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Abstract

Large-scale vision-language pre-trained (VLP)
models are prone to hallucinate non-existent
visual objects when generating text based on
visual information. In this paper, we system-
atically study the object hallucination prob-
lem from three aspects. First, we examine
recent state-of-the-art VLP models, showing
that they still hallucinate frequently, and mod-
els achieving better scores on standard metrics
(e.g., CIDEr) could be more unfaithful. Second,
we investigate how different types of image en-
coding in VLP influence hallucination, includ-
ing region-based, grid-based, and patch-based.
Surprisingly, we find that patch-based features
perform the best and smaller patch resolution
yields a non-trivial reduction in object halluci-
nation. Third, we decouple various VLP objec-
tives and demonstrate that token-level image-
text alignment and controlled generation are
crucial to reducing hallucination. Based on
that, we propose a simple yet effective VLP loss
named ObjMLM to further mitigate object hal-
lucination. Results show that it reduces object
hallucination by up to 17.4% when tested on
two benchmarks (COCO Caption for in-domain
and NoCaps for out-of-domain evaluation).

1 Introduction

Thanks to the advancement of large pre-trained
Language Models (LMs) and Vision-Language
Pre-training (VLP) methods, models are able to
achieve surprisingly good performance in vision-
conditioned text generation, e.g., image captioning.
However, large LMs are found to generate unfaith-
ful or nonsensical texts given the source input (Ji
et al., 2022), which is called hallucination. The hal-
lucination problem is also inherited by VLP mod-
els (Alayrac et al., 2022), as they are still LMs that
can understand visual information. VLP models of-
ten generate fluent and seem appropriate sentences
if we only see the text, but wrong when taking the
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visual input into consideration. One major type
of hallucination in VLP is known as object hal-
lucination (Rohrbach et al., 2018), where models
generate texts containing non-existent or inaccurate
objects from the input images. Object hallucination
in VLP models essentially limits their performance
and raises safety concerns for industrial applica-
tions. For example, in biomedical image caption-
ing (Pavlopoulos et al., 2019), object hallucination
reduces the accuracy of diagnosis and may lead to
severe consequences for the patient. Despite the
limitations and risks caused by object hallucination,
this problem has not been studied in contemporary
VLP works yet.

To narrow down the aforementioned research
gap, in this paper, we systematically investigate
four fundamental research questions about object
hallucination: 1) how much do modern VLP mod-
els hallucinate? 2) how do different forms of image
encoding affect object hallucination? 3) what are
the effects of common VLP objectives on object
hallucination? and 4) how to mitigate object hallu-
cination in VLP models?

For our first question, we examine recent state-
of-the-art VLP models on the image captioning
task. To evaluate object hallucination, we adopt
and expand the CHAIR (Caption Hallucination As-
sessment with Image Relevance) metric proposed
by Rohrbach et al. (2018). Results show that these
models still hallucinate frequently with ∼10% of
the generated sentences containing at least one hal-
lucinated object. This problem becomes much
severer when generating sentences given out-of-
domain images. Furthermore, we discover that the
widely used optimization method SCST (Rennie
et al., 2017) could lead to more hallucination, even
if it improves standard metrics like CIDEr (Vedan-
tam et al., 2015).

For our second question, to investigate how
different types of image encoding in VLP influ-
ence hallucination, we ablate three commonly
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used ones, including region-based, grid-based, and
patch-based (Kim et al., 2021). Surprisingly, we
find that patch-based features perform the best and
smaller patch resolution yields a non-trivial reduc-
tion in object hallucination.

Thirdly, we analyze the effects of commonly
adopted vision-language pre-training objectives on
object hallucination. Specifically, we decouple
and combine the image-text contrastive (ITC) loss,
the image-text matching (ITM) loss with and with-
out hard negatives, and the image-conditioned lan-
guage modeling (ICLM) loss. Counter-intuitively,
although ITC and ITM help to bring apart dissim-
ilar images and texts, results show that they do
not contribute much to alleviating object hallucina-
tion. The generative ICLM loss is the main influ-
ential factor of object hallucination and different
pre-training datasets lead to distinctive model be-
haviors. More detailed analysis is described in
Section 5.3.

Finally, we propose a simple yet effective new
vision-language pre-training loss, namely object-
masked language modeling (ObjMLM), to fur-
ther mitigate object hallucination by enhancing the
alignment and restriction between text tokens and
visual objects during generation. Code and evalu-
ation setups are released: https://github.com/
wenliangdai/VLP-Object-Hallucination.

Overall, our contributions are three-fold:

• This is the first paper that systematically stud-
ies state-of-the-art VLP models on the object
hallucination problem, proving that it is still
far from resolved and previous methods that
improve standard metrics may reflect in worse
hallucination.

• We thoroughly investigate the influence of dif-
ferent VLP losses and image encoding meth-
ods on object hallucination. Our findings
could be valuable for future work to build
more responsible VLP systems.

