
that had been overlooked in previous work. We also
show that BERT and WordNet provide complemen-
tary information that are relevant to modeling cate-
gory structure: a simple ensemble of the two leads
to the best correlations with human judgements.

We plan to further analyze the differences be-
tween CLMs and WordNet in typicality, and find
more sophisticated ways to inject semantic knowl-
edge into CLMs. Also, we want to use datasets in
other languages, to find if the results generalize.
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Limitations

The human typicality judgements we use from Mor-
row and Duffy (2005) is limited to English and uses
only participants all from the UK, while the rank-
ings from Rosch (1975) are all from the United
States; thus, geographical/cultural biases could af-
fect the typicality judgements (certain bird species
or clothing exemplars could be more common in
different areas, which could affect how human’s
judge their typicality).

While we try to analyze exactly why disambigua-
tion increases performance (BERT-MPro, WNIC-
WSD) in Sec. 5.3.2 and Appendix 8, we acknowl-
edge this analysis is far from perfect: we don’t
have access to "gold" senses to measure polysemy
(just linked WordNet synsets), and no single trend
emerges from the analysis across all the methods.

Lastly, one limitation in our BERT-based meth-
ods is that we use the uncased pretrained model.
In hindsight, we might have avoided some ambigu-
ous word uses by using a cased model instead:
for example, the model might have been able to
more easily distinguish between "Apple", the com-
pany, and "apple", the fruit. However, the impact
might have been marginal, as the model can still
rely on contextual clues of the surrounding text,
and such cases of ambiguity are arguably rare in
the typicality datasets. Another possible limitation,
specific to the BERT-MLM and BERT-SentEmb
methods, comes from the current sentence sam-
pling procedure, as it is based on the category word
only, thus possibly introducing noise for words that
have homonyms with different POS (e.g., noun-
verb honomyms).
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Category M&D | Rosch
Animals 128

Birds 73 54
Clothes 79 48
Flowers 45

Fruits 59 44
Furniture 39 45
Insects 44
Instruments | 59

Sports 47
Tools 59 49
Toys 42
Vegetables | 29 42
Vehicles 68 46
Weapons 52
Total 682 470

Table 4: Number of exemplars per category for two datasets:
Morrow and Duffy (2005) and Rosch (1975).

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu.
2020. Perturbed masking: Parameter-free probing
for analyzing and interpreting bert. arXiv preprint
arXiv:2004.14786.

A Appendix

A.1 Dataset Preprocessing

We follow the preprocessing procedure of Hey-
man and Heyman (2019), discarding multi-word
examples (such as red cabbage) and examples con-
taining punctuation. Although these cases could
have been handled by BERT-based methods using
subtokens, the composition of several terms is non-
trivial for word embedding based models (Lenci,
2018), and we are more concerned with comparing
category structure than how the different models
handle multi-word examples or punctuation. Also
following Heyman and Heyman (2019), we discard
categories with less than 20 examples leaving 11
categories in the Morrow and Duffy (2005) datasets
and 10 in the Rosch (1975) dataset. As some of
the baseline models have fixed vocabularies (PPMI-
SVD, Word2Vec, WordNet), we remove any out
of vocabulary examples from the dataset. While
we could have used median or minimum typicality
scores for out of vocabulary examples, we wanted
to ensure that the comparison of performance was
fair across all methods by only evaluating on ex-
amples that have a valid typicality score for all
methods.

A.2 Dataset Agreement

Tables 5 and 6 show the category-wise agreement
between the human rankings of the three datasets.
Notice that the agreement between the two Morrow
and Duffy datasets are much higher than that of

Category Spearman
Animals 0.916
Birds 0.868
Clothes 0.858
Flowers 0.747
Fruits 0.891
Furniture 0.778
Insects 0.897
Instruments | 0.909
Tools 0.791
Vegetables | 0.885
Vehicles 0.887
Mean 0.857

Table 5: Spearman correlations between young adult
and older adult typicality rankings for Morrow and
Duffy (2005).

