
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2172–2186
May 2-6, 2023 ©2023 Association for Computational Linguistics

Compositional Generalisation
with Structured Reordering and Fertility Layers

Matthias Lindemann1 and Alexander Koller2 and Ivan Titov1,3

1 ILCC, University of Edinburgh, 2 LST, Saarland University, 3 ILLC, University of Amsterdam
m.m.lindemann@sms.ed.ac.uk, koller@coli.uni-saarland.de, ititov@inf.ed.ac.uk

Abstract

Seq2seq models have been shown to strug-
gle with compositional generalisation, i.e. gen-
eralising to new and potentially more com-
plex structures than seen during training. Tak-
ing inspiration from grammar-based models
that excel at compositional generalisation, we
present a flexible end-to-end differentiable neu-
ral model that composes two structural opera-
tions: a fertility step, which we introduce in this
work, and a reordering step based on previous
work (Wang et al., 2021). To ensure differentia-
bility, we use the expected value of each step,
which we compute using dynamic program-
ming. Our model outperforms seq2seq models
by a wide margin on challenging compositional
splits of realistic semantic parsing tasks that re-
quire generalisation to longer examples. It also
compares favourably to other models targeting
compositional generalisation.1

1 Introduction

Many NLP tasks require translating an input object
such as a sentence into a structured output object
such as a semantic parse. Recently, these tasks
have been approached with seq2seq models with
great success. However, seq2seq models also have
been shown to struggle out-of-distribution on com-
positional generalisation (Lake and Baroni, 2018;
Finegan-Dollak et al., 2018; Kim and Linzen, 2020;
Hupkes et al., 2020), i.e. the model fails on exam-
ples that contain unseen compositions or deeper
recursion of phenomena that it handles correctly in
isolation.

Consider the example in Fig. 1. Arguably, any
model that produces the given semantic parse from
the input in a generalisable way has to capture the
correspondence between fragments of the input and
fragments of the output, at least implicitly. This
is challenging because of structural mismatches

1https://github.com/namednil/f-then-r

Figure 1: We model structural seq2seq tasks as the com-
position of differentiable fertility and phrase reordering
layers. The model is trained end-to-end without direct
supervision of the two structural layers.

between input and output. For example, the frag-
ment contributed by “flights" is discontinuous and
intertwined with the rest of the semantic parse.

In contrast to seq2seq models, grammar-based
models such as synchronous context-free grammars
(SCFGs) (Lewis and Stearns, 1968; Chiang, 2007)
explicitly capture the compositional process behind
the data and therefore perform very well in compo-
sitional generalisation setups. They can also model
common structural mismatches like the one shown
in the example. However, grammar-based models
are rigid and brittle and thus do not scale well.

In this work, we take inspiration from grammar-
based models and present an end-to-end differen-
tiable neural model that is both flexible and gen-
eralises well compositionally. Our model consists
of two structural layers: a phrase reordering layer
originally introduced by Wang et al. (2021) and a
fertility layer, new in this work, which creates zero
or more copies of the representation of any input
token. We show how to compose these layers to
achieve strong generalisation.

We use a simple decoder and essentially translate
each token after the fertility and reordering layers

2172

https://github.com/namednil/f-then-r

independently into one output token. We found this
to lead to better generalisation than using an LSTM-
based decoder. The simple decoder also makes it
easy to integrate grammar constraints to ensure
well-formed outputs, e.g. in semantic parsing.

Most seq2seq models tend to predict the end of
the sequence too early on instances that are longer
than seen in training (Newman et al., 2020). Our
model overcomes this by explicitly predicting the
length of the output sequence as a sum of fertilities.

We first demonstrate the expressive capacity and
inductive bias of our model on synthetic data. We
then evaluate on three English semantic parsing
datasets (Geoquery, ATIS, Okapi) and a style trans-
fer task (Lyu et al., 2021). We clearly outperform
seq2seq models both with and without pretrain-
ing in structural generalisation setups, particularly
when the model has to generalise to longer exam-
ples. Our model also compares favourably with
existing approaches that target structural generali-
sation, and we obtain state-of-the-art results on the
structural style transfer tasks.

To summarise, our main contributions are:

• an efficient differentiable fertility layer;

• a flexible end-to-end differentiable model that
composes two structural operations (fertility
and reordering) and achieves strong perfor-
mance in structural generalisation tasks.

2 Related Work

Fertility The concept of fertility was introduced
by Brown et al. (1990) for statistical machine trans-
lation to capture that a word in one language is
often consistently translated to a certain number of
words in another language. Tu et al. (2016) and
Malaviya et al. (2018) incorporate fertility into the
attention mechanism of seq2seq models. Cohn et al.
(2016); Gu et al. (2016) use heuristic supervision
for training their fertility models. In contrast to
prior work, we learn an explicit fertility component
jointly with the rest of our model.

Monotonic alignment Related to fertility is the
concept of monotonic alignment, i.e. an alignment
a that maps output positions to input positions
such that for any two output positions i < j,
a(i) ≤ a(j). Monotonic alignments are usually
modelled by an HMM-like model that places the
monotonicity constraint on the transition matrix
(Yu et al., 2016; Wu and Cotterell, 2019), leading to
a runtime of O(|x|2|y|) with x being the input and

y the output. Raffel et al. (2017) parameterise the
alignment using a series of Bernoulli trials and ob-
tain a training runtime of O(|x||y|). Our approach
also has O(|x||y|) runtime.

Compositional generalisation There is a grow-
ing body of work on improving the ability of neural
models to generalise compositionally in semantic
parsing. Good progress has been made in terms of
generalisation to new lexical items (Andreas, 2020;
Akyürek and Andreas, 2021; Conklin et al., 2021;
Csordás et al., 2021; Ontañón et al., 2022) but struc-
tural generalisation remains very challenging (Oren
et al., 2020; Bogin et al., 2022).

Herzig and Berant (2021) use a neural chart
parser and induce latent trees with an approach
similar to hard EM. Their model assumes that one
input token corresponds to a single leaf in the tree.
Zheng and Lapata (2022) re-encode the input and
partially generated output with a transformer for ev-
ery decoding step to reduce entanglement and show
considerable gains in structural generalisation.

There has also been work inspired by quasi-
synchronous grammars (QCFGs, Smith and Eisner
(2006)). Shaw et al. (2021) heuristically induce a
QCFG and create an ensemble of a QCFG-based
parser and a seq2seq model. Qiu et al. (2021) use
similar QCFGs for data augmentation for a seq2seq
model. Our approach does not require constructing
a grammar. Finally, Kim (2021) introduces neural
QCFGs which perform well on compositional gen-
eralisation tasks but are very compute-intensive.

Closest to our work is that of Wang et al. (2021)
who reorder phrases and use a monotonic atten-
tion mechanism on top. Our approach differs from
theirs in several important aspects: (i) we use fer-
tility instead of monotonic attention, which param-
eterises alignments differently; (ii) we apply the
fertility step first and then reorder the phrases, so
our model can directly create alignments where out-
put tokens aligned to the same input token do not
have to be consecutive; (iii) we predict the length
as the sum of the fertilities and not with an end-
of-sequence token; (iv) they use an LSTM-based
decoder network whereas we found that a simpler
decoder can generalise better.