• We present a new pre-training objective
ObjMLM to mitigate object hallucination. Ex-
perimental results show that it reduces object
hallucination by 17.4% without introducing
extra training data.

2 Related Work

2.1 Hallucination in Deep Learning

Generally, the term hallucination denotes the ap-
pearance of undesirable output that is unfaithful

to the conditional input (Maynez et al., 2020),
even though it may appear to be fluent or reason-
able. In the multimodal field, the hallucination phe-
nomenon refers to the prediction of non-existent
or incorrect objects (e.g., in object detection or
image captioning) and is called object hallucina-
tion (Rohrbach et al., 2018; Biten et al., 2022).
Despite the success of large pre-trained models,
they still suffer the hallucination problem, which
degrades the performance and largely hinders prac-
tical applications (Ji et al., 2022).

Many works have been proposed to mitigate hal-
lucination in recent years. Nie et al. (2019) applied
data refinement with self-training to improve the
equivalence between the input and the paired text
in the data-to-text generation task. Zhang et al.
(2021b) and Zhang et al. (2020) proposes scene
graph learning methods to ground the process of
visual captioning to reduce hallucination. Ma et al.
(2020) reconstruct generated sentences from local-
ized image regions. Xiao and Wang (2021) pro-
posed the uncertainty-aware beam search as an
add-on technique to the original beam search, in
both image captioning and data-to-text generation.
To reduce hallucination in dialog systems, Shuster
et al. (2021) introduced knowledge augmentation
and Dziri et al. (2021) presented a post-processing
method to refine generated outputs. Su et al. (2022)
augment models with answer-related information
predicted by a machine reading comprehension
module to reduce hallucination in the generative
question answering task.

2.2 Vision-Language Pre-training

The research on vision-language pre-training
(VLP) has progressed vastly in recent years. Due to
the demand for large-scale data, most VLP methods
use self-supervised pre-training objectives to uti-
lize image-text pairs crawled from the web. In the
beginning, BERT (Devlin et al., 2019)-style VLP
models (Lu et al., 2019; Tan and Bansal, 2019; Li
et al., 2020b; Chen et al., 2020; Yu et al., 2021a;
Shen et al., 2022) are trained to perform multi-
modal understanding tasks, using objectives like
image-text matching and masked language model-
ing. Later, encoder-decoder architectures are intro-
duced to additionally handle multimodal genera-
tion tasks with a causal language modeling loss (Li
et al., 2021b; Yu et al., 2021b; Lin et al., 2021;
Cho et al., 2021; Ding et al., 2021; Li et al., 2022;
Wang et al., 2022a). Another line of research uses
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a dual-stream architecture (Radford et al., 2021;
Jia et al., 2021; Zhai et al., 2022; Yao et al., 2022)
with separate image and text encoders aligned to-
gether through an image-text contrastive loss. They
improve the performance of various multimodal
downstream tasks by a large step.

Alayrac et al. (2022) show that fatal object hal-
lucination can happen naturally or be provoked by
the adversarial prompting in modern VLP models.
However, in previous works, how different VLP
strategies influence the faithfulness of generated
text given images has not been studied. More-
over, the effects of using different types of im-
age encoding are also unclear, including region-
based (Li et al., 2020c; Zhang et al., 2021a; Hu
et al., 2022), grid-based (Wang et al., 2022b), and
patch-based (Kim et al., 2021; Li et al., 2021a).

3 Evaluation Setup

In this section, we first introduce the CHAIR eval-
uation metric and our proposed improvements to it
in Section 3.1. Then, in Section 3.2, we describe
two datasets used for evaluation and explain how
to calculate CHAIR scores under such settings.

3.1 Evaluation Metric
To automatically measure object hallucination,
we adopt the CHAIR (Caption Hallucination As-
sessment with Image Relevance) metric proposed
by Rohrbach et al. (2018). CHAIR calculates what
proportion of generated object words are not in the
image (i.e., hallucinated) according to the ground
truth. CHAIR has two variants: CHAIRi (instance-
level) and CHAIRs (sentence-level), which are for-
mulated as follows:

CHAIRi =
# {hallucinated objects}

# {all objects in prediction}
,

CHAIRs =
# {hallucinated sentences}

# {all sentences}
.

As formulated, CHAIRi represents the proportion
of hallucinated objects over all golden objects in
all data samples. It can be seen as the probability
of a generated object to be a hallucination. On the
other hand, CHAIRs measures the proportion of
generated sentences that contain at least one hal-
lucinated object. Therefore, to calculate CHAIRi

and CHAIRs, we need a pre-defined list of golden
object categories to recognize objects in the text.
We illustrate dataset-specific calculation details in
Section 3.2.

