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Abstract
Entity disambiguation (ED) is the task of
disambiguating named entity mentions in text
to unique entries in a knowledge base. Due
to its industrial relevance, as well as current
progress in leveraging pre-trained language
models, a multitude of ED approaches have
been proposed in recent years. However, we
observe a severe lack of uniformity across
experimental setups in current ED work,
rendering a direct comparison of approaches
based solely on reported numbers impossible:
Current approaches widely differ in the data
set used to train, the size of the covered entity
vocabulary, and the usage of additional signals
such as candidate lists. To address this issue,
we present ZELDA, a novel entity disambigua-
tion benchmark that includes a unified training
data set, entity vocabulary, candidate lists, as
well as challenging evaluation splits covering
8 different domains. We illustrate its design
and construction, and present experiments
in which we train and compare current
state-of-the-art approaches on our benchmark.
To encourage greater direct comparability
in the entity disambiguation domain, we
open source our benchmark at https:
//github.com/flairNLP/zelda.

1 Introduction
Entity disambiguation (ED) is the task of disam-
biguating textual mentions of entities to a corre-
sponding unique entry in a knowledge base. For
instance, the entity mention "NBA" might refer
to one of several organizations with this abbrevia-
tion, such as "National Basketball Association" or
"National Boxing Association". ED resolves these
ambiguities and creates links between a knowledge
base of unique entities and the various ways an
entity may be referred to in text. It is the core
component in the larger task of entity linking (EL),
which includes the identification of entity mentions
in text, often handled by a named entity recognition
(NER) system.

Recent progress in the field is driven by advances
in large language models (Shen et al., 2021; Sevgili
et al., 2022), pushing the scores on standard evalua-
tion datasets to new heights. These models are typ-
ically trained in a supervised manner. Unlike many
other NLP tasks with relatively few target classes,
such as sentiment analysis or part-of-speech tag-
ging, ED may have millions of target classes, since
each entity in a knowledge base is modeled as a
distinct class. Accordingly, most current state-of-
the-art ED approaches are trained over very large
amounts of annotated text data that often is auto-
matically derived from Wikipedia.
Lack of uniformity in experimental setup. How-
ever, while a number of standard evaluation
datasets exist to measure final ED accuracy, such as
the AIDA-B test split of the popular AIDA dataset
for newswire data (Hoffart et al., 2011), we observe
that no such standardization exists for the data used
to train ED systems. To illustrate this disparity,
refer to Table 1 for an overview of current state-
of-the-art approaches, published numbers and their
respective training setups.

As Table 1 shows, approaches use different
amounts of training data (ranging from 2 to 20
million "snippets" of annotated text), sourced from
different Wikipedia versions using different sam-
pling methodologies, and in some cases augmented
with weak labels. Importantly, there is a stark differ-
ence in the size of the entity vocabulary for which
approaches are trained, ranging from models that
disambiguate a few thousand entities to models that
handle over 6 million. Approaches also typically
leverage so-called "candidate lists" that contain all
possible disambiguation targets for textual men-
tions and so greatly narrow the search space. Prior
work (see Section 2) has shown that each of these
factors greatly influences the accuracy of an oth-
erwise identical ED system (Broscheit, 2019; Wu
et al., 2020; Févry et al., 2020; Orr et al., 2021; De
Cao et al., 2021).
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Approach Training data Weak
labels?

Data source Additional
features

Entity
vocab

Candidate
lists

AIDA-
B

Yamada et al. (2022) ∼10M snippets no Wikipedia
(Dec, 2018)

- LUKEGH 128k GH 92.4
- LUKEPPR 128k PPR 94.6
- LUKEGH+AIDA +AIDA-TRAIN 128k GH 95
- LUKEPPR+AIDA +AIDA-TRAIN 128k PPR 97.1

Barba et al. (2022) 9M snippets† no Wikipedia
(May, 2019)

- EXTEND +AIDA-TRAIN 1.5M GH 92.6

Ayoola et al. (2022) ∼20M snippets yes Wikipedia
(July, 2021)

+KB
+descriptions
+types

- AYOOLA 6.2M GH 90.4

De Cao et al. (2021) 9M snippets† no Wikipedia
(May, 2019)

- GENRE 1.5M GH 89.3
- GENRE+AIDA +AIDA-TRAIN 1.5M GH 93.3
- GENRE+AIDA−NOC +AIDA-TRAIN 1.5M none 91.2

Orr et al. (2021) 5.7M sentences yes Wikipedia
(Nov, 2019)

+KB
+types

- BOOTLEG +AIDA-TRAIN 3.3M PPR+custom 96.7

Févry et al. (2020) 17.5M snippets no Wikipedia
(Apr, 2019)