3 Background

3.1 Structured Attention

We often want to model the relationship between
input x of length n and output y of length l by

2173

means of a latent variable Z. In particular, we
assume that Z ∈ Z ⊆ Bn×l is a boolean alignment
matrix. We want to predict y from a representation
produced by a function g(Z, x). In this case, the
marginal distribution

P (y|x) = EP (Z|x)P (y|g(Z, x)) (1)

can be intractable to compute because Z often has
exponential size in x. In some important cases
however we can formulate a similar but tractable
model by using structured attention (Kim et al.,
2017) which ‘pushes’ the expectation inside the
model:

P (y|x) ≈ P (y|g(Z̃, x))

where Z̃ = EP (Z|x)Z is now a ‘soft’ rather than a
boolean matrix. Note that Z̃ij = P (Zij = 1|x) is
a marginal probability that often can be efficiently
computed with a dynamic programme if P (Z|x) is
factorisable. We will use such an approach for our
model.

3.2 Marginal Permutations

In this section, we briefly review the method of
Wang et al. (2021) that we use in our model.

Wang et al. (2021) build on bracketing trans-
duction grammars (Wu, 1997) and show how to
compute a distribution over separable permutations
(Bose et al., 1998). A permutation is separable, iff
it can be represented as a permutation tree. Some
permutations are not separable. The internal nodes
of a permutation tree are labelled as ∧ or △ and
are interpreted as operations: ∧ concatenates the
values it receives from its left child with the value
from its right child, whereas △ concatenates them
in reverse order. For example, the permutation tree
t = (△ (∧a b) (△ c d)) represents the permutation
abcd → dcab. Let Rt(i, j) = 1 if the permutation
described by tree t maps position i to position j,
otherwise Rt(i, j) = 0.

Wang et al. (2021) show how to compute the ex-
pected permutation matrix R̃i,j ≜ EP (t|x)Rt(i, j)
in polynomial time with a CYK-style algorithm if
P (t|x) factors according to the CYK chart. Cru-
cially, the expected permutation can also be inter-
preted as a distribution over alignments, where R̃i,j

is the marginal probability that position i aligns to
position j. We will use this alignment distribution
as a building block in our model.

4 Overview of the Approach

In this section, we give a general overview of our
approach and defer the details to Sections 5 and 6.

Conceptually, we want to model the transduction
from input x of length n into output y of length l as
the composition of two edit operations. First, we
apply a fertility step, in which we decide for each
token what its fertility is, i.e. how many copies we
make of it. Assigning fertility of 0 corresponds to
deleting the token. This step yields an intermediate
sequence of tokens. We then reorder them using
permutation trees (see Section 3.2). In the last
step, we individually translate these tokens into
the output tokens. Fig. 1 shows an example where
the fertility step and reordering apply to vector
representations of tokens.

The fertility step and the reordering can be
represented as boolean matrices F ∈ Bn×l and
R ∈ Bl×l, respectively. These matrices denote
alignments between the sequences before and after
the operation. For example, Fi,j = 1 means that
input token i aligns to intermediate token j, i.e. j
is one of the copies of i.

With this conceptualisation, we would ideally
use the following probabilistic model P (y|x):

P (y|x) = EP (F |x)︸ ︷︷ ︸
Fertility

[
EP (R|x, F)︸ ︷︷ ︸

Reordering

P (y|x, F,R︸ ︷︷ ︸
Decoder

)
]

At training time, the true fertility values are un-
known but we observe the length l of y, so we
condition on it:

P (y|x) = P (l|x) · EP (F,R|x,l)P (y|x, F,R) (2)

where P (l|x) can be computed with dynamic pro-
gramming relying on the fertility model, as we
explain in the next section.

Computing the marginal likelihood and the gra-
dients is intractable. Instead of computing the like-
lihood exactly, one could sample and use a score
function estimator (Williams, 1992) but the result-
ing gradient estimates have high variance.

Instead, we use structured attention as discussed
in Section 3.1 and ‘push’ the expectations inside
the model:

EP (F,R|x,l)P (y|x, F,R) ≈ P (y|x, F̃ , R̃) (3)

with F̃ = EP (F |x,l)F and R̃ = EP (R|x,F̃)R. F̃

and R̃ now represent ‘soft’, differentiable versions
of fertility and reordering. They approach their

2174

discrete counterparts as P (F |x, l) and P (R|F̃ , x)
become peakier, which tends to happen over the
course of training. We can view (F̃ R̃)i,j =∑

k F̃i,kR̃k,j as a probability of aligning i to j in
the composition of the operations.

A tendency to memorise larger chunks of the
output might contribute to poor compositional gen-
eralisation (Hupkes et al., 2020). In order to avoid
this, we use a simple decoder that generates each
output token independently. A first attempt might
look like this:

P (y|x, F̃ , R̃) =
l∏

i=1

∑

j,k

P (yi|xj)F̃j,kR̃k,i (4)

where the summation over j and k marginalises
over all possible alignments to output position i.

Distinguishing copies The independence as-
sumptions in Eq. (4) imply that P (yi|xj) will have
the same distribution for all copies of xj , i.e. the
model cannot express a preference to translate the
first copy of Seattle to city and the second copy to
seattle in Fig. 1. To enable this, we distinguish
different copies of an input token.

We do this by defining F not as a matrix but as
a tensor F ∈ Bn×l×d where d is some fixed maxi-
mum fertility value. Let Fi,j,u = 1 iff intermediate
token j is the u-th copy of input token i. For ex-
ample, in Fig. 1, F4,6,1 = 1 and F4,7,2 = 1. With
this definition of F (and accordingly defined F̃),
we can define a stronger decoder:

P (y|x, F̃ , R̃) =
l∏

i=1

∑

j,k,u

P (yi|xj , u)F̃j,k,uR̃k,i

where we now additionally marginalise over which
copy of the input sequence we are translating.

5 Fertility and Alignment

In this section we describe how to compute F̃ =
EP (F |x,l)F , i.e. the expected alignment that results
from the fertility step given that the intermediate
token sequence will have length l.

In the previous section, we looked at the fertility
step mostly from the perspective of an alignment
between the input tokens and the intermediate to-
kens. However, the fertility step is parameterised
as assigning a fertility value fi ∈ 0, . . . , d ∈ N

to every token xi. We now show how to compute
F̃ efficiently as a function of the distribution over
fertility values P (f |x).

Figure 2: Efficiently computing the marginal probability
that the u-th copy of i is at position j. We partition the
intermediate sequence into four parts, and marginalise
over all possible ways of choosing v.

We denote the alignment that follows from f as
F (f), i.e. F (f)i,j,u = 1 iff intermediate token j is
the u-th copy of token i. F̃ can be expressed as:

F̃ = EP (F (f)|x,l)F (f) (5)

where we assume that the fertility values are inde-
pendent of each other conditioned on x:

P (F (f)|x) ≜ P (f |x) ≜
n∏

i=1

P (fi|x)

Note that conditioning on the output length l in
Eq. (5) introduces inter-dependencies between the
values. In order to compute F̃i,j,u, we need to
marginalise over all possible assignments to the
fertility vector f which satisfy F (f)i,j,u = 1. We
do this with a dynamic programming algorithm that
is similar to the forward/backward algorithm for
HMMs (Baum, 1972).