3.2 Evaluation Datasets
To evaluate models’ performance on object hallu-
cination with CHAIR, we adopt two widely used
benchmarks: Microsoft COCO Caption (Lin et al.,
2014) and NoCaps (Agrawal et al., 2019). For all
models, the COCO Caption training set is used for
the finetuning of the image captioning task, and
COCO Caption test set and NoCaps valid set are
used for in-domain and out-of-domain evaluation,
respectively. In the following, we introduce statis-
tics of each dataset and how to calculate CHAIR
on them.

3.2.1 COCO Caption
The COCO Caption (Lin et al., 2014) is a large-
scale and widely used dataset for the training and
evaluation of the image captioning task. We use
the Karpathy split (Karpathy and Fei-Fei, 2017),
in which 82K, 5K, and 5K images are in the train,
validation, and test sets, respectively. Each image
is annotated with at least five ground truth captions.

To calculate CHAIR scores on this dataset, we
follow the setting proposed in Rohrbach et al.
(2018). In practice, we first tokenize each sen-
tence and then singularize each word. Then, we
use a list of synonyms from Lu et al. (2018) to map
fine-grained objects to the pre-defined 80 coarse-
grained MSCOCO object categories (e.g., mapping
“puppy”, “chihuahua”, “poodle” to the “dog” cat-
egory). The purpose of doing this mapping is to
ensure that we do not detect hallucinated objects
by mistake. For example, when the ground-truth
caption only has the “puppy” object, the CHAIR
metrics will undesirably consider the “dog” object
generated by models as a hallucinated object if we
do not perform the mapping.

3.2.2 NoCaps
The NoCaps (Agrawal et al., 2019) dataset aims
to evaluate models trained on the training set of
COCO Caption to examine how well they gener-
alize to a much larger variety of visual concepts,
i.e., unseen object categories. There are 4,500 im-
ages in the validation set and 10,600 images in the
test set. Images are taken from the Open Images
V4 (Kuznetsova et al., 2020) dataset, which con-
tains 600 object classes. Due to the unavailability
of ground truth captions of the test set, we use the
valid set of NoCaps.

To calculate CHAIR scores on NoCaps, we setup
a similar setting as used in COCO Caption. Specif-
ically, we map the fine-grained classes defined in
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Model
CIDEr
Optim
(SCST)

# Pretrain
Image-Text

Pairs

COCO Caption Karpathy Test
NoCaps Validation

Out-of-domain
B@4↑ C↑ M↑ S↑ CHi↓ CHs↓ C↑ S↑ CHi↓ CHs↓

OSCAR Base∗ ✗ 6.5M 34.4 117.6 29.1 21.9 7.1 13.0 - - - -
OSCAR Base∗ ✓ 6.5M 39.6 134.2 29.8 23.5 7.2 13.5 - - - -
VinVL Base ✗ 6.5M 38.2 129.3 30.3 23.6 5.3 10.0 83.1 10.8 12.1 21.2
VinVL Base ✓ 6.5M 40.9 140.4 30.9 25.1 5.7 10.9 87.5 11.7 17.4 32.1
VinVL Large ✗ 6.5M 38.5 130.8 30.4 23.4 5.5 10.5 - - - -
VinVL Large ✓ 6.5M 41.0 140.9 31.1 25.2 5.6 10.6 - - - -
BLIP Base ✗ 129M 39.7 133.3 31.0 23.8 4.9 8.9 112.1 14.2 6.6 10.5
BLIP Large ✗ 129M 40.4 136.7 31.1 24.3 4.7 8.8 115.3 14.4 6.4 10.5
OFA Large ✗ 21M† 41.7 140.5 31.2 24.2 4.7 8.9 103.2 13.3 6.4 10.2
OFA Large ✓ 21M† 43.8 149.5 31.8 25.9 4.2 8.1 113.1 15.2 7.1 12.4

Table 1: Image captioning results of recent state-of-the-art VLP models (Li et al., 2020c; Zhang et al., 2021a; Li
et al., 2022; Wang et al., 2022a) on the COCO Caption Karpathy test set and NoCaps validation set. Here, B@4,
C, M, S, and CH denote BLEU-4, CIDEr, METEOR, SPICE, and CHAIR, respectively. CIDEr Optim indicates
whether the SCST CIDEr optimization is used or not. All results are generated by using their officially provided
checkpoints and hyper-parameters, * means the model is finetuned by us as the provided one is broken. † denotes
the model also uses unimodal data besides image-text pairs.

NoCaps to coarse-grained categories based on the
hierarchical object relationship1 to improve the ef-
fectiveness of CHAIR metrics. We only add two
types of object categories to our final object list: 1)
super-categories that have sub-categories, and 2)
object categories that have neither super-category
nor sub-categories. Eventually, we construct a list
of 139 coarse-grained object categories from the
600 classes.

