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Abstract

In task-oriented dialog (ToD) new intents
emerge on regular basis, with a handful of avail-
able utterances at best. This renders effective
Few-Shot Intent Classification (FSIC) a central
challenge for modular ToD systems. Recent
FSIC methods appear to be similar: they use
pretrained language models (PLMs) to encode
utterances and predominantly resort to nearest-
neighbor-based inference. However, they also
differ in major components: they start from
different PLMs, use different encoding archi-
tectures and utterance similarity functions, and
adopt different training regimes. Coupling of
these vital components together with the lack
of informative ablations prevents the identifi-
cation of factors that drive the (reported) FSIC
performance. We propose a unified framework
to evaluate these components along the follow-
ing key dimensions: (1) Encoding architec-
tures: Cross-Encoder vs Bi-Encoders; (2) Simi-
larity function: Parameterized (i.e., trainable)
vs non-parameterized; (3) Training regimes:
Episodic meta-learning vs conventional (i.e.,
non-episodic) training. Our experimental re-
sults on seven FSIC benchmarks reveal three
new important findings. First, the unexplored
combination of cross-encoder architecture and
episodic meta-learning consistently yields the
best FSIC performance. Second, episodic train-
ing substantially outperforms its non-episodic
counterpart. Finally, we show that splitting
episodes into support and query sets has a lim-
ited and inconsistent effect on performance.
Our findings show the importance of ablations
and fair comparisons in FSIC. We publicly re-
lease our code and data'.

1 Introduction

Intent classification deals with assigning one label
from a predefined set of classes or intents to user
* Equal contribution.

"https://github.com/UKPLab/
eacl2023-few-shot-intent-classification

utterances. This task is vital for task-oriented dia-
log (ToD) systems since the predicted intent of an
utterance is an essential input to other modules (i.e.,
dialog management) in these systems (Ma et al.,
2022; Louvan and Magnini, 2020; Razumovskaia
et al., 2021). Although intent classification has
been widely studied, it still represents a challenge
in settings where dialogue systems, including their
intent classifiers, need to have the ability to be
quickly adjusted to new domains and intent classes.
The main challenges in training intent classifiers
in such settings lies in the costly labeling of ut-
terances (Zhang et al., 2022a; Wen et al., 2017;
Budzianowski et al., 2018; Rastogi et al., 2020;
Hung et al., 2022; Mueller et al., 2022). Few-shot
intent classification (FSIC), which deals with ad-
justing intent classifiers to new intents given only a
handful of labeled instances, is thus of paramount
importance for ToD systems.

Various methods (§2) for FSIC have been pro-
posed (Larson et al., 2019a; Casanueva et al.,
2020a; Zhang et al., 2020; Mehri et al., 2020; Krone
et al., 2020; Casanueva et al., 2020b; Nguyen et al.,
2020; Zhang et al., 2021; Dopierre et al., 2021;
Vuli€ et al., 2021; Zhang et al., 2022b). These
methods are generally similar in that they utilize
pretrained language models (PLMs) to encode ut-
terances and resort to k nearest neighbors (KNN)
inference: the label of a new instance is deter-
mined based on the labels of instances with which
it has the highest representational similarity, as
encoded by the PLM. Despite these general similar-
ities, FSIC methods differ in design choices across
several crucial dimensions, including encoding ar-
chitectures, utterance similarity scoring, and train-
ing regimes. These methods tie together what are,
in principle, independent design decisions across
these dimensions, hindering ablations and insights
into what drives the (reported) FSIC performance.

In this work, we (1) induce a framework (PLM-
based utterance encoding, utterance similarity scor-
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ing, and nearest-neighbor-based inference) that uni-
fies most of existing FSIC approaches (§3); and
(2) focus on three key design decisions within this
framework: (1) model architecture for encoding ut-
terances (or utterance pairs), where we contrast the
less frequently adopted Cross-Encoder architecture
(e.g., (Vulic¢ et al., 2021)) against the more com-
mon Bi-Encoder architecture” (Zhang et al., 2020;
Krone et al., 2020; Zhang et al., 2021); (2) simi-
larity function for scoring utterance pairs based on
their joint or separate representations, contrasting
the parameterized (i.e., trainable) neural scoring
components against cosine similarity as the simple
non-parameterized scoring function; and (3) train-
ing regimes, comparing the standard non-episodic
training (adopted, e.g., by Zhang et al. (2021)
or Vuli¢ et al. (2021)) against the episodic meta-
learning training (implemented, e.g., by Nguyen
et al. (2020) or Krone et al. (2020)). Our frame-
work lets us evaluate impacts of these three di-
mensions for different text encoders (e.g., BERT
(Devlin et al., 2019) as a vanilla PLM and SimCSE
(Gao et al., 2021) as the state-of-the-art sentence
encoder) under the same evaluation setup (datasets,
intent splits, evaluation protocols and measures)
while controlling for confounding factors that im-
pede direct comparison between the FSIC methods.