+AIDA-TRAIN

- FEVRYHF 5.7M HF+custom 92.5
- FEVRYPPR 5.7M PPR+custom 96.7

Broscheit (2019) yes Wikipedia
(June, 2017)

+AIDA-TRAIN

- BROSCHEIT700k 8.8M snippets 700k none 78.8
- BROSCHEIT500k 2.4M snippets 500k none 87.9

Table 1: Differences in the signal used to train current state-of-the-art ED approaches and their reported accuracy
on the AIDA-B evaluation dataset. Differences include: the number of snippets used to train each approach, the
definition of what constitutes a "snippet", the Wikipedia version the data is sourced from, and -importantly- the size
of the entity vocabulary and quality of the candidate lists used ("HF" are lists by Hoffart et al. (2011), "GH" lists by
Ganea and Hofmann (2017), and "PPR" lists by Pershina et al. (2015)).

Lack of direct comparability. With this paper, we
argue that these differences in training setup impair
our ability to directly compare approaches based
solely on published numbers on evaluation datasets.
For instance, Table 1 shows that LUKE (Yamada
et al., 2022) slightly outperforms the comparatively
simple approach by FEVRY (Févry et al., 2020)
on AIDA-B; but since FEVRY is trained to cover
a much larger set of entities, we cannot know if
the difference in evaluation score is due to algo-
rithmic differences in both approaches, or simply a
function of the signal used to train them.

Contributions. We argue that -much like in most
other NLP tasks- we require a uniform experimen-
tal setup to evaluate large ED models. To this end,
we present ZELDA, a comprehensive benchmark
for supervised entity disambiguation. The bench-
mark consists of 95k full text paragraphs from
Wikipedia, annotated with mention boundaries and

disambiguation targets, and integrates 8 existing
ED datasets from various domains as evaluation
splits. ZELDA defines a fixed entity vocabulary of
822k entities, together with fixed candidate lists
and entity descriptions. In this paper:

1. We analyze training setups in recent state-of-
the-art ED approaches, and derive desiderata
for a uniform training benchmark (Section 2).

2. We present the ZELDA benchmark, the design
goals that inform our sampling methodology
to create it, and its properties (Section 3).

3. We compute evaluation scores for base-
lines and three state-of-the-art approaches to
present standardized scores and illustrate the
usefulness of our benchmark (Section 4).

4. We make our benchmark available to the re-
search community as an open source project.
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We hope that the public release of ZELDA will
encourage future ED works to leverage our bench-
mark, and thus facilitate greater direct comparabil-
ity of future ED approaches.

2 Analysis of Training Setups

ED approaches employ large language models
to embed an entity mention, its textual context
and additional features. To decode, approaches
typically either use variants of softmax classifi-
cation (Broscheit, 2019; Févry et al., 2020; Ya-
mada et al., 2017; Orr et al., 2021; Ayoola et al.,
2022), generative decoding (De Cao et al., 2021) or
retrieval-based models that compute the pairwise
similarity of an embedded mention and a textual
description for each target entity (Ravi et al., 2021).

Rather than focus on the algorithmic differences
of these approaches, this section analyzes current
state-of-the-art approaches from the point of view
of their respective training setups.

2.1 Training Data

Size of training dataset. Approaches are typically
trained over short snippets of text with annotated
entity mentions, derived from Wikipedia page links.
The number and length of these snippets varies
greatly across approaches. For instance, as Table 1
shows, Ayoola et al. (2022) train their model with
20 million snippets of 512 tokens length, while De
Cao et al. (2021) train with 9 million snippets of
100 token length. Orr et al. (2021) train on single
sentences only, and use a comparatively small set
of 5.7 million snippets. The sampling methodology
to derive these snippets from Wikipedia is seldom
described in detail and bespoke to each paper.

While we could find few ablation experiments
in prior work, Broscheit (2019) presents an experi-
mental evaluation in which he trains his proposed
approach over two different datasets sampled from
Wikipedia, one with 8.8 million and one with 2.4
million snippets. The difference in dataset size is
due to a threshold parameter for frequent entities in
his sampling method. Surprisingly, he finds that the
model trained on the smaller dataset yields signifi-
cantly better results on AIDA-B. He believes this
may be because his computational resources lim-
ited training on the large dataset to only 4 epochs,
whereas on the small dataset he could train for 14.
Single-mention vs multi-mention data. The num-
ber of snippets is only partly illustrative of the train-
ing signal, as the number of mentions dramatically