4 Object Hallucination in VLP Models

Benefitting from the vast advancement of various
VLP methods, the performance of image caption-
ing has been improved a lot by following a pretrain-
then-finetune schema. Generally, the performance
is measured by metrics like CIDEr (Vedantam
et al., 2015), SPICE (Anderson et al., 2016), ME-
TEOR (Banerjee and Lavie, 2005), and BLEU (Pa-
pineni et al., 2002), which consider the semantic
and syntactic similarity or n-gram-based fluency
between the model generated and ground truth cap-
tions. However, the faithfulness of captions gener-
ated by VLP models is neglected.

In this section, we provide a thorough analysis
of recent VLP models to investigate how much they
hallucinate when generating text conditioned on vi-
sual information. The results are shown in Table 1.
Models are finetuned on the COCO Caption train-
ing set and evaluated on both the COCO Caption

1https://github.com/nocaps-org/
image-feature-extractors/blob/master/data/oi_
categories.json

Ground Truth: “A green garbage 
can has an orange face on it.”

VinVLBase w/o SCST: “A green waste 
container with a face painted on it.”

VinVLBase w/ SCST: “A green waste 
container with a picture of a dog on it.”

Ground Truth: “A dresser with all of the 
drawers closed and something on top.”

OFALarge w/o SCST: “A dresser with a 
bunch of drawers on it.”

OFALarge w/ SCST: “A chest of 
drawers with a mirror on top of it.”

Figure 1: Comparison of image captioning examples
generated by VinVLBase and OFALarge with and with-
out the SCST CIDEr optimization. Red color denotes
the occurrence of object hallucination.

test set and the NoCaps valid set.

Overall, we observe two noteworthy insights.
Firstly, similar to the findings in Rohrbach et al.
(2018), for all CHAIR scores, they are not propor-
tional to standard evaluation metrics. Although
standard metrics (e.g., the cosine similarity in
CIDEr) could potentially penalize the wrong ob-
ject prediction, they do not directly reflect faith-
fulness. Captions can still have good scores from
standard metrics as long as they contain sufficient
accurate objects to fulfill coverage, even if hallu-
cinated objects exist. For example, VinVLLarge

achieves higher CIDEr and BLEU-4 scores than
VinVLBase, but its CHAIR scores are also higher.
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Therefore, it is important to have a supplementary
metric like CHAIR to reflect faithfulness besides
other metrics.

Secondly, the Self-Critical Sequence Training
(SCST) (Rennie et al., 2017) for the CIDEr opti-
mization method harms the faithfulness of gener-
ated captions. SCST is a reinforcement learning al-
gorithm that has been widely adopted as the second-
stage finetuning after the standard cross-entropy
optimization for image captioning (Anderson et al.,
2018; Zhou et al., 2020; Li et al., 2020c; Zhang
et al., 2021a; Hu et al., 2022; Wang et al., 2022a).
It calculates the reward based on the CIDEr score
by sampling captions during training without the
need of another baseline. Although SCST can sig-
nificantly boost performance on previous standard
metrics, it encourages models to generate more
hallucinated objects in the captions. For example,
applying SCST improves the CIDEr score by 11.1
and BLEU-4 score by 2.7 for VinVLBase, yet it
also increases 0.9 CHAIRs score on the COCO
Caption dataset.

While Rennie et al. (2017) also observed this
phenomenon by testing small scale models, we
show that SCST hurts VLP models less. When
the model is pre-trained very well, the side effect
of SCST is alleviated (e.g., the OFA large model).
Moreover, we demonstrate that this problem be-
comes more serious on out-of-domain images. For
the VinVLBase model, there are 10.9% more gen-
erated captions containing at least one hallucinated
object after using SCST. We speculate that the
CIDEr-based optimization encourages models to
generate more words or phrases that have higher
cosine similarities to the ground truth captions in
the vision-language representation space, which
can be plausible but not faithful.

We show a case study in Figure 1. After fine-
tuned by SCST, models will take a bigger risk to
generate more detailed yet incorrect information
(e.g., in the second example in Figure 1, the sen-
tence with hallucination generates the detailed in-
formation “mirror”, which cannot be found in the
image). This will further amplify the object hal-
lucination problem on out-of-domain images, as
models may have lower confidence in unfamiliar
visual concepts.

5 Probing Image Encoding Methods and
VLP Objectives

In this section, we systematically study two deter-
minants in VLP that are intuitively influential to
the severity of the object hallucination problem.
Firstly, we study how different types of image
encoding affect object hallucination, as they are
the key components of models to interpret visual
information. Specifically, we ablate three encod-
ing approaches including region-based, grid-based,
and patch-based. Secondly, we analyze how differ-
ent VLP objectives influence object hallucination.
We ablate three commonly used ones: image-text
contrastive (ITC), image-text matching (ITM), and
image-conditioned language modeling (ICLM). Im-
plementation details are described in Appendix A.