Our extensive experimental results on seven in-
tent classification datasets reveal three new im-
portant findings. First, a Cross-Encoder coupled
with episodic training, a previously unexplored
FSIC combination, consistently yields best perfor-
mance across all the datasets. Second, episodic
meta-learning yields robust FSIC classifiers across
the board: our results demonstrate that it is much
more effective for FSIC than the conventional non-
episodic training. Finally, although episodic meta-
learning entails splitting utterances of an episode
into a support and query set during training, we
show, for the first time, that this does not generally
have a positive effect on the FSIC performance.

In sum, our comparative evaluation over vari-
ous design choices for key components of modern
FSIC approaches raise the awareness about the im-
portance of ablations and apple-to-apple compari-
son between complex FSIC systems that conflate
several key design decisions. We hope that our find-
ings pave the way for more deliberation in research
(and in particular evaluation) for this crucial ToD
task.

2 Also known as Dual Encoder or Siamese Network.

2 Related Work

We focus on few-shot intent classification (FSIC)
methods, which perform class inference for ut-
terances based on the labels of nearest neighbor
(ENN), either directly in the representation space
of the PLM or according to a trained scorer of ut-
terance pairs. We first describe the existing FSIC
inference paradigms and explain why we focus on
kNN-based methods. We then categorize the litera-
ture on FSIC approaches based on kNN-inference
along the three key design dimensions.

Inference algorithms for FSIC. Classical meth-
ods (Xu and Sarikaya, 2013; Meng and Huang,
2018; Wang et al., 2019; Gupta et al., 2019) for
FSIC use the maximum likelihood inference, where
a vector representation of an utterance is projected
by the classifier into a probability distribution over
the intent classes. Training such probability distri-
bution functions, in particular when they are mod-
eled by neural networks, mostly requires a large
number of utterances annotated with intent labels,
which are infamously expensive to collect in sce-
narios where new intents emerge on regular basis.
By relying on pretrained language models, more
recent FSIC methods leverage the language com-
petences they posses (i.e., encode) to alleviate the
need for learning to produce probability distribu-
tions for a large number intent classes, commonly
with a few instances. These recent FSIC meth-
ods (Krone et al., 2020; Casanueva et al., 2020b;
Nguyen et al., 2020; Zhang et al., 2021; Dopierre
et al., 2021; Vuli¢ et al., 2021; Zhang et al., 2022b)
instead exploit the similarities between utterance
embeddings in the representation space of the (fine-
tuned) PLM and infer the intents for new utterances
from the labels of nearest neighbors (KNN-based).
Since kNN-based methods in general report state-
of-the-art performance for FSIC, our comparative
empirical evaluation focuses on the design choices
for models that adopt this inference algorithm.

Model architectures for encoding utterance
pairs. A central design decision within the KNN-
based FSIC framework is the choice of the model
architecture for encoding utterances. The majority
of the approaches (Zhang et al., 2020; Krone et al.,
2020; Zhang et al., 2021; Xia et al., 2021) lever-
age the Bi-Encoder architecture (Bromley et al.,
1993; Reimers and Gurevych, 2019a; Zhang et al.,
2022a). The core idea of Bi-Encoders is that, given
a collection of utterances, each utterance is inde-
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pendently encoded by the PLM and mapped into a
dense representation space. In such a space, sim-
ilarities between pairs of utterances can be com-
puted, with a parameterized (i.e., trainable) scoring
function or a non-parameterized function such as
dot product or cosine similarity. In contrast, some
FSIC methods (Vuli¢ et al., 2021; Zhang et al.,
2020; Wang et al., 2021; Zhang et al., 2021) use
the Cross-Encoder architecture, in which the two
utterances are concatenated and encoded jointly by
a pretrained text encoder, e.g., BERT (Devlin et al.,
2019). The idea is to represent a pair of utterances
together using a PLM, where each utterance be-
comes a context for the other. A Cross-Encoder
thus does not produce an embedding for a single
utterance but for a pair of utterances. In general, Bi-
Encoders are more computationally efficient than
Cross-Encoders because of the Bi-Encoder’s ability
to cache the representations of the candidates. In
return, Cross-Encoders, by allowing tokens of one
utterance to attend over the tokens of the other (and
vice versa), capture better the semantic associations
between utterances.