differs per setup. In "single-mention" data as used
by Barba et al. (2022) and De Cao et al. (2021),
each snippet only contains a single annotated entity
mention (indicated with a dagger asterisk in Ta-
ble 1). In "multi-mention" data on the other hand,
more than one mention might be annotated, thus
potentially greatly increasing the training signal.
Optional augmentation with weak labels. One
particularity of Wikipedia text is that within an ar-
ticle, usually only the first mention of an entity
is marked with a page link. In fact, Orr et al.
(2021) estimate that 68% of mentions are unla-
beled. For this reason, many works use "weak label-
ing" methods to annotate unlabeled mentions (Orr
et al., 2021; Ayoola et al., 2022; Broscheit, 2019)
in Wikipedia articles. These methods dramatically
increase the number of labeled mentions per text
snippet, but may introduce errors into the training
data. This naturally impacts the performance of
ED: for instance, Orr et al. (2021) find that their
model performs better on rare and unseen entities
but worse on frequent ones when using weak labels.
Wikipedia version of training data. Table 1
also shows that the data is sourced from different
Wikipedia versions. This poses problems as the
entity set covered by Wikipedia grows significantly
over time (Gillick et al., 2019). Further, the infor-
mation contained in Wikipedia is constantly up-
dated (such as which person currently holds which
political office), potentially giving advantages to
models trained on a Wikipedia version from a simi-
lar point in time as the evaluation data.

2.2 Entity Vocabulary
As Table 1 shows, published approaches also differ
in their entity vocabulary, i.e. the number of unique
entities they can resolve, ranging from 128k (Ya-
mada et al., 2017) to about 6 million entities (Févry
et al., 2020; Ayoola et al., 2022). While a very
large entity set is desirable for a general-purpose
ED system, a smaller vocabulary tuned to an evalu-
ation dataset will likely result in better evaluation
numbers. This intuition is supported by experi-
ments by Wu et al. (2020) who found that a model
trained to handle an entity set specific to their evalu-
ation dataset outperforms a general-purpose model
trained to handle 5.9M Wikipedia entities.

2.3 Candidate Lists
Most state-of-the-art ED approaches employ candi-
date lists that contain for each mention string a set
of sensible entity candidates (Sevgili et al., 2022).
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Domain Doc. Type # Docs ∅ length # Entities # Mentions

Evaluation Splits
AIDA-B news articles 231 201 tokens 1,538 4,485
TWEEKI tweets short texts 500 16 tokens 639 860
REDDIT-POSTS forum posts short texts 377 20 tokens 524 705
REDDIT-COMMENTS forum comments short texts 360 41 tokens 483 638
WNED-WIKI Wikipedia articles 318 315 tokens 5,293 6,747
WNED-CWEB web pages 320 1,433 tokens 4,467 11,116
SLINKS-TOP web short texts 904 35 tokens 899 904
SLINKS-SHADOW web short texts 904 35 tokens 902 904
SLINKS-TAIL web short texts 902 35 tokens 902 902

Training Split
ZELDA-TRAIN Wikipedia paragraphs 95k 527 tokens 822k 2.6M

Table 2: Descriptive statistics of the training and evaluation splits of ZELDA. Note that the statistics reported for
evaluation splits may differ slightly from previous literature as a consequence of our normalization procedure.

The model then classifies over the small list rather
than the whole entity set. The advantage of this
approach is that it greatly narrows the search space
and speeds up computation. A drawback however
is that these candidate lists must be created sep-
arately and that incomplete lists lower the upper
bound of what an ED approach can achieve: if the
correct entity is not included in the candidate list
of a mention, correct classification is not possible.

Prior work showed that the choice of candidate
lists significantly impacts overall results. For in-
stance, the lists of Pershina et al. (2015) were found
to be exceptionally well-tailored to the AIDA-B

evaluation dataset, with high recall and low ambi-
guity for its entities (Yang et al., 2018). As Table 1
shows, both Févry et al. (2020) and Yamada et al.
(2022) find that their models improve significantly
when using these lists instead of the more generic
lists by Hoffart et al. (2011) and Ganea and Hof-
mann (2017) respectively. Unfortunately, some
approaches such as Févry et al. (2020) also employ
custom lists that are not released.

2.4 Domain-Specific Features
It is possible to tailor ED systems to achieve better
results on individual domains.
Page titles. Févry et al. (2020) and Orr et al. (2021)
disambiguate entities in news articles, and present
a custom approach for constructing snippets: in-
stead of only taking a token window around an
entity mention, they also add the title and first two
sentences of the article as additional context, rea-
soning that these texts contain salient information
that pertains to the whole article. However, such
custom contexts can only be defined for individ-
ual domains (e.g. tweets for instance do not have
titles) and are therefore challenging to integrate for
general-purpose ED systems.