5.1 Model Architecture

CLIP. CLIP (Radford et al., 2021) is a dual-
stream VLP model that consists of an image en-
coder and a text encoder. It is pre-trained on 400
million image-text pairs data using a cross-modal
contrastive loss. Specifically, CLIP explores the
image encoder with different sizes of two architec-
tures2, including the ResNet (He et al., 2016) and
the Vision Transformer (ViT) (Dosovitskiy et al.,
2021). The resulting image and text encoders are
aligned in the same multimodal feature space.

BERT. BERT (Devlin et al., 2019) is a Trans-
former (Vaswani et al., 2017) model pre-trained
on a large corpus by the masked language mod-
eling (MLM) and sentence permutation losses. It
is shown to have excellent performance on vari-
ous downstream tasks after finetuning. Moreover,
BERT can also handle generation tasks when the
self-attention layers are restricted to the left-to-
right direction to generate text auto-regressively.
In this paper, we refer to this variant as BertLM.

We design a flexible architecture that can plug in
various visual encoders and fit modern VLP objec-
tives without introducing extra influential factors.
As shown in Figure 4, the model consists of two
parts, a visual encoder to encode images and a text
decoder to generate sentences conditioned on the
image representations. We use two separate mod-
ules rather than a unified single-stream model, as
it is convenient to alter the visual encoder while
keeping the text decoder the same. Specifically,

2https://github.com/openai/CLIP/blob/main/
model-card.md
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Visual
Encoder

#Params
COCO

Karpathy Test
NoCaps Val

Out-of-domain
C↑ CHi↓ CHs↓ C↑ CHi↓ CHs↓

Region features

BUTD-RN101 45M 110.6 9.1 15.9 40.5 36.7 49.0
ResNeXt-152 60M 115.9 7.1 12.9 45.1 30.5 41.1

Grid features

RN50×4 83M 107.6 11.2 19.1 41.6 37.5 49.9
RN50×16 160M 111.6 9.0 15.8 47.5 33.1 45.2
RN50×64 401M 115.8 7.5 13.2 56.2 26.3 36.6

Patch features

ViT-B/32 84M 108.9 10.3 17.9 44.4 34.7 46.8
ViT-B/16 82M 111.8 8.1 14.7 51.9 30.3 42.3
ViT-L/14 290M 120.7 6.4 11.6 59.8 24.2 33.5

Table 2: Results of different types of visual encoders
with the same BertLM text decoder on the COCO Karpa-
thy test set and NoCaps validation set (out-of-domain).

for region-based image features, we explore the
Faster R-CNN object detector (Ren et al., 2015)
with two different backbones: the ResNet-101 used
in BUTD (Anderson et al., 2018) and the ResNeXt-
152 (Xie et al., 2017) used by Zhang et al. (2021a).
They are both pre-trained on COCO (Lin et al.,
2014) and Visual Genome (Krishna et al., 2016)
datasets for object detection. For the grid-based
and patch-based image features, we use the CLIP
ResNet variants and CLIP ViT variants, respec-
tively. The reason for using CLIP is that all its
variants are pre-trained on the same data and there
is a wide range of different model sizes. For all
visual encoders, we use the same BertLM as the
text decoder.

5.2 Effects of Different Image Features

Recognizing visual objects correctly is crucial for
avoiding object hallucination. In Table 2, we com-
pare the performance of different visual encoders
with the same text decoder on COCO (in-domain)
and NoCaps (out-of-domain) datasets.

Overall, patch-based visual encoders attain the
best performance in terms of avoiding object hal-
lucination. Models with grid features halluci-
nate more frequently when achieving comparable
CIDEr scores to the other models. For example,
on COCO, RN50×16 has a similar CIDEr score
to ViT-B/16 but higher CHAIRs, which is also ob-
served between RN50×64 and ResNeXt-152. We
conjecture that the inductive biases (Cohen and
Shashua, 2017) of the Convolutional Neural Net-
work (CNN), such as locality and translation invari-
ance, weaken the connection of different charac-
teristics of a single object and thus lead to more
hallucination. Oppositely, regional or patch-level

VLP Objectives
COCO

Karpathy Test
NoCaps Val

Out-of-domain
C↑ CHi↓ CHs↓ C↑ CHi↓ CHs↓

(a) None 120.7 6.4 11.6 59.8 24.2 33.5

Discriminative Objectives

CC3M

(b) ITC 120.5 6.5 11.7 59.9 24.4 33.8
(c) ITCLate 121.2 6.2 11.3 60.5 23.8 32.9
(d) ITCLate + ITM 121.0 6.3 11.5 60.2 23.9 33.1
(e) ITCLate + ITMHard 120.9 6.6 11.7 59.9 24.2 33.3

Generative Objectives

Visual Genome

(f) LM 120.3 5.5 9.8 62.8 9.0 13.9
(g) LM + ObjectMLM 121.9 5.3 9.2 63.8 8.8 13.1

CC3M

(h) LM 122.3 6.0 10.9 92.1 8.3 14.5
(i) LM + ObjectMLM 124.5 5.1 9.0 94.0 8.0 13.1

(c) + (i) 125.1 4.9 8.8 94.5 7.9 12.5

Table 3: Comparison of the effects of different VLP ob-
jectives and their combination on object hallucination.

features are obtained by directly dividing images
into different parts and further associating them
through positional embeddings. In addition, we
see that a smaller patch resolution helps to reduce
object hallucination without enlarging the model
size.