Similarity scoring function. A crucial compo-
nent in nearest neighbor-based methods for FSIC
is the function that produces a similarity score for
a pair of utterances. Concerning this dimension
of analysis, we categorize FSIC methods into two
groups: (1) FSIC approaches that use parameter-
ized (i.e., trainable) neural layers to estimate the
similarity score between utterances (Zhou et al.,
2022; Zhang et al., 2020; Xia et al., 2021); and
(2) methods that rely on non-parameterized simi-
larity metrics such as dot product, cosine similarity,
and Euclidean distance (Sauer et al., 2022; Zhang
et al., 2022a; Krone et al., 2020; Vuli¢ et al., 2021;
Zhang et al., 2022b; Xu et al., 2021; Zhang et al.,
2021). Note that the Bi-Encoder architecture can
be coupled with both, whereas the Cross-Encoder
requires a parametrized scoring module.

Training strategy. To simulate FSIC, the best
practice is to split an intent classification corpus
into two disjoint sets of intent classes. In this way,
one set includes high-resource intents for training
of an FSIC classifier, and the other set includes low-
resource intents for evaluating the classifier. Con-
cerning the training strategy on the high-resource
intents, FSIC methods can be divided into two clus-
ters. One cluster of methods adopts meta-learning
or episodic training (Zhang et al., 2022a; Nguyen

et al., 2020; Krone et al., 2020). Under this train-
ing regime, the goal is to train a meta-learner that
could be used to quickly adapt to any few-shot
intent classification task with very few labeled ex-
amples. To do so, the set of high-resource intents
are split to construct many episodes, where each
episode is a few-shot intent classification task for
a small number of intents. The other cluster in-
cludes methods (Zhang et al., 2021; Vuli¢ et al.,
2021; Xu et al., 2021; Xia et al., 2021; Zhang et al.,
2020, 2021) that use conventional supervised (i.e.,
non-episodic) training. The non-episodic training
simply fine-tunes the FSIC model using all samples
from the high-resource intents of the training set.

3 Framework

We first unify formulations of the components we
need for our framework. We then present their
alternative configurations along our three central
dimensions of comparison: (i) model architecture
for encoding utterance pairs, (ii) functions for simi-
larity scoring, and (iii) training regimes.

3.1 Nearest Neighbors Inference

Following previous work on FSIC (Zhang et al.,
2020; Vuli¢ et al., 2021), we cast the FSIC task
as a sentence similarity task in which each intent
is an implicit semantic class, captured by the rep-
resentations of all the utterances associated with
that intent. The task is then to find the most simi-
lar labeled utterances for the given query. During
inference, the FSIC approach should deal with an
N-way k-shot intent classification, where NV is the
number of intents and £ is the number of labeled
utterances given for each intent label.

Let g be a query utterance and C' = {cy, ..., ¢, }
be a set of its labeled neighbors. The nearest neigh-
bor inference relies on a similarity function, non-
parameterized or trainable (which is learned on
high-resource intents), to estimate the similarity
score s; between ¢ and any c;. The query’s label 7,
is inferred as the ground-truth label of the neighbor
with the maximum similarity score (i.e., k = 1in k-
NN inference): § = yg, k = argmax({sy, ..., S }).

3.2 Model Architectures for Encoding
Utterance Pairs

An encoder in an FSIC model represents a pair of a
query and a neighbor (i.e., a labeled utterance) into
vector h(, .,y € R?. We formulate recently used
encoders: Bi-Encoder and Cross-Encoder.
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Bi-Encoder (BE). BE encodes a pair of utter-
ances independently, deriving independent repre-
sentations of the query and the neighbor utterance.
In particular, for each utterance x in a pair, we pass,
“[CLS] z”, to a BERT-like PLM and use the repre-
sentation of “[CLS]” to represent x. Worth noting
that the parameters of the PLM are shared in BE.