Domain-specific data. In addition to large
Wikipedia-derived datasets, many works also in-
corporate domain-specific data into their training
or fine-tuning. While many available evaluation
datasets are limited to small test splits, some pop-
ular datasets also define training splits. A well-
known example is AIDA, which next to AIDA-B

defines a train split consisting of 20k sentences and
covering 30k entities. Table 1 shows (in column
"additional features") that all models either present
ablations in which AIDA-TRAIN is included, or in-
clude this data by default. The numbers clearly
show that including domain-specific data improves
overall results. However, prior works have shown
that fine-tuning to a particular domain degrades per-
formance on other datasets (Yamada et al., 2022;
De Cao et al., 2021; Le and Titov, 2019).

2.5 Additional Features

Some ED approaches leverage additional sources
of information (Shen et al., 2021; Sevgili et al.,
2022). In particular, entity descriptions are con-
cise textual summaries of the "meaning" of each
entity, and a core component of all ED approaches
that follow a retrieval-based approach (Ravi et al.,
2021). Entity type information equips each entity
with semantic type as additional signal. Finally,
some approaches employ knowledge base (KB) in-
formation to decode multiple mentions in a text
paragraph such that overall entity relatedness is
observed (Ayoola et al., 2022; Orr et al., 2021).

3 The ZELDA Benchmark

We create ZELDA to enable analysis and direct com-
parison of large ED models. Refer to Table 2 for
an overview. We start by selecting and normalizing
appropriate evaluation datasets (Section 3.1), upon
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which we define a methodology to sample training
data that satisfies several objectives (Section 3.2).
To ensure broad applicability, we also produce can-
didate lists and entity descriptions (Section 3.3).

3.1 Selection of Evaluation Splits

Desiderata. Our analysis of Section 2 showed that
there are many ways to tailor the training setup to
a specific evaluation dataset: one might employ
domain-optimized candidate lists, include domain-
specific features, use an optimized entity vocabu-
lary, or optimize the process of sampling Wikipedia
for training data. With ZELDA, we seek to mini-
mize opportunities for such domain-specific engi-
neering to place greater focus on evaluating algo-
rithmic rather than engineering components. We
also seek an evaluation setup that not only produces
a single score, but facilitates more granular analysis
of the capabilities of large ED models.

We therefore sought evaluation datasets that
both span a broad range of domains (web pages,
newswire text, social media) as well as isolate spe-
cific challenges in ED. To facilitate distribution, we
limited our search to freely available datasets.
Selected datasets (Table 2). We chose the follow-
ing 8 datasets for inclusion:

• AIDA-B is the test split of AIDA, the most
commonly used ED dataset. It contains 231
manually annotated Reuters news articles.

• TWEEKI (Harandizadeh and Singh, 2020) is a
collection of 500 randomly selected and hand-
annotated tweets.

• Two datasets from Botzer et al. (2021),
referred to as REDDIT-COMMENTS and
REDDIT-POSTS respectively, that consist of
top-scoring posts and comments from the in-
ternet forum Reddit. We use the "gold" subset
of this dataset, i.e. all annotations in which all
three annotators agreed.

• Two datasets from Guo and Barbosa (2018),
referred to as WNED-WIKI and WNED-
CWEB respectively, that cover the domains of
Wikipedia articles and web pages. We include
these datasets because they include annota-
tion of the difficulty of each document on a
scale from 0 to 1. This enables analyses of ap-
proaches as a function of estimated difficulty,
as we show in Section 4.

• Three datasets from Provatorova et al. (2021),
created specifically to analyze three classes of
mention ambiguities: (1) SLINKS-TOP con-
tains only easy cases in which the correct dis-
ambiguation is the most frequent sense of a
mention. (2) SLINKS-SHADOW is the oppo-
site and contains only difficult cases in which
the correct disambiguation of a mention is
"overshadowed" by a more popular entity. (3)
SLINKS-TAIL contains only "long tail" enti-
ties that are very rare in Wikipedia.

Normalization. We unify these datasets in two
ways: First, since these datasets were created at
different times, we update entity annotations to the
most recent version of Wikipedia (October, 2022).
Second, as datasets are provided in various formats,
we convert them into two commonly used standard
formats, namely CoNLL and JsonL.