Young vs Rosch | Old vs Rosch | N
Birds 0.561 0.449 43
Clothes 0.736 0.647 33
Fruits 0.871 0.680 38
Furniture 0.762 0.547 20
Tools 0.535 0.613 25
Vegetables | 0.326 0.227 22
Vehicles 0.802 0.852 29
Mean 0.656 0.574 30

Table 6: Spearman correlations between the young adult
and older adult rankings of Morrow and Duffy (2005)
and Rosch (1975) on the intersection of categories and
exemplars between the two datasets. The size of the
intersection is shown on the far right column.

Rosch and the two M&D datasets.

A.3 Sentence Sampling

For an auxiliary textual dataset S, we use
Wikipedia, specifically searching for sentences that
contain the singular form of each category word
or exemplar, in order to have comparable contexts.
We found text from Wikipedia dumps can be noisy
(such as: summarization tables, lists of related top-
ics, other sequences that are not actual sentences),
so we remove sentences that are too short or long
(number of words must be between 5 and 200).
For BERT-AVG and BERT-MPro, we sampled 300
sentences for every exemplar and category word.
For BERT-MLM and BERT-SentEmb, we sampled
10000 sentences for each category.

A.4 PPMI-SVD and Word2Vec Details

The PPMI matrix was computed from English
Wikipedia using a window size of 2. We exper-
imented with a window size of 5, but found the
performance to be worse. We also use off-the-
shelf Word2Vec (Mikolov et al., 2013) embeddings
(skip-gram with negative sampling, 300 dimen-
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sions, GoogleNews training corpus).

A.5 Runtimes

Frequency, PPMI-SVD, Word2vec, and both Word-
Net baseline methods take <5 seconds to compute
typicality scores on CPU. The Wikipedia word
counts used in Frequency and WordNet-IC take
1hr to compute on CPU. The sentence sampling
from Wikipedia takes 2hrs to complete. BERT-
WordPiece takes 1 min to complete on CPU. BERT-
AVG and BERT-MLM take 3hrs to complete on
the GPU mentioned in the text; BERT-SentEmb,
5hr; and BERT-MPro, 10hr.

A.6 Results by Category

Table 7 shows the Spearman’s correlation values
for each individual category. Note that just the top
performing methods are shown.

A.7 BERT-SentEmb Performance by Layer

o
W
S

Spearman Correlation
o
w
N

0.28

2 4 6 8 10 12
BERT Layer

The above figure shows the mean Spearman corre-
lations by layer for the BERT NSP method.

A.8 BERT-AVG and MultiPrototype
Hyperparameter Performance

0.401 0.387 0.387 0.371 0.371 0.365 0.353 0.346 0.327 0.316 0.313
0.398 0.396 0.406 0.399 0.405 0.404 0.408

0.4 0.395 0.407 0.4 0.444 0.409
0.404 . 0.408

0.405 0.409

0.406

0.402 0.447 0.461 0.447 0.461 0.446 (U 1iV]

0.407 0.448 0.45 0.456 0.464 0.459 HoEl)

Number of Clusters

42 0.458 0.456 0.466 0.463 [(Uci:p

0.452 0.461 0.468 0.457 0.46 [WJELE]

0.447 0.464 0.47 0.465 0.469 [WuDLS

0.449 0.467 0.467 0.468 0.461 [UELE]

0.446 0.458 0.465 0.461 0.463 Uil

0.445 0.464 0.474 0.461 0.469 [LDEE

0.465 0.475 0.468 0.463 LElik)

The above image shows average Spearman’s
correlation across all categories for BERT multi-
prototype embeddings for each combination of
layer index and number of cluster. Note that the
top row (number of clusters = 1) is the same as the
simple average of contextual representations.