Cross-Encoder (CE). Different from BE, CE en-
codes a pair of query ¢ and neighbor c; jointly.
We concatenate ¢ with each of its neighbors
to form a set of query—neighbor pairs P =
{(g,c1), ..., (g, cn)}. We then pass each pair from
P as a sequence of tokens to a language model,
which is pre-trained to represent the semantic rela-
tion between utterances. More formally, we feed a
pair of utterances, “[CLS] q [SEP] ¢;”, to a BERT-
like PLM and then use the representation of the
“[CLS]” token as the representation of the pair.

3.3 Similarity Scoring Function

Given the pair representation, we compute the sim-
ilarity between a query and a neighbor utterance by
a parameterized or non-parameterized function.

PArameterized (PA). A neural-based parametric
scoring function consists of a fully connected feed-
forward network (FF) that transforms a pair repre-
sentation into a score, s; = o (Wleh(qM) +b),
where the weight W and bias b are trainable pa-
rameters, d is the size of the vector h(, .y, and o (.)
denotes the sigmoid activation function.

Non-Parameterized (NP). In contrast to PA, NP
often uses vector-based similarity metrics as scor-
ing functions, e.g., cosine similarity or Euclidean
distance. Following Vuli¢ et al. (2021), in this work
we adopt the cosine similarity between h, and hy,.

3.4 Model Configurations

Given the aforementioned components, we illus-
trate (Figure 1) three possible model configurations:
(i) CE+PA; (ii) BE+PA, and (iii) BE+NP.

CE +PA. In this configuration, we feed the joint
encoding of the utterance pair to a parameterized
similarity scoring function. We note again, due to
a single representation vector for both utterances,
CE cannot be coupled with a non-parameterized
scoring (NP).

BE +PA. In this configuration, we represent the
pair by concatenating the representations of each ut-

?’
b

BE +NP

]
|

CE +PA BE +PA

Figure 1: A demonstration of possible model configura-
tions of encoder architectures and similarity functions
to estimate the similarity score s; between a query g and
neighbor ¢;. CE and BE show Cross-Encoder and Bi-
Encoder architectures using a BERT-like PLM, respec-
tively. PA and NP show parametric and non-parametric
similarity functions, respectively. PA is modeled by
feedforward (FF) layers and NP by the dot product ©.

terance with the vectors of difference and element-
wise product between those representations:

hgei) =(hq ® he; © [hg — he,| ® hg © he;), (1)

where & is the concatenation operation and © is the
dot product. We motivate Equation 1 by the find-
ings reported in Reimers and Gurevych (2019b).
Similar to CE +PA, we use the sigmoid activation
function on top of the feed-forward layer. The size
of W is then 1 x 4d.

BE +NP. We use cosine similarity to estimate
the similarity between input utterances during pre-
diction. During training, we compute the dot prod-
uct between the query and each neighbor represen-
tation vector to directly estimate their similarity
scores s; = o0 (hq © he,;), where © indicates the
dot product, and o is the sigmoid function. We
apply o to scale s; to a value between 0 and 1.

3.5 Training Regimes

To train the aforementioned model configurations,
we formulate three training techniques as follows
(Figure 2): Non-Episodic Training (NE), Episodic
Training (EP) and Episodic Training with Support
and Query splits (EPSQ). The training strategies
rely on an identical loss function for each query.

Loss per query sample. We use the loss function
defined by Zhang et al. (2020) for FSIC. In particu-
lar, we define a ground-truth binary vector y, for a
query ¢ given a set of neighbors C' = {¢y, ..., ¢, }.
If the query and its i-th neighbor belong to the
same intent class, the corresponding label for the
pair is y,; = 1, otherwise y,; = 0. Given such
ground-truth label vector in consideration of the n
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Figure 2: A illustration of training techniques, i.e., Non-
episodic (NE), episodic (EP) and episodic with a support
and query split (EPSQ). Each cell shows an utterance in
a dataset. Each color depicts an intent class. Each row
shows labeled utterances with an identical intent. In NE,
the training instances are used all together and the loss
is the average loss for each sample (white cell) when
the other samples are neighbors. In EP, the training
instances are divided into M episodes () and the loss
is computed similar to NE for each episode. In EPSQ,
each episode is split into fixed sets of of support and
query instances, and the loss is computed for only the
samples in the query set.