3.2 Training Data

Desiderata. We define a sampling methodology
to create training data to balance two objectives:
our first goal is to evaluate entity disambiguation
for "broad entity coverage" approaches that derive
large-scale training data from Wikipedia. However,
if the training data is too large, model training be-
comes to costly for thorough analyses of design
choices and hyperparameters; with the exception
of the work by Févry et al. (2020), we find such
analyses to be rare in current literature. For this
reason, our second goal is to limit the overall size
of the training dataset.
Sampling process (Algorithm 1). To balance
these two goals, our sampling process starts from
the vocabulary of all entities in the evaluation splits,
which we refer to as the test entity set Et. Our
sampling seeks to find at least a minimal number
of training examples for these entities, set by the
threshold parameter. Following prior analyses by
Vasilyev et al. (2022), we set the threshold to 10,
meaning that each entity in the test set should ap-
pear at least 10 times in the training data. However,
this is only possible for entities that do appear this
often in the source Wikipedia data; for long-tail
entities that appear fewer times, we select as many
examples as possible.

Our sampling selects entire Wikipedia para-
graphs for inclusion into the training dataset. The
reason for choosing paragraphs as atomic docu-
ment type is threefold: (1) Unlike fixed-length to-
ken windows that center on one particular entity,
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paragraphs typically consist of multiple full sen-
tences that provide natural context for entity men-
tions. (2) By choosing random paragraphs instead
of full articles, we limit overall dataset size and in-
troduce more textual variety as opening paragraphs
of Wikipedia articles were observed to often have
similar wording (Le and Titov, 2019). (3) Para-
graphs contain mentions to many other entities out-
side of Et. These entities are naturally skewed and
added to the overall entity vocabulary of ZELDA.
Data preprocessing. We leverage the Kensho
Derived Wikimedia Dataset1, derived from the
Wikipedia dump of December 2019. This dataset
is preprocessed such that redirect-, disambiguation-
and list-pages are removed, the text is cleaned and
articles are divided into sections. Here, each sec-
tion corresponds to one paragraph of text. We dis-
card common section types that typically contain
little text (such as the "Bibliography" and "External
Links" sections common to Wikipedia articles). To
ensure that all annotations are consistent with our
evaluation splits, we update entity annotations to
the most recent version of Wikipedia and discard
those for which no article exists anymore.
Resulting training data. This set is randomized
and sampled using Algorithm 1, yielding a training
data set of 95k paragraphs spanning on average
527 tokens. It contains a total of 2.6 million men-
tions covering a vocabulary of 825k distinct entities,
which we refer to as ZELDA-TRAIN. See Table 2
for descriptive statistics.

3.3 Additional Structured Information
We provide candidate lists that we derive with
a general approach from the Kensho Wikimedia
dataset, the Wikilinks web corpus (Singh et al.,
2012) and the "also known as" information from
Wikidata. For all mentions in these sources we list
and count all entities that they refer to and filter
entities from these lists that are not contained in
the ZELDA entity vocabulary (details in Appendix
A.3). Moreover we derive the most-frequent-sense
baseline (MFS) by choosing, for every mention,
the entity that this mention refers to the most often.

We also provide standardized entity descriptions:
For each entity we extract the opening paragraph
of its Wikipedia article as its description.

4 Experiments
We showcase the ZELDA benchmark by training
a set of baselines and state-of-the-art approaches

1
https://datasets.kensho.com/datasets/wikimedia

Algorithm 1: Paragraph sampling
input : Set of sections S, test entity set Et

output : Filtered list of sections Ŝ

threshold← 10;
countere ← 0 for e in Et;
while Et ̸= ∅ do

s = random.sample(S);
if Et ∩ s.links ̸= ∅ then

Ŝ.add(s);
for e in s.links do

countere ← countere + 1;
if countere ≥ threshold then

Et.remove(e)
end

end
end

end
return Ŝ

on ZELDA-TRAIN, and comparatively evaluating
them on our evaluation splits.

4.1 Evaluated Approaches
We compare 8 different models, as listed in Table 3:
Simple baselines. We include two baseline ap-
proaches. The first is MFS, a simple most-frequent-
sense baseline that assigns each mention to its most
commonly observed entity. The second is CL-
RECALL, which calculates the upper bound reach-
able with our provided candidate lists: for each
mention, the gold entity is assigned if it is included
in the candidate list.
Simple softmax classifier (FEVRY). We include
a reimplementation of the approach by Févry et al.
(2020) in two variants: FEVRYCL uses our candi-
date lists, while FEVRYALL does not use any lists
to restrict the search space. The approach leverages
a simple softmax classification head trained on top
of a transformer model that takes as input a text
snippet. Despite its simplicity, it was found to be
surprisingly competitive. We reimplemented the
approach as Févry et al. (2020) did not release their
code. However, since our train set is much smaller
we use bert-base-uncased instead of just a
4-layer transformer and adapt the hyperparameters
to our setting (see Appendix A.1)
LUKE. We train two variants of LUKE (Yamada
et al., 2022), the current state-of-the-art approach
for several benchmark datasets. It trains a lan-
guage model with entity embeddings, and employs
a global decoding mechanism to decode mentions
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AIDA-
B

TWEEKI REDDIT-
POSTS

REDDIT-
COMM.