Computing marginals We characterise the situ-
ations where F (f)i,j,u = 1 as the integer solutions
to a set of equations (see also Fig. 2). First, in order
for intermediate token j to be the u-th copy of i,
there should be j−u intermediate tokens generated
by input tokens preceding i:

f1 + . . .+ fi−1 = j − u (6)

Second, the fertility fi has to be at least u. We
capture this by requiring

fi = u+ v (7)

with v ≥ 0. Finally, the input tokens following i
have to contribute the remaining l− j − v interme-
diate tokens:

fi+1 + . . .+ fn = l − j − v (8)

We then compute the probability of creating a
sequence of length l, where the j-th intermediate

2175

token is the u-th copy of i, by marginalising over v
(dropping x for readability):

P (F (f)i,j,u = 1, f0 + . . .+ fn+1 = l) (9)

=

min(l−j,d−u)∑

v=0

P (f0 + . . .+ fi−1 = j − u)×

P (fi = u+ v)P (fi+1 + . . .+ fn+1 = l − j − v)

We handle the boundary cases with i = 1, i =
n by adding dummy variables f0 and fn+1 and
setting P (f0 = 0) = P (fn+1 = 0) = 1.

In order to compute Eq. (9), we also compute
‘forward’ probabilities P (f0 + . . . + fi = h) and
‘backward’ probabilities P (fi + . . . + fn+1 = h)
for all i, h. This can be done recursively:

P (f0 + . . .+ fi = h) =

d∑

r=0

P (fi = r)P (f0 + . . .+ fi−1 = h− r)

Finally, F̃i,j,u = 1/P (f0 + . . . + fn+1 = l) ×
P (F (f)i,j,u = 1, f0 + . . . + fn+1 = l) because
F̃i,j,u was defined in Eq. (5) by conditioning on the
length l. We provide pseudo-code for all steps in
Appendix A.

Runtime The runtime of the fertility step is dom-
inated by computing Eq. (9). Note that v has a
range of at most d, thus, we can compute the prob-
abilities for all i, j, u in O(n · l · d2) time. Eq. (9)
can be computed in parallel for each i, j, u.

6 Composing Fertility and Reordering

We will now describe in detail how P (F |x) and
P (R|x, F̃) are defined and how the fertility and
reordering layers are composed.

6.1 Fertility Layer

The fertility layer takes a desired output length
l and a sequence of vectors x1, . . . ,xn as input
(GloVe embeddings (Pennington et al., 2014) in
our case) and returns a marginal alignment F̃ (see
Section 5) and a sequence of vectors h1, . . . ,hl

for use as input to the next layer. We compute
the distribution over fertilities by first encoding
x1, . . . ,xn with a bidirectional LSTM, yielding a
sequence of hidden states hf

1 , . . . ,h
f
n. We then

model P (fi|x) = softmaxτ (MLPf (hf
i)), where τ

is the temperature parameter of the softmax.

We use F̃ (Eq. (5)) as a form of structured atten-
tion to compute the input to the reordering layer:

hj =
∑

i,u

F̃i,j,u(xi + wu)

where wu is a learned embedding indicating that
j is a u-th copy of some token. Intuitively, hj for
an intermediate token j represents the correspond-
ing token in the input sequence and also indicates
which copy of that token it is.

6.2 Reordering Layer

Given the output h1, . . . ,hl from the fertility layer,
the reordering layer computes the alignment dis-
tribution R̃ as the expected permutation following
Wang et al. (2021). This procedure involves popu-
lating a CYK-style chart with scores. We first run
a bidirectional LSTM with a skip connection over
h and compute a contextualised representation of
the tokens after the fertility step:

hr
i = [LSTMr(h≤i),LSTMr(h≥i)] + hi

Based on these representations, we compute scores
for the chart following Stern et al. (2017).

6.3 Decoder

Our decoder factors as follows (see Section 4):

P (y|x, R̃, F̃) =

l∏

i=1

∑

j,k,u

P (yi|xj , u)F̃j,k,uR̃k,i

︸ ︷︷ ︸
P (yi|x,R̃,F̃)

P (yi|xj , u) conditions only on the original input
token and on the index indicating which copy of
this token we are translating. For this reason, we
contextualise the input with a bidirectional LSTM
with a skip connection:

h′
j = ρ[LSTMd(x≤j),LSTMd(x≥j)] + xj (10)

with ρ as hyperparameter.
We experiment with three versions of the

decoder. In (i), we parameterise P (yi|xj , u)
as P (yi|xj , u) = softmax(WuMLP(h′

j)). In
(ii), we additionally use a copy mechanism (Gu
et al., 2016). In (iii), we use an autoregressive
variant where we encode y<i with an LSTM,
defining P (yi|y<i, u) = softmax(WuMLP(h′

j +
LSTM(y<i)).

2176

6.4 Training

As mentioned in Section 4, at training time we
condition on the observed length l of y: P (y|x) =
P (l|x)P (y|x, F̃ , R̃) with F̃ conditioned on l. We
use a weighted version of the log likelihood as the
objective function:

∑

i

λ1 logP (li|xi) + logP (yi|xi, li)

with i ranging over the training examples.
For the semantic parsing tasks, we found it nec-

essary to give our model a reasonable starting point
in terms of alignments. We encourage it to respect
high-confidence automatic alignments during the
first m training epochs by adding the following
term to our objective function:

λ2

∑

(i,j)∈A
log

∑

k,u

F̃i,k,uR̃k,j

where A is the set of alignments with a posterior
probability of at least χ according to an IBM-1
alignment model (Brown et al., 1993).

Initialising an alignment model with alignments
from a simpler model was a common strategy in sta-
tistical machine translation (Och and Ney, 2003).

6.5 Inference

In order to make predictions with a trained
model, we want to compute the most likely
output y given the input x. It is convenient
to treat the length as a discrete variable and
use the same algorithm for computing F̃ as
derived for training. We therefore search for
argmaxy P (y|x) = argmaxl P (l|x)P (yl|x, l)
with yl = argmaxy P (y|x, F̃ , R̃). For any given l

we can easily find yl in versions (i) and (ii) of the
decoder:

yli = argmax
yi

P (yi|x, R̃, F̃)

For version (iii) of the decoder, we use greedy
search instead. It would be too costly to compute
yl for all l, so we explore only the top k most likely
lengths.

Grammar-based decoding In executable seman-
tic parsing, we want to produce only well-formed
outputs, which can be characterised by a context-
free grammar G. In practical applications, this
grammar is needed to execute the query, so there is

little extra engineering effort in using it for decod-
ing. We search for

yl = argmax
y∈L(G)

P (y|x, l)

Because of the simple decoder we can do this ex-
actly by applying a modified version of Viterbi
CYK. Unlike in parsing though, the string is not ob-
served because it is exactly what we are looking for.
Therefore, we fill all entries from i to i in the chart
C with CA,i,i = maxA→a∈G P (yi = a|x, R̃, F̃).
We then continue with the normal Viterbi CYK
with weights of 1 on all other rules.