EP

neighbors, y, = [y4¢|t = 1,...,n] and similarity
scores estimated by a model configuration for all
pairs s, = [sq¢|t = 1,...,n], we compute the bi-
nary cross-entropy loss for the query ¢ as follows:

lq(}’qasq‘c) =

1 n
== > [atlog(sqr) + (1= yqe) log(l — sq4)] -
t=1

2

NE. For the NE training, the classifier learns the
semantic relation between all high-resource intent
classes altogether. Let D represent a batch of utter-
ances for high-resource intent classes. Therefore,
we take each utterance in D as a query ¢ and pre-
dict its label concerning the rest of the utterances
as neighbors. More formally, we estimate the loss
for the NE training as follows:

’D‘ Zlq‘D q yl]?SQ) (3)

qeD

where [, is the loss defined in Equation 2 between
ground truth label vector y, and a vector of scores
sq estimated by a model configuration.

EP. An episode is a set of utterances for several
intent classes. An episode formulates an N-way
intent classification task, where IV is the number of
intent classes in the episode. The core idea behind
meta-learning is to learn from a large set of high-
resource intent classes by chunking the set into
many episodes (Lee et al., 2022). These episodes
are known as training episodes (a.k.a meta-training
episodes). If set Z denotes the intent labels of a
benchmark corpus, any NV randomly selected in-
tents from Z can be used to construct a training
episode. Let’s refer to these selected intents for
episode E' by Zgr. Then, episode E contains ut-
terances whose intent labels are in Ig. It is worth
noting that intent classes in training episodes may
overlap to let a classifier learn the semantic rela-
tions between all intent labels of the benchmark.
In EP, we construct M episodes from the set of
utterances for high-resource intent classes D. We
define the following loss function:

Z |E | Z lq\E'Z (yllv Sq)’ 4)

qeL;

where E; is the ith episode, y, is the ground-truth
labels for the query given neighbors in the episode
E;, and s, is the similarity scores between the
query and any neighbor in the episode.

EPSQ. The common practice in meta-learning is
to imitate the few-shot setup, an episode is split into
two disjoint sets: a support and a query set (Lee
et al., 2022). An episode’s support set includes
only a few utterances from each intent class in /.
An episode’s query set includes the rest of the ut-
terances in the episode. A classifier should classify
utterances in the query set using the utterances and
intent labels in the support set. Given the kNN ter-
minology, the support set is the set of neighbors and
the query set is a set of query utterances. Therefore,
the main difference between EPSQ and EP is that
the number of neighbors in EPSQ is limited to only
a few examples of each intent in the support set.
The loss function in EPSQ is defined as follows:
> lysi(yes), )

Z o Z

where @); is the query set and S; is the support set
of the ith episode.
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#Classes
Valid

#Episodes

Dataset Train Test  Train Valid Test

Balanced N-way k-shot

Clinc (150) 50 50 50 10k 10k 600
Banking (77) 25 25 27 10k 10k 600
Liu (54) 18 18 18 10k 10k 600
Hwu (64) 23 164 24.6 10k 10k 600

Imbalanced Support Sets

ATIS (19) 5 7 7 1,372 213 119
SNIPS (7) 4 - 3 240 - 210
TOP (18) 7 5 6 10,095 1,286 292

Table 1: The examined datasets and their main statistics.
The numbers in parenthesis show the total number of
intent classes for each dataset. For HWUG64, each split’s
number of classes varies at each run to ensure there is
no cross-split domain, hence the decimal number.

4 Experiments

We conduct our experiments in two different se-
tups: (i) balabced N-way k-shot and (ii) imbal-
anced classes in the support sets. The former refers
to the typical few-shot learning setup, where the
numbers of classes and examples per class are bal-
anced. In contrast, the imbalanced setup randomly
defines the numbers of classes and examples, im-
itating the imbalance nature of some benchmarks
for intent classification. While arguably some ut-
terances can be annotated to transform imbalanced
episodes into balanced ones, imbalanced few-shot
learning is still a huge practical challenge for var-
ious expensive domains, e.g., those that require
experts for annotation (Krone et al., 2020).