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHADOW

SLINKS-
TOP

∅

Baselines
MFS 0.635 0.723 0.834 0.81 0.612 0.651 0.994 0.149 0.413 0.647
CL-RECALL 0.911 0.94 0.984 0.983 0.924 0.988 0.988 0.567 0.731 0.891

Classification
FEVRYALL 0.792 0.718 0.885 0.841 0.68 0.843 0.638 0.434 0.531 0.707
FEVRYCL 0.795 0.769 0.89 0.865 0.703 0.845 0.876 0.319 0.477 0.727
LUKEPRE 0.793 0.738 0.761 0.699 0.668 0.684 0.977 0.204 0.508 0.670
LUKEFT 0.812 0.779 0.815 0.785 0.703 0.765 0.980 0.225 0.518 0.710

Generative
GENREALL 0.724 0.759 0.888 0.839 0.665 0.852 0.953 0.387 0.435 0.722
GENRECL 0.786 0.801 0.928 0.915 0.736 0.884 0.996 0.373 0.528 0.772

Table 3: Results of our experiments. Bold scores indicate the best scores of all the trained models. Underlined
scores represent the best scores among the classification-based models.

in a given text snippet by order of confidence. Each
classified mention is used as a feature to better
classify the remaining mentions in a snippet. For
training, they distinguish between pre-training in
which entity embeddings are learned, and an op-
tional final epoch of fine-tuning in which they are
frozen. We train one model only with pre-training
(LUKEPRE) and one with fine-tuning (LUKEFT ).

We use their publicly available code2 to train our
two models. For direct comparison to the FEVRY
model, we use bert-base-uncased instead
of bert-large-uncased (utilized in Yamada
et al. (2022)) and slightly adapt their hyperparame-
ters to our setting, see Appendix A.1.
GENRE. We also train two variants of GENRE (De
Cao et al., 2021), a generative approach that for-
mulates ED as a sequence-to-sequence problem. A
given input text with flagged mention boundaries
is input, from which an entity title is generated. To
ensure that the generated sequence is a valid title,
GENRE uses a prefix-tree generated from all entity
titles in the data to constrain the generation process.
GENRE does not use candidate lists during training
but in inference the prefix tree can be derived from
the candidate lists. We call this variant GENRECL.

We use their publicly available code3 to train our
two models. Instead of the bart-large model
we use the bart-base version to make the com-
parison more fair. We adapt the recommended
hyperparameters to our setting (see Appendix A.1).

4.2 Results
Table 3 breaks down the accuracy of each model
for each of the evaluation splits, and provides a
single macro-averaged accuracy score for all data.
We make a number of interesting observations:

2
https://github.com/studio-ousia/luke

3
https://github.com/facebookresearch/GENRE

Different ranking of approaches. Most impor-
tantly, we arrive at a starkly different ranking of ap-
proaches compared to published numbers on AIDA-
B as listed in Table 1 where GENRE is one of the
lowest-scoring models. In contrast, in our evalua-
tion the two GENRE models clearly outperform all
other considered models in most evaluation splits.
Impact of candidate lists. We note that
our general-purpose candidate lists derived from
Wikipedia score unevenly across domains. As
our CL-RECALL baseline shows, our lists have
a high upper bound on evaluation splits covering
Wikipedia and social media domains, but a rela-
tively low upper bound on splits from the domains
of web pages or news text. We also note that of the
classification-based approaches, only FEVRYALL

does not use candidate lists, but scores best.
Moreover, the overall best-scoring approach

GENRE is trained without candidate lists.
But during prediction, the better-scoring vari-
ant GENRECL employs candidate lists, while
GENREALL does not. This indicates using can-
didate lists only for prediction, but not training,
may be a worthwhile approach to further explore.
Hard-to-disambiguate entities. On the SLINKS-
SHADOW dataset of "overshadowed" entities,
FEVRYALL outperforms GENRE. One possible in-
terpretation is that a generative approach naturally
favors decoding into the most prominent sense, as
the generated entity title will be most similar to
the mention text. On the other hand, classification-
based approaches are not influenced by string simi-
larity of entity and mention text, potentially leading
to better performance here.