For region-based visual encoders, although they
achieve modest results on COCO with relatively
small model sizes, their performance of object hal-
lucination on out-of-domain images drops dramat-
ically. One important reason is that the output
of such encoders only contains representations of
detected visual objects rather than the whole im-
age, which may amplify detection errors as there is
much less context. Moreover, as the object detector
is pre-trained separately from the whole model and
its parameters are fixed during finetuning, this gap
could also aggravate object hallucination on unseen
images.

5.3 Effects of Different VLP Objectives

Based on the best performing ViT-L/14 baseline,
we explore three commonly used vision-language
pre-training objectives and their variants that could
potentially affect object hallucination.

5.3.1 Pre-training Datasets
We explore two pre-training datasets with image-
text pairs: 1) the VG Caption from the Visual
Genome (Krishna et al., 2016) dataset, which con-
tains 10K images and each image has multiple cor-
responding descriptions; and 2) a more large-scale
dataset CC3M (Sharma et al., 2018) that contains
three millions of image-text pairs.
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5.3.2 Image-Text Contrastive (ITC) Loss
The cross-modal contrastive loss is shown to be
fairly effective in representation learning (Tian
et al., 2020; Sigurdsson et al., 2020) and VLP (Rad-
ford et al., 2021; Li et al., 2021a, 2022). It aligns
the visual and textual representations into the same
multimodal feature space by shortening the dis-
tance between an image and a text if they are paired,
or enlarging if they are not.

Counter-intuitively, as shown in Table 3 (b), ITC
has negligible influence on the faithfulness of gen-
erated captions. We speculate that it only enhances
the model’s understanding of global-level represen-
tations rather than token-level alignment between
images and texts. To verify, we further test the ITC
with a more fine-grained token-level late interac-
tion (ITCLate) proposed by Yao et al. (2022). As
shown in Table 3 (c), ITCLate is more effective than
the vanilla ITC and slightly reduces object halluci-
nation. We think this benefits from the word-patch
alignment ability enabled by ITCLate.

5.3.3 Image-Text Matching (ITM) Loss
ITM is a widely used objective in VLP (Li et al.,
2020a; Chen et al., 2020; Zhou et al., 2021). It
is a binary classification task that aims to make
the model learn whether an image and a sentence
are paired or not. Based on that, ITM with hard
negatives (ITMHard) is introduced to increase the
difficulty of the task, which is shown to be very ef-
fective on representation learning (Kalantidis et al.,
2020; Robinson et al., 2021; Li et al., 2021b). We
follow the ITM loss proposed by Li et al. (2022),
in which an in-batch negative example is sampled
either uniformly (normal negative) or from the sim-
ilarity distribution of image-text pairs computed by
ITC (hard negative).

The results are exhibited in Table 3 (d) (e). Both
ITM and ITMHard are not highly correlated with the
object hallucination problem. They only slightly
reduce hallucination in generated texts on out-of-
domain images. Although the ITMHard can be seen
as an analogy to the object hallucination problem
(plausible but not correct) in a global and discrim-
inative way, it has a negligible effect on reducing
hallucination for downstream generative tasks.

5.3.4 Image-Conditioned Language Modeling
Various image-conditioned language modeling
losses have been proposed in the VLP re-
search, in the form of masked language modeling
(MLM) (Sun et al., 2019; Tan and Bansal, 2019;

COCO Caption
“Several boats docked at a floating dock at a marina.”,
“Several boats sitting on a docking station on the water.”,
“A bunch of speedboats near a harbor with flags from all over the 
world.”, etc.

Visual Genome Caption
“A dock in a city.”, “Long silver dock in water.”
“Very blue, calm water in marina.”, “The water is calm.”
“A dock is floating on the water.”, “Row of docked boats.”, etc.

Figure 2: Comparison of ground truth captions in
COCO and Visual Genome datasets for the same image.

Ground Truth: “A soccer ball is next 
to a wall.”, “A soccer ball that is 
placed on the ground.”, etc.

ViT-L/14 w/o VG: “A close up of a 
soccer ball on a table.”

ViT-L/14 w/ VG: “A close up of a soccer 
ball on the ground.”

Ground Truth: “A large black printer 
seems to have a piece of paper in it 
sideways.”, “A large printer with 
paper coming out of it”, etc.

ViT-L/14 w/o VG: “A pair of scissors 
sitting on top of a piece of paper.”

ViT-L/14 w/ VG: “A large black machine.”

Figure 3: Comparison of generated captions with or
without the image-conditioned language modeling pre-
training on the VG dataset before finetuning.