7 Evaluation

7.1 Synthetic Data
In order to probe the expressive capacity and in-
ductive bias of our model, we evaluate on mirror-
ing task T = {(w,wwR)|w ∈ Σ∗}, e.g. abc →
abccba. The challenge is that the length of the de-
pendency between output tokens grows with the
length of the example. Models are trained on ex-
amples with input lengths 3 to 9, and tested in two
setups. In the first setup (Length), the model has to
generalise to examples with lengths 11 to 20; we
use examples with length 10 as validation data. In
the second setup (unseen combination, UC), the
model only sees the symbols x, y and z grouped
together as xyz on the input side at training time.
The model is tested on examples that contain x,y
or z adjacent to other symbols. See Appendix B.1
for further details on the setup.

We compare our model without copying (F→R)
with a variant that first applies the reordering and
then the fertility step (R→F) and autoregressive
variants of the two (AR F→R and AR R→F). As
baselines, we also compare with an LSTM-based
seq2seq model with attention and a Transformer
with relative positional embeddings, which was pre-
viously shown by Csordás et al. (2021) to perform
well at compositional generalisation. AR R→F has
similarities to Wang et al. (2021) who first reorder
and then use an autoregressive decoder with mono-
tonic attention.

Results Table 1 shows mean accuracy across 5
random initialisations. The accuracy of the relative
Transformer and the LSTM-based seq2seq model
drops sharply for longer inputs. In contrast, F→R

and AR F→R generalise perfectly even to much
longer examples. In the UC setup, F→R outper-
forms the rest by a wide margin. Interestingly, all

2177

Model Accuracy
Length UC

dev 11 12 13 14 - 20 test

Transformer 82.0 3.0 0.0 0.0 0.0 42.0
LSTM 100.0 94.3 67.9 6.9 0.0 0.1

R→F 0.0 0.0 0.0 0.0 0.0 1.3
AR R→F 90.0 85.7 89.8 87.5 80.5 1.2

F→R 100.0 100.0 100.0 100.0 100.0 79.9
AR F→R 100.0 100.0 100.0 100.0 100.0 32.1

Table 1: Exact match accuracy on the mirroring task.

autoregressive models struggle in this setup, includ-
ing AR F→R which obtained perfect accuracy in the
Length setup. This is consistent with the hypoth-
esis that autoregressive models tend to memorise
entire chunks (Hupkes et al., 2020).

Expressivity of F→R and R→F For this task, an
input token corresponds to two output tokens that
may be arbitrarily far apart from each other. F→R

can learn this alignment because this can be cap-
tured by a separable permutation (see Section 3.2)
following the fertility step duplicating every input
token. In contrast, R→F and AR R→F cannot rep-
resent the correct alignment directly because the
fertility step is applied only after the reordering,
leading to alignments between an input token and a
contiguous span in the output. However, in theory,
they can represent this alignment implicitly through
the LSTM (Eq. (10)). The evaluation shows that
this does not work reliably in practice: we find that
R→F gets stuck in bad local minima and fails com-
pletely on the task. While AR R→F performs well
in the Length setup, it is weak in the UC setup.

7.2 Geoquery

Geoquery (Zelle and Mooney, 1996) is a standard
dataset for semantic parsing and has recently been
used to evaluate to what extent semantic parsers are
capable of generalising to (i) structurally unseen
queries (template split), and (ii) structurally unseen
long examples. We follow the setup of Herzig and
Berant (2021), using the variable-free FunQL rep-
resentation (Kate et al., 2005), a copy mechanism,
and evaluate with execution accuracy.

Results Table 2 shows the results on the different
splits. We report means and standard deviations
of 5 random initialisations. Our method performs
well across the different splits, and in particular
on the length split that evaluates a challenging
form of compositional generalisation. As an ab-
lation, we remove the grammar-based decoding.

Model iid Template Length

Seq2Seq ‡ (HB) 78.5 46.0 24.3
Seq2Derivation (HB) 72.1 54.0 24.6
BART-base‡ (HB) 87.1 67.0 19.3
Span (HB) 78.9 65.9 41.4
Span + lexicon (HB) 86.1 82.2 63.6
Liu et al. (2021)‡ - 84.1 -
Wang et al. (2021)‡ 75.2∗ 43.2∗ -

R→F 89.1±1.0 80.4±1.2 68.6±1.4

R→F ‡ 83.5±0.7 73.0±1.6 49.2±5.1

F→R 88.6±3.3 79.9±2.5 68.8±5.2

F→R ‡ 80.7±2.3 68.7±4.3 53.4±5.9

AR F→R ‡ 81.1±1.0 52.8±3.3 37.6±1.8

Table 2: Accuracy on different splits of Geoquery. HB
is Herzig and Berant (2021) and ‡ refers to systems that
do not enforce well-formedness of the output. ∗ Wang
et al. (2021) use exact match accuracy and anonymise
named entities instead of copying.

We notice a considerable drop in accuracy but it
still outperforms the baselines. The drop in ac-
curacy is slightly bigger out-of-distribution than
in-distribution.

In line with the experiments on synthetic data,
AR F→R and the approach of Wang et al. (2021)
drastically lose accuracy when going from in-
distribution to the compositional generalisation se-
tups. This provides further evidence that a strong
decoder can hinder compositional generalisation.

In contrast to the experiments on synthetic data,
R→F and F→R perform comparably. Manual in-
spection of the data shows that good alignments on
this dataset can be obtained even with the stronger
assumption on possible alignments made by R→F.

7.3 ATIS

ATIS (Dahl et al., 1994) is a semantic parsing
datasets for flight bookings. In comparison to Geo-
query, the queries tend to be longer and the word
order is more flexible. We use the variable-free
FunQL notation as annotated by Guo et al. (2020).
Apart from the original iid test split, we create a
length split: Semantic parses with fewer than 4
conjuncts form the training set, parses with exactly
4 conjuncts form the development set and the test
set contains instances with more than 4 conjuncts.
Details on the split and preprocessing are in Ap-
pendix B.3.

We compare our model with finetuned BART-
base (Lewis et al., 2020), an LSTM-based seq2seq
model with attention and the relative Transformer

2178

Model iid Length

LSTM seq2seq 76.52±1.66 4.95±2.16

LSTM seq2seq‡ 75.98±1.30 4.95±2.16

Rel. Transformer‡ 75.76±1.43 1.15±1.41

BART-base‡ 86.96±1.26 19.03±4.57

F→R 74.15±1.35 35.41±4.09

F→R ‡ 68.26±1.53 29.91±2.91

Table 3: Accuracy on different splits of ATIS.

Model Calendar Document Email

BART-base‡ 36.7±3.0 2.7±2.1 20.5±9.8

F→R 69.5±13.9 42.4±5.7 55.6±2.7

F→R ‡ 57.2±19.9 36.1±5.6 43.9±3.8

Table 4: Accuracy on length splits by domain on Okapi.

(Csordás et al., 2021). We also run a version of the
LSTM-based model with a large beam of size 50
and filter our instances that are not well-formed; the
resulting outputs are well-formed at least 99.7% of
the time.

Results Table 3 shows mean accuracy and stan-
dard deviations of 5 random initialisations. While
on the iid split, our approach does not quite reach
the same accuracy as the baselines, it outperforms
them on the compositional length split by a margin
of more than 16 points. Without grammar-based
decoding, we again observe a noticeable loss in ac-
curacy but we still substantially outperform BART
on the length split. Constraining the output to be
grammatical does not appear as beneficial for the
LSTM baseline.