In Table 4, we additionally list the scores on the
brackets for WNED-WIKI provided by Guo and
Barbosa (2018). The table shows that accuracy
scores of all models steadily decrease from left (the
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Approach 1 [1 - 0.9] [0.9 - 0.8] [0.8 - 0.7] [0.7 - 0.6] [0.6 - 0.5] [0.5 - 0.4] [0.4 - 0.3] ∅

CG-recall 0.997 0.972 0.992 0.983 0.983 0.991 0.988 0.996 0.988

FEVRYCL 0.948 0.922 0.888 0.872 0.841 0.8 0.76 0.722 0.844
LUKEFT 0.915 0.904 0.863 0.803 0.778 0.738 0.622 0.562 0.773

GENRECL 0.971 0.942 0.912 0.856 0.878 0.869 0.869 0.797 0.887

Table 4: Accuracy measured for best approaches on different difficulty brackets of WNED-WIKI. The lowest scores
are observed for the most difficult bracket "[0.4 - 0.3]".

easiest bracket) to right (the hardest bracket). As
we see this is not caused by a the CG-recall on
WNED-WIKI which is independent from the brack-
ets. This indicates that there remains much room
for improving ED performance on ZELDA even
when leveraging candidate lists during prediction.

4.3 Discussion

Our evaluation showed that the generative GENRE
approach outperforms all classification-based ap-
proaches, and a simple direct classification ap-
proach without candidate lists as second-best per-
forming approach overall. This indicates that equal-
izing the training signal, removing opportunities for
domain-specific engineering, and evaluating across
diverse evaluation splits may yield more insights
into which algorithmic approach is best-suited to
train large ED models.

However, we must also caution against overinter-
preting this ranking: due to the large training times
for each of these models, we did not explore any
hyperparameters. Instead, we used default parame-
ters whenever possible, and in the case of LUKE
and FEVRY changed the underlying transformer
to the same model, for more direct comparability.
Models were only trained for as long as our com-
putational resources allowed. Upon publication of
the benchmark we anticipate that authors will ex-
plore better hyperparameters for their respective
approaches, which may change the ranking (see
Limitations section).

5 Related Work

Prior work has addressed aspects of evaluating ED.
Standardized evaluation. GERBIL (Röder et al.,
2018) standardizes ED evaluation over multiple
datasets in a unifying framework, but does not de-
fine the training data and thus only focuses on com-
paring already-trained models. Similarly, a range
of prior works have sought to refine and standard-
ize ED evaluation (Waitelonis et al., 2019; Nait-
Hamoud et al., 2021; Noullet et al., 2021; Odoni
et al., 2019; van Erp and Groth, 2020; Braşoveanu

et al., 2018). In contrast, ZELDA defines the full ex-
perimental setup, including training data, the entity
vocabulary and other training signals.
Manually labeled training data. A few existing
ED datasets not only define a test set, but also a
training split. An example discussed in this paper
is the AIDA dataset. Other datasets include TAC-
KBP2010 (Ji and Grishman, 2011), which is not
available anymore, and a zero-shot dataset from Lo-
geswaran et al. (2019). However, these datasets are
too small and cover too few entities for evaluation
of large ED approaches.
Deriving training data from Wikipedia. All cur-
rent state-of-the-art approaches derive their train-
ing data from Wikipedia, though the exact process
is often not thoroughly described and/or provided
to the public. One exception is the BLINK cor-
pus created by Wu et al. (2020) that is used in
other works. However, this corpus consists only
of single-mention snippets and cannot be used for
approaches that train global decoders, like LUKE.

Most similar to our sampling method is from
Orr et al. (2021). The authors sample a small
Wikipedia subset by sampling for the mentions
of the KORE50 benchmark (Hoffart et al., 2012).
Unlike our approach, they sample all occurrences
of each mention and sample only single sentences,
yielding 520k sentences for only 144 mentions.

6 Conclusion

We presented the ZELDA benchmark to unify ex-
perimental setups across large ED approaches, and
conducted an evaluation of various approaches. We
find that given the exact same training signal, ap-
proaches compare differently than published num-
bers suggest. We release the datasets, our sampling
and preprocessing scripts and our FEVRY reimple-
mentation to the research community as an open
source project available at https://github.
com/flairNLP/zelda. Additionally, we in-
tegrate our benchmark into the open source NLP
framework FLAIR (Akbik et al., 2019).

We hope that this will encourage present and fu-
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ture ED works to compare algorithmic differences
on a more equal setting and thus help generate in-
sights to further advance the field of ED.

7 Limitations

As discussed in Section 4.3, an important limitation
of our experimental evaluation is our lack of hy-
perparameter exploration of published approaches.
Given the effort required to train large ED models
and the many involved hyperparameters, we be-
lieve that only the original authors of their respec-
tive approaches can perform a meaningful search
of hyperparameters for our benchmark, limiting us
to best-effort parameters from prior literature. It is
therefore possible if not likely that the respective
authors of the approaches we compare might arrive
at better numbers than the ones presented here.