Datasets, splits, and episodes. Table 1 summa-
rizes the main statistics (e.g., the number of classes
per data split for each datasets) of the datasets
and their splits as we use in our experiments.
For the balanced N-way k-shot setup, we use
Clinc (Larson et al., 2019b), Banking (Casanueva
et al., 2020b), and Hwu (Liu et al., 2021) from Di-
aloGLUE (Mehri et al., 2020) as well as Liu (Liu
et al.,, 2021). For the sake of fair comparisons,
we use the exact splits and episodes as used by
Dopierre et al. (2021) for FSIC. For 5 folds, we
randomly split intents of each dataset into three
sets to construct training, valid and test episodes.
We then generate 5-way k-shot episodes for each
split in each fold, where k£ € {1, 5}. For the imbal-
anced setup, we use ATIS (Hemphill et al., 1990),
SNIPS (Coucke et al., 2018), and TOP (Gupta et al.,
2018). We follow Krone et al. (2020) to construct
episodes for these datasets.

Settings. We use BERT-based-uncased and
SimCSE as PLMs. We fine-tune them using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 2e — 5. Both batch size and
maximum sequence length are set to 64. See the
Appendix for the full list of hyperparameters. For
experiments on each fold of balanced datasets, we
train a FSIC classifier for a maximum of 10,000
5-way K -shots episodes. We evaluate the classifier
on the validation set after every 100 updates, and
stop the training if validation performance does not
improve over 5 consecutive evaluation steps. To
alleviate the impact of random selection of few-
shot samples, we report the average performance
of a classifier for 600 test episodes, compatible
with Dopierre et al. (2021). For the experiments
on the imbalanced datasets, similar to Krone et al.
(2020), we conduct the experiments over 1 fold due
to the limited number of intents. The average num-
ber of shots per intent used in episodes of ATIS,
SNIPS, and TOP is about 4, 5, and 4, respectively
(see Appendix for details). For both N-way k-shot
and imbalanced setups, the number of examples in
query sets is identical for all intents in the query
sets. So, for all experiments we report the accuracy
metric averaged over all runs and folds.

Models in comparison. Alongside the results of
the model configurations (§3), we report the re-
sults of the following FSIC methods to put our
results in context. Random assigns a random in-
tent class from the support set to each query utter-
ance. BE (fixed)+NP represents a generic config-
uration employed by the majority of PLM-based
FSIC baselines, e.g., ConvBERT (Mehri and Eric,
2021), TOD-BERT (Wu et al., 2020), and DNNC-
BERT (Zhang et al., 2020), inter alia. These meth-
ods use pretrained BERT and further fine-tune
on other NLP tasks (e.g., NLI) or other dialogue
datasets. ProtoNet (Dopierre et al., 2021) is in-
spired by prototypical network method (Snell et al.,
2017), which has been shown to achieve the state-
of-the-art accuracy among meta-learning methods
for few-shot learning tasks including FSIC (Krone
et al., 2020). This method is not based on instance-
level similarity. It encodes an intent class by a
prototype vector, which is the mean of vector rep-
resentations of a few utterances given for the intent.
In any given episode, the prototype vector is com-
puted for each intent. The probabilities of intents
are then estimated based on the distances between
a query vector and respective prototypes.
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1-shot 5-shot
Clinc Banking  Liu Hwu Avg | Clinc Banking Liu Hwu Avg

Random 20.17 20.17 20.17 20.17 20.17 | 19.71 19.71 19.71 1971 19.71
BE (fixed)+NP  30.88 27.75 30.83 2949 29.74 | 48.57 38.01 4579 41.15 43.38
ProtoNet 94.29 82.20 80.06 74.37 8273 | 98.10 91.57 89.62 8648 91.44
CE +PA

NE 58.45 48.88 4898 50.12 51.61 | 66.93 64.46 55.83 5935 61.64

EP 93.60 79.46 7736 7213  80.64 | 98.26 92.38 88.33 84.43 90.85

EPSQ 94.65 79.82 7813 72.64 81.31 | 98.49 92.15 88.18 84.59 90.85
BE +PA

NE 79.48 60.26 59.15 52.04 62.73 | 88.04 70.28 7049 6047 7232

EP 82.66 66.43 59.76  50.53 64.85 | 92.87 77.99 70.60 61.18 75.66

EPSQ 83.26 66.53 60.41 5140 6540 | 92.51 78.59 70.82  64.13 76.51
BE +NP

NE 58.04 45.24 53.18 4257 49.76 | 78.10 68.57 61.52 54.86 65.76

EP 67.58 52.85 5239 4173 53.64 | 76.28 67.69 6333 5137 64.67

EPSQ 67.80 53.83 53.17 4096 5394 | 81.31 64.58 65.32 5041 6541

Table 2: BERT-based results for the balanced 5-way k-shot setup, & € {1,5}.