7.4 Okapi

Hosseini et al. (2021) introduce a semantic pars-
ing dataset for evaluating compositional generalisa-
tion on three domains (document, calendar, email).
Since template splits were not found to be challeng-
ing, we focus on generalising to longer examples.
Models are trained on short examples with up to 3
‘parameters’ (such as filtering based on an attribute
or ordering results) and are tested on examples with
more parameters (at least 4 for the calendar and
email domain and at least 5 for the document do-
main). The splits are described in Appendix B.4. In
contrast to the other datasets we consider, Okapi is
noisy because it was collected with crowd workers.
This presents an additional challenge.

4 5 6 7
params

0
10
20
30
40
50
60
70

Ac
c

Model
BART
F R
F R

Figure 3: Accuracy on the document domain of Okapi
by number of parameters in the gold logical form.

Results Table 4 shows the results of our model
with copying from 5 random initialisations. F→R

outperforms fine-tuned BART-base by a large mar-
gin, in particular on the challenging split of the
document domain.

Fig. 3 shows the accuracy on the development
and test set of the document domain as a function
of the number of parameters in the gold logical
form. BART performs relatively well when applied
to examples with one more parameter than seen
in the training set but then its performance drops
sharply. F→R is more accurate and its accuracy
also drops much slower with the number of param-
eters. We notice different failure modes for the
two models: on the test set, BART deviates by 5.4
tokens on average from the gold length, whereas
F→R deviates only by 1.0 tokens on average. This
is in line with the observations of Newman et al.
(2020) that seq2seq models systematically predict
the end of sequence token too early on long out-
of-distribution examples. Our results suggest that
predicting length as a sum of fertilities is more
robust towards this shift in distribution.

7.5 Style Transfer

In addition to being important for compositional
generalisation, structural inductive biases can help
when only little data is available. We evaluate our
model in such a scenario on the style transfer tasks
of Lyu et al. (2021). A model is given an English
sentence and asked to reformulate it to conform
with a certain ‘style’. We focus on the tasks iden-
tified as challenging by Lyu et al. (2021): active
to passive (2462 training examples), adjective em-
phasis (627 examples) and verb emphasis (1081
examples).

For the emphasis tasks, the word to be empha-
sised is provided in the input. Following Kim
(2021), to incorporate it, we add a special learned
embedding vector to the embedding of that token.

2179

Transfer Type Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Active to passive

GPT-2 (Lyu et al., 2021) 47.6 32.9 23.8 18.9 21.6 46.4 1.820
Seq2seq (Kim, 2021) 83.8 73.5 67.3 59.8 46.7 77.1 5.941
Neural QCFG (Kim, 2021) 83.6 77.1 71.3 66.2 49.9 80.3 6.410
Human (Lyu et al., 2021) 93.1 88.1 83.5 79.5 58.7 90.5 8.603
F→R 92.1±1.3 85.4±1.5 79.7±1.7 74.6±1.9 55.9±0.5 86.0±1.1 7.610±0.130

Adj. emphasis

GPT-2 (Lyu et al., 2021) 26.3 7.9 2.8 0.0 11.2 18.8 0.386
Seq2seq (Kim, 2021) 50.5 29.6 18.4 11.9 24.2 51.4 1.839
Neural QCFG (Kim, 2021) 67.6 50.6 39.3 31.6 37.3 68.3 3.424
Human 83.4 75.3 67.9 66.1 52.2 81.1 6.796
F→R 78.3±1.4 61.9±0.7 49.9±1.3 40.5±1.4 43.0±1.0 69.1±0.6 4.268±0.170

Verb emphasis

GPT-2 (Lyu et al., 2021) 30.9 17.0 9.5 4.1 14.0 29.2 0.593
Seq2seq (Kim, 2021) 52.6 38.9 29.4 21.4 29.4 46.4 2.346
Neural QCFG (Kim, 2021) 66.4 51.2 40.7 31.9 37.0 58.9 3.227
Human (Lyu et al., 2021) 64.9 56.9 49.3 42.1 43.3 69.3 5.668
F→R 68.4±0.6 52.7±0.6 41.6±0.7 32.8±0.6 37.4±0.4 58.9±0.4 3.498±0.121

Table 5: Results on the hard style transfer tasks from Lyu et al. (2021). All models except for GPT2 use copying.

Results Table 5 shows the results comparing our
F→R model to previous work based on three ran-
dom initialisations. We achieve state-of-the-art re-
sults on all style transfer tasks on all metrics. The
improvement compared to prior work is strongest
for the active-to-passive task and weakest for the
verb emphasis task, where our model ties with Kim
(2021) in terms of ROUGE-L.

8 Conclusion

We presented a flexible end-to-end differentiable
model for structured NLP tasks. It predicts the
output sequence from the input by composing a fer-
tility layer with a reordering layer. The evaluation
shows that our model performs well in structural
generalisation setups, in particular when the model
has to generalise to longer examples than seen dur-
ing training. In contrast, the accuracy of standard
seq2seq models drops sharply on longer examples.

The efficient fertility layer introduced in this
work may be useful in other scenarios as well, e.g.
in non-autoregressive machine translation, or for
(unsupervised) sentence compression when the fer-
tility is restricted to 0 or 1. Future work could
also investigate other structured layers and the best
ways of composing and training them.

9 Limitations

The fertility layer is efficient but a limitation of the
model presented in this paper is the high runtime
complexity of the reordering layer. It makes it im-
practical for long output sequences (e.g. more than
50 tokens). While the structured reordering step
can represent many permutations of practical inter-
est, we observed a small number of cases where

our model could not produce the correct permuta-
tion. We note that our approach is modular and the
reordering layer could be replaced by a faster one
with fewer restrictions in future work, e.g. based
on one-to-one matchings.

While our method obtains strong accuracy in
compositional generalisation setups without con-
textualised encoders, it remains an open question
how different ways of integrating contextualised
encoders affect the performance of our method in
compositional generalisation setups. In addition,
it is an open question how a pretrained decoder
would influence our model’s ability to generalise
compositionally since we found that a non-pre-
trained LSTM-based decoder can be detrimental.

Acknowledgements

We thank Bailin Wang and Jonas Groschwitz for
technical discussions and we thank Agostina Cal-
abrese and Verna Dankers for comments on this
paper.

ML is supported by the UKRI Centre for Doc-
toral Training in Natural Language Processing,
funded by the UKRI (grant EP/S022481/1), the
University of Edinburgh, School of Informatics and
School of Philosophy, Psychology & Language Sci-
ences, and a grant from Huawei Technologies. ML
and IT acknowledge the support of the European
Research Council (ERC StG BroadSem 678254).
IT is also supported by the Dutch National Science
Foundation (NWO Vici VI.C.212.053).

2180

References
Ekin Akyürek and Jacob Andreas. 2021. Lexicon learn-

ing for few shot sequence modeling. In Proceedings
of the ACL-IJCNLP (Volume 1: Long Papers), pages
4934–4946, Online.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the ACL, pages 7556–7566, Online.