Regarding the ZELDA benchmark itself, we note
that it is designed to evaluate supervised ED ap-
proaches. As we sampled the dataset to contain at
least 10 annotations for each entity in the ZELDA

test splits whenever possible, it is unclear whether
ZELDA is useful for evaluating the currently grow-
ing family of zero-shot ED models (Logeswaran
et al., 2019; Wu et al., 2020). Finally, our train-
ing corpus is relatively small compared to some
other Wikipedia corpora used in prior approaches.
While we made this design choice purposefully to
enable faster training times and hopefully more
exploration of hyperparameters by future works,
we cannot be certain whether rankings obtained on
ZELDA transfer to approaches trained on orders of
magnitude of more data.
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A Appendix

A.1 Training Parameters and Times

Our training parameters are informed by recom-
mended parameters of prior works, adapted to
the smaller training dataset size of ZELDA-TRAIN.
In some cases, we adapted parameters across ap-
proaches for greater comparability, for instance by
using the same transformer model for both LUKE
and FEVRY. Across all approaches, we use the
following parameters: We train all models for 6
epochs with a mini-batch size of 64 and a learning
rate of 5e-5. The remaining hyperparameters are
specific to each model:
FEVRY. The remaining parameters in FEVRY fol-
low the recommendations from the paper, i.e. we
use the Adam optimizer (Kingma and Ba, 2015)
with a linear warmup for the first 10% of train-
ing and gradient clipping. However, the smaller
dataset allowed us to look at more context. We split
paragraphs of ZELDA into snippets of 400 tokens
(Fevry: 256) and use an entity embedding size
of 200 (Fevry: 256). Training FEVRYALL took

around 5h per epoch and for FEVRYCL 2.5h per
epoch on a single Nvidia 3090ti GPU, respectively.
LUKE. We run experiments with both one-stage
and two-stage training in LUKE. In one-stage train-
ing, we use for all epochs the same learning rate
and do not fix the transformer weights. The entity
masking rate is set to 30%. In two-stage training
(LUKECL), we do fine-tuning in the last training
epoch where we fix the entity embeddings and set
the entity masking rate to 90%. To ensure compara-
bility to FEVRY we set the entity embedding size
to 200. For the remaining parameters we stick to
the ones of the original LUKE which can be found
in detail in table 4 and 5 of Yamada et al. (2022).
Paragraphs of ZELDA are divided into snippets
with ≤ 512 tokens. Training LUKE took roughly
2h per epoch on a single Nvidia 3090ti GPU.
GENRE. Apart from the parameters that we al-
ready discussed, we take all default parameters
from the original paper. The parameters can best
be found in the released code4. Since GENRE
takes much longer to train than the other models
and processes mentions individually we gave the
model less context: We split context 500 chars to
the left and 500 chars to the right of each mention
(a context of roughly 190 tokens). At inference we
use a beam size of 10 and a maximum number of
15 decoding steps as in the original paper. Train-
ing GENRE took around 16 hours on two Nvidia
3090ti GPUs per epoch.

A.2 Model Parameters
Our models have the following number of
parameters: Both LUKE and FEVRY use
a bert-base-uncased transformer model
(110M parameters), a projection layer (768× 200
≈ 153k parameters) and the entity embedding layer
(200× 825k ≈ 165M parameters), and thus have
about 274M parameters in total. GENRE adds a
decoder with 768 × 51197 ≈ 39M parameters to
its underlying transformer and thus has a total of
178M parameters.

A.3 Candidate Lists
We derive the candidate lists with a straightfor-
ward approach from three sources: Wikipedia Ken-
sho, WikiLinks and Wikidata. The first two are
text corpora with entity annotations derived from
page links. As each page link has a mention string
(the so-called "anchor text") and a target Wikipedia

4
https://github.com/facebookresearch/GENRE/blob/

main/scripts_genre/train.sh
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page, we can simply go through both datasets and
collect all mentions and their targets. To ensure
that the entity titles are up-to-date, we check with
calls to the Wikipedia API if the titles lead to an
existing Wikipedia page and discard them if not.
This yields a set of [mention, entity] tuples. We
aggregate and count these tuples.

Using the Wikidata API, we retrieve for each en-
tity in our vocabulary the corresponding Wikidata
page. From this page, we extract aliases from the
"also known as" field. We interpret all aliases as ad-
ditional mentions to an entity, leading to another set
of [mention, entity] tuples that we aggregate with
the first list. To cover a broader range of mentions
we add the lower cased version and version without
blanks and special characters of each mention to
the tuple set.
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