A.9 Detailed Polysemy Analysis

To see whether the maxsim disambiguation mech-
anism is actually increasing performance more for
more polysemous examples, we can compare the
performance of the same methods with and without
disambiguation when evaluated on words with dif-
ferent number of linked WordNet synsets (a proxy
for the degree of polysemy). As shown in Table 8,
in general, BERT-MPro’s disambiguation increases
performance over BERT-Avg more for more pol-
ysemous categories (as measured by the synsets
linked to the category word). However, this gen-
eral trend is not seen when comparing WNIC to
WNIC-noWSD.
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Misra et al Bert-MLM-Taxo Bert-Avg Bert-MPro WNIC
Category M&D- M&D- Rosch | M&D- M&D- Rosch | M&D- M&D- Rosch | M&D- M&D- Rosch | M&D- M&D-  Rosch
Y O Y (0] Y O Y [0} Y [0}
Animals 0.558  0.525 0.528  0.508 0.569  0.530 0.665  0.649 0.522 0.555
Birds 0.284 0.130 0308 | 0.442 0.332 0.191 | 0.440 0311 0203 | 0461 0317 0.169 | 0.391 0310 -0.014
Clothes 0205 0.115 0.461 | 0527 0.587 0.171 | 0.506 0.528 0.301 | 0.498 0.573 0.484 | 0491 0487 0.570
Fruits 0232 0.191 0354 | 0287 0.357 0278 | 0390 0.338 0.406 | 0486 0433 0.592 | 0.365 0.403 0.442
Furniture 0.600 0.440 0.548 | 0.577 0429 0484 | 0.629 0.598 0320 | 0.657 0.602 0.235 | 0.635 0.553 0.658
Flowers 0.240 0.146 0.122  0.068 0.152  0.011 0.206 0.111 0.148  0.105
Insects 0.175  0.328 0.411  0.379 0.437 0.473 0.366  0.503 0.429 0415
Instruments | 0.309  0.331 0.667  0.715 0.626  0.686 0.527  0.602 0.656  0.659
Sports 0.467 0.536 0.530 0.379 0.498
Tools 0421 0.259 0.100 | 0.066 0.220 0.220 | 0.160 0.257 0.040 | 0.366 0.318 0.086 | 0.584 0.486 0.494
Toys 0.143 -0.001 -0.089 0.398 0.155
Vegetables | 0.390 0.312  0.241 | 0.364 0.281 -0.006 | 0.501 0.397 0.073 | 0.579 0.482 0.088 | 0.600 0.646 0.409
Vehicles 0.307 0.301 0.682 | 0364 0444 0.733 | 0.293 0.323 0.743 | 0.389 0.373 0.651 | 0.314 0.396 0.701
Weapons 0.655 0.429 0.454 0.779 0.567

Table 7: Category wise Spearman correlations with human typicality rankings for the four best BERT-based models
and the best WordNet-based model.

Category MProinc. WNICinc. | Cat. Synsets Exem. Synsets
Animals 0.096 0.517 1 2.992
Birds 0.021 0.362 6 2.712
Clothes -0.009 0.397 4 4.241
Flowers 0.055 0.028 4 2.022
Fruits 0.096 0.409 5 3.102
Furniture 0.028 0.165 1 4.590
Insects -0.071 0.432 2 2.705
Instruments | -0.099 0.456 1 2.423
Tools 0.206 0.155 8 5.136
Vegetables | 0.078 0.317 2 3.345
Vehicles 0.095 0.222 4 3412

Table 8: Increase in Spearman’s correlation from using BERT-MPro over BERT-Avg (middle left column) and from
using WNIC over WNIC-noWSD (middle right column) for each category. The number of linked WordNet synsets
for each category and their exemplars are shown in the right columns. Results are shown for the Morrow and Duffy
(2005) young adult dataset.

A.10 KnowBERT Results

The combination of CLMs and knowledge graphs is
an active research area, mainly the design of knowl-
edge enhanced CLMs (i.e. Wang et al. (2020), Ros-
set et al. (2020)). We use KnowBERT (Peters et al.,
2019), in which knowledge bases are embedded
into BERT via an integrated entity linker, which re-
trieves relevant entity embeddings and updates the
hidden states (we leave an in-depth description to
the paper). We consider a KnowBERT model with
WordNet as the knowledge base’ with the multi-
prototype method for computing typicality scores.
We get an average Spearman correlation of 0.446,
below that of WNIC and BERT-MPro, showing
that a general method for enhancing CLMs with
WordNet does not work well for typicality.

°Candidate WordNet synsets are found for KnowBERT
using a similar procedure as we use to find all possible synsets.
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