Leonard E Baum. 1972. An inequality and associated
maximization technique in statistical estimation for
probabilistic functions of markov processes. Inequal-
ities, 3(1):1–8.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make com-
positional generalization hard. arXiv preprint
arXiv:2201.05899.

Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. 1998.
Pattern matching for permutations. Information Pro-
cessing Letters, 65(5):277–283.

Peter F. Brown, John Cocke, Stephen A. Della Pietra,
Vincent J. Della Pietra, Fredrick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. 1990.
A statistical approach to machine translation. Com-
putational Linguistics, 16(2):79–85.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In Proceedings of the 2016 Conference of the North
American Chapter of the ACL: Human Language
Technologies, pages 876–885, San Diego, California.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gener-
alize. In Proceedings of the ACL-IJCNLP (Volume 1:
Long Papers), pages 3322–3335, Online.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhu-
ber. 2021. The devil is in the detail: Simple tricks
improve systematic generalization of transformers.
In Proceedings of the 2021 EMNLP, pages 619–634,
Online and Punta Cana, Dominican Republic.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings of
the 56th Annual Meeting of the ACL (Volume 1: Long
Papers), pages 351–360, Melbourne, Australia.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th
Annual Meeting of the ACL (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany.

Jiaqi Guo, Qian Liu, Jian-Guang Lou, Zhenwen Li, Xue-
qing Liu, Tao Xie, and Ting Liu. 2020. Benchmark-
ing meaning representations in neural semantic pars-
ing. In Proceedings of the 2020 EMNLP (EMNLP),
pages 1520–1540, Online.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the ACL-IJCNLP (Volume
1: Long Papers), pages 908–921, Online.

Saghar Hosseini, Ahmed Hassan Awadallah, and Yu Su.
2021. Compositional generalization for natural
language interfaces to web apis. arXiv preprint
arXiv:2112.05209.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: how do
neural networks generalise? Journal of Artificial
Intelligence Research, 67:757–795.

Rohit J. Kate, Yuk Wah, Wong Raymond, and
J. Mooney. 2005. Learning to transform natural to
formal languages. In Proceedings of AAAI-05.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 EMNLP
(EMNLP), pages 9087–9105, Online.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages 26302–
26317. Curran Associates, Inc.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training

2181

https://doi.org/10.18653/v1/2021.acl-long.382
https://doi.org/10.18653/v1/2021.acl-long.382
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.48550/ARXIV.2201.05899
https://doi.org/10.48550/ARXIV.2201.05899
https://doi.org/https://doi.org/10.1016/S0020-0190(97)00209-3
https://aclanthology.org/J90-2002
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://doi.org/10.1162/coli.2007.33.2.201
https://doi.org/10.1162/coli.2007.33.2.201
https://doi.org/10.18653/v1/N16-1102
https://doi.org/10.18653/v1/N16-1102
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/2020.emnlp-main.118
https://doi.org/10.18653/v1/2020.emnlp-main.118
https://doi.org/10.18653/v1/2020.emnlp-main.118
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://arxiv.org/abs/2112.05209
https://arxiv.org/abs/2112.05209
https://www.jair.org/index.php/jair/article/view/11674
https://www.jair.org/index.php/jair/article/view/11674
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://openreview.net/forum?id=HkE0Nvqlg
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
https://doi.org/10.18653/v1/2020.acl-main.703

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the ACL, pages 7871–7880, Online.

Philip M Lewis and Richard Edwin Stearns. 1968.
Syntax-directed transduction. Journal of the ACM
(JACM), 15(3):465–488.

Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu, Bei
Chen, Jian-Guang Lou, Lijie Wen, Nanning Zheng,
and Dongmei Zhang. 2021. Learning algebraic re-
combination for compositional generalization. In
Findings of the ACL: ACL-IJCNLP 2021, pages 1129–
1144, Online.

Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard Hovy,
Barnabás Póczos, Ruslan Salakhutdinov, and Louis-
Philippe Morency. 2021. StylePTB: A compositional
benchmark for fine-grained controllable text style
transfer. In Proceedings of the 2021 Conference of
the North American Chapter of the ACL: Human
Language Technologies, pages 2116–2138, Online.

Chaitanya Malaviya, Pedro Ferreira, and André F. T.
Martins. 2018. Sparse and constrained attention for
neural machine translation. In Proceedings of the
56th Annual Meeting of the ACL (Volume 2: Short
Papers), pages 370–376, Melbourne, Australia.

Benjamin Newman, John Hewitt, Percy Liang, and
Christopher D. Manning. 2020. The EOS decision
and length extrapolation. In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 276–291, On-
line.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Santiago Ontañón, Joshua Ainslie, Zachary Fisher, and
Vaclav Cvicek. 2022. Making transformers solve
compositional tasks. In Proceedings of the 60th An-
nual Meeting of the ACL (Volume 1: Long Papers),
pages 3591–3607, Dublin, Ireland.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving composi-
tional generalization in semantic parsing. In Findings
of the ACL: EMNLP 2020, pages 2482–2495, Online.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 EMNLP
(EMNLP), pages 1532–1543, Doha, Qatar.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Paweł Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2021. Improving composi-
tional generalization with latent structure and data
augmentation. arXiv preprint arXiv:2112.07610.

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In International Conference on Machine Learning,
pages 2837–2846. PMLR.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of
the ACL-IJCNLP (Volume 1: Long Papers), pages
922–938, Online.

David Smith and Jason Eisner. 2006. Quasi-
synchronous grammars: Alignment by soft projec-
tion of syntactic dependencies. In Proceedings on the
Workshop on Statistical Machine Translation, pages
23–30, New York City.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the ACL
(Volume 1: Long Papers), pages 818–827, Vancouver,
Canada.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the ACL (Volume 1: Long Papers),
pages 76–85, Berlin, Germany.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.
Structured reordering for modeling latent alignments
in sequence transduction. In Thirty-Fifth Conference
on Neural Information Processing Systems.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256.

Yuk Wah Wong and Raymond Mooney. 2006. Learning
for semantic parsing with statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Main Conference,
pages 439–446, New York City, USA.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Shijie Wu and Ryan Cotterell. 2019. Exact hard mono-
tonic attention for character-level transduction. In
Proceedings of the 57th Annual Meeting of the ACL,
pages 1530–1537, Florence, Italy.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online
segment to segment neural transduction. In Proceed-
ings of the 2016 EMNLP, pages 1307–1316, Austin,
Texas.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050–1055.

Hao Zheng and Mirella Lapata. 2022. Disentangled se-
quence to sequence learning for compositional gener-
alization. In Proceedings of the 60th Annual Meeting
of the ACL (Volume 1: Long Papers), pages 4256–
4268, Dublin, Ireland.