5 Results and Discussion

We compare the the configurations described in
(§3) and baselines (§4) for balanced and imbal-
anced FSIC setups using BERT, as the most widely
used pretrained language model, and SimCSE, the
state-of-the-art model for encoding the meaning of
sentences. Our main experimental findings are as
follows

* The Cross-Encoder architecture with parame-
terized similarity function and episodic train-
ing consistently yields the best FSIC accuracy.

* Episodic training yields more robust FSIC
classifiers than non-episodic training for most
of the examined setups and datasets.

* Splitting episode utterances into support and
query (sub)sets, a commonly adopted practice
in episodic training, does not give consistent
performance gains.

5.1 Balanced FSIC

Table 2 shows accuracy of the examined FSIC ap-
proaches under comparison — based on BERT as
PLM - in 1-shot and 5-shots settings. All model
configurations consistently outperform the “BE
(fixed)+NP” baseline. This demonstrates that fine-
tuning BERT’s parameters for intent classification
using high-resource intent classes is paramount for
generalization to unseen intents.

For both 1-shot and 5-shots, CE +PA trained with
either of the two episodic training regimes (EP and
EPSQ, without and with support-query splitting,
respectively), achieves a higher accuracy (29% on

average) than when trained in non-episodic fash-
ion (NE), reaching, on average, the performance
of ProtoNet as the state-of-art FSIC method. Both
episodic training regimes are more effective than
the non-episodic training across the board, not just
in combination with the CE architecture. BE +PA
trained via EP achieves about 2% higher accuracy
for 1-shot and 3% for 5-shots than when trained
with NE. For BE +NP, episodic learning (EP) re-
sults in 3.8% higher accuracy than NE for 1-shot.
The only exception to this trend is BE +NP with
5-shot where EP trails NE by 1%.

EPSQ tends to exhibit a similar average accuracy
as EP (less than 1% difference for average across all
CE +PA, BE +PA, and BE +NP setups). This leads
a conclusion that splitting utterances of an episode
into a support and a query set — a common prac-
tices in episodic (FSIC) learning (Dopierre et al.,
2021; Krone et al., 2020) — does not really have a
pronounced (positive) effect on performance. So, it
does not seem to increase the capability to general-
ize to unseen intent classes, as has been commonly
believed but until now, to the best of our knowledge,
empirically untested.

As expected, more shots (5-shots vs 1-shot) lead
to consistently better FSIC accuracy: BE +NP
trained with NE performs 16% better (and the other
FSIC about 10% better on average). This makes
intuitive sense: more shots help classifiers better
refine the boundaries between the new intents.

Given that utterances in task-oriented dialogue
systems are short texts, we next investigate how
intermediate training for sentence representations
(Phang et al., 2018; Reimers and Gurevych, 2019a;
Gao et al., 2021) changes the performance of FSIC
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1-shot 5-shot
Clinc Banking  Liu Hwu Avg | Clinic Banking  Liu Hwu Avg
BE (fixed) +NP  91.33 75.48 7875 7458 80.03 | 97.89 90.33 89.61 86.93 91.19
CE +PA
NE 60.51 54.87 4999 46.41 5295 | 7833 72.71 68.66 67.99 71.92
EP 94.33 83.64 7924 77.03 83.56 | 98.80 94.22 90.13 88.54 92.92
EPSQ 95.01 83.83 79.40 77.49 83.93 | 98.77 94.04 90.10 88.40 92.83
BE +PA
NE 90.69 76.21 68.76  66.05 7543 | 96.71 88.12 80.76  79.26  86.21
EP 90.93 76.81 71.32  65.72  76.19 | 96.74 88.18 83.83 80.64 87.35
EPSQ 90.95 76.43 7133 6571 76.11 | 96.83 87.95 84.10 80.90 87.45
BE +NP
NE 93.69 81.60 79.51 7554 82.58 | 98.08 91.56 89.61 87.82 91.77
EP 93.24 80.15 79.82 7649 8243 | 98.01 91.91 89.77 87.62 91.83
EPSQ 93.44 80.46 80.21 76.68 82.70 | 98.02 91.95 89.83 87.65 91.86

Table 3: SimCSE-based results for the balanced 5-way k-shot setup, k € {1, 5}.