Su et al., 2020), text infilling (Dai et al., 2022;
Wang et al., 2022a), prefix LM (Wang et al., 2022b),
and causal LM (Hu et al., 2022). This is one of
the most crucial pre-training losses to activate the
cross-modal text generation ability for the VLP
model.

We first examine the causal LM loss, which is
exactly the same loss as the image captioning loss,
but used in the pre-training on a much larger scale.
Surprisingly, as shown in Table 3 (f), although pre-
training on the VG Caption does not improve previ-
ous standard metrics like CIDEr, it helps to reduce
object hallucination by a large margin when com-
pared to (a).

There are two reasons behind this performance
lift. Firstly, as described in Figure 2, for each
image, VG contains more captions than COCO.
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Each caption in VG is much shorter and only de-
scribes one specific aspect of the image, unlike
the global descriptions in COCO. Therefore, pre-
training on VG and then finetuning on COCO is
a fine-to-coarse process. It enables models to first
accurately describe different parts of an image and
connect these clues together at a higher viewing
point. Secondly, due to the nature of the short
length of VG captions, the model becomes slightly
more cautious. On average, after adding VG data
in the pre-training, there are 0.08 and 0.24 fewer
objects generated in each caption on COCO and
NoCaps, respectively. This observation aligns with
the sentence simplification method proposed by
Biten et al. (2022), which simplifies sentences to
augment data and further mitigate object hallucina-
tion. Figure 3 illustrates VG’s effects on generated
samples. The model is more faithful but more likely
to lack some details when it is not confident.

For CC3M, we observe a leap in all metrics. It
improves the general image translation ability of
the model, which can be seen as large-scale data
augmentation. This indicates that seeing a suffi-
cient amount of data and co-occurrence of various
objects during pre-training help to mitigate object
hallucination to some extent. However, data aug-
mentation may not be the key to drastically tackle
object hallucination. As discussed in Section 4,
object hallucination still happens frequently even if
the model is pre-trained on large-scale data. There-
fore, we believe that enhancing the controllability
of vision-conditioned text generation would be a
promising future direction. More case studies are
exhibited in Appendix B.

6 Object Masked Language Modeling

Based on the findings in Section 5, we propose a
simple yet effective pre-training objective to miti-
gate object hallucination by improving object-level
image-text alignment. It is named Object Masked
Language Modeling (ObjMLM). As shown in Fig-
ure 4, ObjMLM can be seen as a variant of the
MLM loss by masking all the objects in the text
that appear in the image. For each sentence, we
mask the object words and phrases as defined in
the object category lists of both COCO and No-
Caps by performing exact matching. Similar to the
whole word masking (Cui et al., 2021), we conduct
whole object masking so that there will be only one
[MASK] token to replace each object.

Compare the results shown in lines (h) and (i)

Image Encoder Self Attention

Vision-language 
Cross Attention

Feed Forward

BertLM

...
Linear

A [MASK] resting on the ground,  
as an [MASK] looks on.

A camel resting on the ground,  
as an antelope looks on.

Figure 4: An overview of the model architecture and
the training of our proposed ObjMLM. We use the same
architecture as described in Section 5 to show the ef-
fectiveness of ObjMLM. Here, the image encoder can
be one of the region-based, grid-based, or patch-based
variants as described in Section 5.2. For ObjMLM, we
use the ViT-L/14.

of Table 3, by plugging ObjMLM into an exist-
ing VLP setting, the CHAIRs score is reduced by
17.4%. This is a non-trivial improvement without
introducing more pre-training data. To further vali-
date ObjMLM’s effectiveness, we replace it by the
standard MLM loss with a 15% masking rate. How-
ever, it only reduces CHAIRs by 1.7%, which is
not significant. We conjecture that ObjMLM adds a
constraint that indirectly controls the model to only
generate objects that are visible in the input im-
age. Additionally, ObjMLM enhances the model’s
recognition ability when describing the spatial re-
lationship between objects, which is a common
scenario that causes hallucinations frequently.

7 Conclusion

This paper systematically studies the objection hal-
lucination phenomenon in VLP models, which is
a severe problem but neglected in contemporary
VLP works. We find that recent large VLP models
still hallucinate frequently. Moreover, the widely
used SCST method harms the faithfulness of gen-
erated sentences in image captioning, even if it
improves previous standard metrics. Furthermore,
we discover that image encoding matters and the
patch-based input with smaller resolution helps
mitigate object hallucination. Finally, we ablate
commonly used VLP losses and show that token-
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level image-text alignment and controllability of
the generation are crucial. We further propose a
new loss named ObjMLM, which reduces object
hallucination by 17.4% for an existing VLP setting.
We believe our findings are beneficial for future
work to build more responsible VLP models.