2182

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.findings-acl.97
https://doi.org/10.18653/v1/2021.findings-acl.97
https://doi.org/10.18653/v1/2021.naacl-main.171
https://doi.org/10.18653/v1/2021.naacl-main.171
https://doi.org/10.18653/v1/2021.naacl-main.171
https://doi.org/10.18653/v1/P18-2059
https://doi.org/10.18653/v1/P18-2059
https://doi.org/10.18653/v1/2020.blackboxnlp-1.26
https://doi.org/10.18653/v1/2020.blackboxnlp-1.26
https://doi.org/10.1162/089120103321337421
https://doi.org/10.1162/089120103321337421
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://arxiv.org/abs/2112.07610
https://arxiv.org/abs/2112.07610
https://arxiv.org/abs/2112.07610
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://aclanthology.org/W06-3104
https://aclanthology.org/W06-3104
https://aclanthology.org/W06-3104
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P16-1008
https://doi.org/10.18653/v1/P16-1008
https://openreview.net/forum?id=X2Cxixkcpx
https://openreview.net/forum?id=X2Cxixkcpx
https://aclanthology.org/N06-1056
https://aclanthology.org/N06-1056
https://aclanthology.org/N06-1056
https://aclanthology.org/J97-3002
https://aclanthology.org/J97-3002
https://doi.org/10.18653/v1/P19-1148
https://doi.org/10.18653/v1/P19-1148
https://doi.org/10.18653/v1/D16-1138
https://doi.org/10.18653/v1/D16-1138
https://aclanthology.org/2022.acl-long.293
https://aclanthology.org/2022.acl-long.293
https://aclanthology.org/2022.acl-long.293

Algorithm 1 Forward

Require: f ∈ Rn×d, normalised over the second
axis, output sequence length l

1: function FWD(f, l)
2: Init fwd ∈ Rn×l with zeros
3: for h in range(0, d) do ▷ Base case
4: fwd[0, h] = f[0, h]
5: for i in range(1, n) do ▷ Recursion
6: for h in range(0, l) do
7: for r in range(0, min(d, h+1)) do
8: fwd[i, h] += fwd[i-1, h-r] × f[i, r]
9: return fwd

Algorithm 2 Marginals

Require: f ∈ Rn×d, normalised over the second
axis, output sequence length l

1: function MARGINALS(f, l)
2: Init F ∈ Rn×l×d with zeros
3: fwd = fwd(f, l)
4: bwd = rev(fwd(rev(f),l))
5: for i in range(0, n-1) do
6: for j in range(0, l) do
7: for u in range(1, min(d, j+1+1)) do
8: for v in range(0, min(d-u, l-j)) do
9: F[i, j, u] += fwd[i, j+1-r1] ×

10: f[i,u+v]×bwd[i+1,l-(j+1+v)]
11: divide all entries in F by fwd[i, l]
12: return F

A Pseudo code

We present the algorithms for computing F̃ in
python-style pseudo code, using 0-based indexing
and range(i,k) refers to the integers i, . . . , k−
1. As in the main paper, d refers to the maximum
fertility value (hyperparameter).

Algorithm 1 shows how to compute all forward
probabilities. If rev(f) reverses matrix f on the
first dimension (e.g. like torch.flip), then
we can compute the backward probabilities as
rev(fwd(rev(f), l)). Algorithm 2 shows
how F̃ can be computed.

B Data, grammars, pre- and
post-processing

B.1 Synthetic data
In both setups, we generate 4000 training examples,
200 development examples and 1000 test examples.
We use an alphabet size of |Σ| = 11 for the Length
setup and |Σ| = 11 + 3 for the UC setup to accom-

modate for x,y,z. Symbols are chosen uniformly
at random. In the Length setup, we choose the
length of the example uniformly at random. In the
UC setup, we do so as well but with probability 0.2
we insert an xyz cluster if this does not exceed the
maximum length.

In the UC setup, we use development data from
the training distribution.

We do not use grammar-based decoding or copy-
ing on the synthetic data.

B.2 Geoquery
We remove all parentheses in the logical forms,
as they can be restored in post-processing. We
also remove quotes around named entities in pre-
processing to enable copying (’texas’ becomes
texas) and restore them in post-processing. Fol-
lowing Herzig and Berant (2021), we only allow
copying of named entities and do not copy predi-
cate symbols (e.g. river).

We use the grammar of Wong and Mooney
(2006) for decoding as provided by Guo et al.
(2020).

B.3 ATIS
We found that a naive length split led to having
very few examples in the training set that used a
date since both the month and the day count as one
conjunct each. Therefore, we created 33 templates
with three conjuncts based on existing ATIS ex-
amples (with four or more conjuncts) that contain
dates and add 8 instances of each template with ran-
domly chosen dates to the training set. In addition,
we removed any exact duplicate samples from the
data.

Similarly to Geoquery, we remove those paren-
theses that can be deterministically recovered in
post-processing. However, in contrast to Geoquery
the parentheses for or and intersection need
to be kept because the arities of those operators
are not fixed. We run all our experiments on this
representation of ATIS.

For grammar-based decoding we use the “typed"
grammar provided by Guo et al. (2020) and do not
use the copy mechanism.

B.4 Okapi
We found there was too much distributional overlap
in the original length split provided by Hosseini
et al. (2021) and therefore use our own split:

For the document domain, our development set
contains examples with 4 parameters, and the test

2183

Dataset Split/Version Train Dev Test

Geoquery
iid 540 60 280
template 544 60 276
length 540 60 280

ATIS
iid 4465 497 448
length 4017 942 331

Okapi/length
Calendar 1145 200 1061
Document 2328 412 514
Email 2343 200 991

Style transfer
active to passive 2462 136 137
adjective emphasis 627 34 35
verb emphasis 1081 60 60

Table 6: Number of examples per dataset/split.

set contains examples with at least 5 parameters.
For the other two domains, there is insufficient
data for such out-of-distribution development sets.
Therefore, we chose our test set to contain all exam-
ples with at least 4 parameters and our development
sets to consist of 95% in-distribution data and 5%
of examples from the the examples with 4 parame-
ters (which makes the bulk of the test distribution).

We manually create a grammar of well-formed
logical forms for the three domains of Okapi (in-
cluded in the code).

B.5 StylePTB
For comparability, we also tokenise on whitespace
following Kim (2021). We do not restrict the output
of the model with a grammar.

C Details on evaluation metrics

We provide code for all evaluation metrics in our
repository/dependencies.

Geoquery We use the code of Herzig
and Berant (2021) to compute execu-
tion accuracy (https://github.com/
jonathanherzig/span-based-sp).

ATIS We allow for different order of conjuncts
between system output and gold parse in computing
accuracy. We do this by sorting conjuncts before
comparing two trees node by node.

Okapi We follow Hosseini et al. (2021) and
disregard the order of the parameters for com-
puting accuracy. Since Hosseini et al. (2021)
did not make their evaluation code publicly avail-
able, we use our own implementation. Our im-
plementation uses sets and does not punish a
model for predicting a correct parameter mul-
tiple times. For example, if the gold logical

form contains FILTER message.isRead eq
False, a necessary condition for a prediction to
count as correct is that it must contain this string at
least once.

StylePTB We follow Kim (2021) and
use https://github.com/Maluuba/
nlg-eval (commit 7f79930) for all evaluation
metrics, ensuring that BLEU, ROUGE and
METEOR are scaled to 0 - 100.

D Hyperparameters

We provide a configuration file for each of our mod-
els with the chosen hyperparameters in our code
repository (configs/). We set the maximum fer-
tility value d to d = 4 for all datasets except for the
style transfer tasks where we set it to d = 3.

At test time, we explore the top k = 5 most
likely lengths when using grammar-based decoding.
Without grammar-based decoding we used k = 1
as using k = 5 provided little improvement.