ATIS SNIPS TOP Avg

Random 21.34 33.70 2399 26.34
BE (fixed) + NP 53.80 51.62 33.03 46.15
CE + PA

NE 62.86 65.03 4941 59.10

EP 79.71 9394 68.04 80.56

EPSQ 71.58 9298 62.84 75.80
BE + PA

NE 4291 80.22 53.48 58.87

EP 69.52 60.54 5146 60.51

EPSQ 66.44 6221 56.05 61.57
BE + NP

NE 6586 77.92 4552 63.10

EP 65.09 79.16 47.85 64.03

EPSQ 55.67 80.08 4297 59.57

Table 4: Results for the imbalanced setup using BERT.

models. To this end, we substitute BERT with
SimCSE. Table 3 shows the results. Our three
main findings hold for SimCSE-based FSIC mod-
els too. Importantly, unlike with BERT, now only
CE +NP trained episodically outperforms the “BE
(fixed)+NP” baseline (where PLM is not fine-tuned
for intent detection). This confirms the effective-
ness of coupling CE and episodic training for FSIC.
It also indicates that intent detection fine-tuning is
well-aligned with learning sentence representations,
which is why it generally brings lower gains (or
no gains) over “BE (fixed) + NP”, when we start
from SimCSE, pretrained exactly for encoding the
meaning of sentences.

5.2 Imbalanced FSIC

Table 4 shows the results on the three imbalanced
datasets. CE +PA with EP again substantially out-
performs all its counterparts, confirming this never-
investigated FSIC configuration as a very effective
approach for the FSIC task. On average, episodic

training (EP) again outperforms non-episodic (NE)
training. The CE + PA and BE + NP configurations
generally yield higher performance when trained
without splitting the support utterances from query
utterances (EP vs EPSQ). This questions the com-
mon belief in episodic meta-learning that splitting
episodes into support and query sets is (always)
beneficial. Overall, the findings from the imbal-
anced datasets align well with the main findings
from central experiments on balanced datasets, as
reported in Table 2 and Table 3.

6 Conclusions

We shed light on factors that contribute to perfor-
mance of models for few-shot intent classification
(FSIC), a crucial task in modular dialogue systems.
We categorize FSIC approaches across three es-
sential dimensions: (1) the Cross-Encoder vs. Bi-
Encoder encoder architectures; (2) the parameter-
ized (i.e., trainable) vs non-parameterized utterance
similarity scoring; and (3) episodic vs non-episodic
training. Our extensive evaluation, encompassing
seven standard FSIC datasets, reveals that the pre-
viously unexplored combination of Cross-Encoder
architecture (with parameterized utterance simi-
larity scoring) and episodic training consistently
yields the best FSIC performance. We addition-
ally find that (i) episodic meta-learning generally
outperforms the non-episodic training and (ii) that
the widely adopted hypothesis in meta-learning
that splitting episodes into support and query sets
helps generalization and boost performance may
not hold for FSIC. We hope that our findings lead
to more deliberation on FSIC evaluation protocols
and more insightful “apple-to-apple” comparisons
between competing models and model variants.
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Limitations and Ethical Concerns.

In this paper, we shed light to few-shot intent clas-
sification tasks in modular (task-oriented) dialogue
systems. Dialog systems, given their direct interac-
tion with human users, must be devoid of any nega-
tive stereotypes and must not exhibit any behaviour
that could be potentially harmful to humans. That
said, our work does not address the generation com-
ponent of dialog systems, but merely the intent
classification. As such, we do not believe it raises
any ethical concerns.

The main limitation of the work — conditioned
primarily by the available computational resources
— is the scope of our empirical comparison: we fo-
cus on FSIC methods that subscribe to pairwise
similarity scoring of utterances and nearest neigh-
bours inference. While this subsumes much of the
best performing approaches in the literature, there
is a fair body of recent work that does not fall in
this group. Another limitation of the work is the
monolingual focus on English only. We intend to
extend our work to cross-lingual transfer to other
languages, for which fewer labeled intent classifi-
cation datasets exist.
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