Limitations

We understand that the hallucination problem is
a big research topic and it is not just limited to
object hallucination. In this paper, we focus on
the investigation and mitigation of object halluci-
nation, leaving other types of hallucination in VLP
for future work. Another limitation is that for the
discussion of recent VLP models in Section 4, we
only study those whose pre-trained checkpoints are
publicly available. For the non-released ones, we
cannot pre-train them by ourselves due to the lack
of large-scale GPU power and private pre-training
datasets.
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A Implementation Details

Our experiments are implemented in the PyTorch framework (Paszke et al., 2019). For both pre-training
and finetuning, we use 8 Nvidia V100 GPUs. As mentioned in Section 5.1, we use the official CLIP
checkpoints provided on GitHub. For the text decoder BertLM, we initialize model weights from the
bert-base-uncased checkpoint with 110M parameters. For the finetuning on COCO Caption, we use a
batch size of 512 and train the models with the AdamW optimizer (Loshchilov and Hutter, 2019) for 10
epochs with a learning rate of 5× 10−5 and a weight decay of 1× 10−2. The learning rate is decayed
linearly after each epoch with a rate of 0.85. For the pre-training of text generation losses (LM and
ObjMLM), we keep the same hyper-parameters with a learning rate warmup within the first epoch. For
ITC and ITM losses, we increase the batch size to 1024 as they tend to have a better performance with
more negative samples.

B Additional Case Studies

Ground Truth: “A drawstring backpack has 
a green camouflage print.”
------------------------------------------------
BLIPlarge: “A backpack with a 
camouflage pattern on it.”
RN50x64: “A backpack that is sitting on 
the ground.”
VinVLbase: “A helmet sitting on top of a 
bag.”
VinVLbase w/ SCST: “A bag with a black 
helmet on top of it.”
ViT-L/14 w/ LM & ObjMLM: “A 
backpack that is sitting on a white 
surface.”
ViT-L/14 w/ VG: “A backpack that is 
sitting on a bed.”

Ground Truth: “Kitchen cabinets with wood 
and blue painted doors and shelves.”
-------------------------------------------------
BLIPlarge: “A kitchen with wooden 
cabinets and blue cabinets.”
RN50x64: “A blue cabinet in a kitchen next 
to a sink.”
VinVLbase: “A blue cabinet in a kitchen 
next to a sink.”
VinVLbase w/ SCST: “A wooden cupboard 
with blue cabinetry and bottles in it.”
ViT-L/14 w/ LM & ObjMLM: “A kitchen 
with blue walls and wooden cabinets.”
ViT-L/14 w/ VG: “A kitchen with a blue 
cabinet and a white refrigerator.”

Ground Truth: “'Red cocktails with floating 
cut strawberries sit on a cloth.”
------------------------------------------------
BLIPlarge: “Three glasses of red liquid 
with strawberries in them.”
RN50x64: “A glass of red wine on a 
table.”
VinVLbase: “A close up of different 
cocktails in juice.”
VinVLbase w/ SCST: “A group of red 
juice in cocktail glasses on a table.”
ViT-L/14 w/ LM & ObjMLM: “A close 
up of glasses of wine on a table.”
ViT-L/14 w/ VG: “A close up of some 
glasses of liquid on a table.”

Ground Truth: “A scoreboard in a stadium 
displaying times for a race.”
----------------------------------------------
BLIPlarge: “A stadium with a large 
screen displaying a race.”
RN50x64: “A group of people standing 
on top of a field.”
VinVLbase: “A billboard with a score-
board in the background.”
VinVLbase w/ SCST: “A couple of 
scoreboards with billboards on a 
building.”
ViT-L/14 w/ LM & ObjMLM: “A 
scoreboard showing the score of a race.”
ViT-L/14 w/ VG: “a couple of televisions 
that are on a wall.”

Ground Truth: “A musical accordion has a 
leather strap on it.”
------------------------------------------------
BLIPlarge: “A close up of an accordion 
in a case.”
RN50x64: “A close up of a guitar case on 
the ground.”
VinVLbase: “An accordion sitting 
on top of a wooden bench.”
VinVLbase w/ SCST: “An accordion 
sitting on top of a wooden bench.”
ViT-L/14 w/ LM & ObjMLM: “A close up 
of a black and white accordion.”
ViT-L/14 w/ VG: “A close up of a musical 
instrument on a table.”

Ground Truth: “'A small muffin with some 
bright red spread on top.”.
-----------------------------------------------
BLIPlarge: “A close up of a muffin on a 
table.”
RN50x64: “A close up of a doughnut on 
a plate.”
VinVLbase: “A close up of a dessert on 
a plate.”
VinVLbase w/ SCST: “A group of 
desserts on a plate on a table.”
ViT-L/14 w/ LM & ObjMLM: “A cup of 
coffee with a cranberry sauce on it.”
ViT-L/14 w/ VG: “A pastry on a table.”

Figure 5: More cases of generated captions from different models, where the hallucinated objects are marked in red.
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