Many but not all instances of Geoquery require
identity permutations. We found this to lead to the
issue that the model gets stuck in a very steep lo-
cal minimum within the first epoch where it would
predict only identity permutations. We fixed this is-
sue by reducing the learning rate in the feedforward
network that predicts the scores for the permutation
trees to 1× 10−6.

D.1 Hyperparameter selection

We select hyperparameters using a combination of
manual selection and a random search. We opti-
mise hyperparameters for accuracy on the devel-
opment set of compositional generalisation splits,
where available, (Length setup for the synthetic
data, template split for Geoquery), and then use
those hyperparameters for all splits of a (domain of
a) dataset.

The high variance in accuracy across random
initialisations often observed in compositional gen-
eralisation setups makes it difficult to tune hyper-
parameters even if an out-of-distribution develop-
ment set exists. We restrict random hyperparameter
search to two random seeds. After the hyperpa-
rameter search, we pick the two most promising
configurations (according to (execution) accuracy),
pick a new random seed and train them again to
choose the one which provides the most stable ac-
curacy (approximated as the highest accuracy on
the new seed). We then run the main experiments

2184

https://github.com/jonathanherzig/span-based-sp
https://github.com/jonathanherzig/span-based-sp
https://github.com/Maluuba/nlg-eval
https://github.com/Maluuba/nlg-eval

Dataset Model # params

Mirror

F→R and R→F 1.019
AR F→R and AR R→F 1.12
LSTM 3.187
Transformer 33.067

Geoquery
F→R and R→F 2.541
AR F→R 2.765

ATIS
LSTM 4.669
Transformer 58.468
F→R 3.511

Okapi/Calendar F→R 2.466
Okapi/Document F→R 2.468
Okapi/Email F→R 2.485

Style/Active to passive F→R 2.814
Style/Adjective emphasis F→R 2.698
Style/Verb emphasis F→R 3.133

Table 7: Number of parameters in millions in our mod-
els.

with the chosen hyperparameters and completely
new random seeds.

We randomly sample 20 configurations per hy-
perparameter search. Since this procedure is ex-
pensive, we do not run train our models fully to
convergence. The bounds of the hyperparameter
search are reported in our repository.

For all our models, we initially chose hyperpa-
rameters manually, and then ran a random hyperpa-
rameter search as described above. If the manually
chosen hyperparameters resulted in same or better
performance (on the development set) on average,
we kept those, and otherwise used the ones found
by the hyperparameter search.

For example, on Geoquery, we noticed a particu-
lar sensitivity to hyperparameters, and the manually
selected hyperparameters for F→R performed best
with low variance, whereas for R→F, the hyperpa-
rameters found by the random search were better
than the manually chosen ones. We think this sen-
sitivity is at least in part caused by the small size
of the dataset.

Style transfer In contrast to the other tasks we
evaluate on, we did not run a hyperparameter
search for the style transfer tasks and use the same
manually determined hyperparameters for F→R

across all style transfer tasks.

E Computing infrastructure and runtime

All experiments were run on GeForce GTX 1080
Ti or GeForce GTX 2080 Ti with 12GB RAM and
Intel Xeon Silver or Xeon E5 CPUs.

The runtime of one run contains the time for

Dataset Model Epochs Runtime

Mirror

F→R 7 8 min
R→F 20 8 min
AR F→R 20 30 min
AR R→F 20 20 min
Transformer 200 15 min
LSTM 60 4 min

Geo F→R 100 20 min

ATIS

F→R 100 11-12h
Transformer 20 10 min
LSTM 20 10 min
BART 50 1.3h

Okapi / Calendar
F→R 70 1 h
BART 40 15 min

Okapi / Document
F→R 70 1.5 h
BART 60 30 min

Okapi / Email
F→R 70 1.5 h
BART 40 30 min

Active → Passive F→R 60 1 h
Adj. emphasis F→R 60 20 min
Verb emphasis F→R 60 30 min

Table 8: Average total runtime of the models we train.
For comparison on Geoquery, Herzig and Berant (2021)
report a runtime of 2 hours on comparable hardware to
ours.

training, evaluation on the devset after each epoch
and running the model on the test set. We show the
runtime the models we train in Table 8.

F Additional results

Geoquery Table 10 shows exact match accuracy
of our models for comparison and Table 11 shows
results on the development set.

ATIS Table 13 shows results on the development
set. Table 12 shows the average deviation from the
gold length.

Okapi Table 14 shows results on the develop-
ment set.

StylePTB Table 9 shows results on the develop-
ment set.

2185

Transfer Type BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Active to passive 94.1±0.3 88.6±0.2 83.8±0.2 79.7±0.3 57.6±0.1 87.9±0.5 7.883±0.061

Adj. emphasis 78.4±1.2 64.3±1.0 54.5±0.7 46.9±0.9 44.0±0.4 69.5±0.6 4.809±0.113

Verb emphasis 67.6±0.5 51.2±0.7 40.6±0.9 32.7±1.3 36.8±0.3 59.1±0.7 3.587±0.118

Table 9: Development accuracy of our F→R model with copying on StylePTB. We report means and standard
deviations of three random initialisations.

Model iid Template Length

R→F 83.5±0.7 72.7±2.0 54.0±4.0

R→F ‡ 76.4±1.4 65.8±2.2 39.4±6.2

F→R 83.4±2.6 72.0±3.3 55.2±5.3

F→R ‡ 76.9±2.2 63.6±4.7 46.0±6.6

AR F→R ‡ 77.4±1.3 47.5±4.2 34.4±2.2

Table 10: Exact match accuracy on the splits of Geo-
query. We report mean and standard deviation of the 5
random initialisations shown in the main paper.

Model iid Template Length

F→R ‡ 84.3±3.0 85.3±1.4 83.7±1.4

R→F ‡ 83.7±2.2 83.0±3.0 79.0±3.2

AR F→R ‡ 83.7±2.7 81.7±2.0 87.3±2.5

Table 11: Mean and standard deviations of execution
accuracy on the development sets of the Geoquery splits
(without grammar-based decoding).

Model iid Length

LSTM seq2seq ‡ 0.46±0.09 5.39±0.42

Rel. Transformer ‡ 0.49±0.07 6.19±0.52

BART-base ‡ 0.24±0.02 3.40±0.25

F→R ‡ 0.41±0.06 1.49±0.18

Table 12: Means and standard deviations of the average
absolute deviation from the gold length by model on
ATIS, i.e. lower is better

Model iid Length

LSTM seq2seq ‡ 81.53±0.77 43.86±2.93

Rel. Transformer ‡ 81.53±0.44 34.84±5.28

BART-base ‡ 90.54±0.45 65.29±1.01

F→R ‡ 73.80±1.62 54.42±1.25

Table 13: Mean and standard deviations accuracy on the
development sets of the ATIS splits (without grammar-
based decoding).

Model Calendar Document Email

BART-base ‡ 94.8±0.3 56.2±10.9 91.4±0.4

F→R ‡ 86.4±3.4 66.1±4.8 85.0±2.8

Table 14: Mean and standard deviations accuracy on the
development sets of the Okapi splits (without grammar-
based decoding).

2186

