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Abstract

Two types of topic modeling predominate: gen-
erative methods that employ probabilistic la-
tent models and clustering methods that iden-
tify semantically coherent groups. This paper
newly presents UTopic (Unified neural Topic
model via contrastive learning and term weight-
ing) that combines the advantages of these two
types. UTopic uses contrastive learning and
term weighting to learn knowledge from a pre-
trained language model and discover influential
terms from semantically coherent clusters. Ex-
periments show that the generated topics have a
high-quality topic-word distribution in terms of
topic coherence, outperforming existing base-
lines across multiple topic coherence measures.
We demonstrate how our model can be used as
an add-on to existing topic models and improve
their performance.

1 Introduction

One of the most common tasks in natural language
processing (NLP) is to find cohesive topics in a
text corpus. Topic modeling is widely used in var-
ious applications, including trend extraction from
real-time streams such as social media (Lau et al.,
2012; Park et al., 2021) and identification of no-
table events upon risk (Shin et al., 2020). Two
representative lines of work exist: generative meth-
ods and clustering-based methods.

Generative methods follow the assumption of
probabilistic latent semantic analysis (hereafter p-
LSA) such that every word token in a document is
sampled from a mixture of latent topics (Hoffman,
1999). Such methods estimate both the latent topic
distribution per document and word distribution
per topic from Bag-of-Words (BoW) representa-
tion (Blei et al., 2003; Fisher et al., 2020; Miao
et al., 2017; Yan et al., 2013). Latent Dirichlet Allo-
cation (LDA), for example, uses a Bayesian model
to estimate the latent topic distribution (Blei et al.,
∗Corresponding Authors

2003). Variational Autoencoder (VAE) retrieves
latent topics from the topic distribution while also
recovering the original input (Srivastava and Sut-
ton, 2017). Recent techniques have employed
pretrained language models on top of VAE-based
models to improve topic quality (Bianchi et al.,
2021a,b). Generative probabilistic models work
on the assumption that each topic is a mix of words
from a larger set. However, they share a common
weakness: the BoW representation only contains
word-level co-occurrences and fails to capture each
word token’s importance in the document’s context
information. Consequently, the quality of the esti-
mated topic is reliant on the choice of the word set.

Clustering methods, on the other hand, regard
topics as semantic clusters discovered over the doc-
ument or word embedding space (Angelov, 2020;
Grootendorst, 2022; Sia et al., 2020). They utilize
the knowledge of the pretrained language model
(e.g., BERT (Devlin et al., 2019)) to generate high-
level summaries of given documents (or words).
Then, document (or word) clusters are identified
according to the embedding distance via clustering
methods, such as DBSCAN or k-means. They do
not require word selection and effectively leverage
context information for discovering topics. Never-
theless, their core is clustering; hence, they cannot
assign a mixture of topics to each document.

This research takes a step further by combining
the benefits of the previous methods by including
novel considerations: contrastive learning and
term weighting. We start with a generative method
and add a term weighting scheme that mimics the
clustering method. We use a contrastive learning
framework to help the language model instill pre-
trained knowledge and enable the model to focus
on influential words. Our model, UTopic (Unified
neural Topic model via contrastive learning and
term weighting), has three stages: (1) identifying
semantic clusters, (2) calculating term weights,
and (3) estimating the latent topic distribution. In
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Stage 1, input documents with similar meanings
are grouped into a single cluster. This procedure
uses a pretrained language model, which extracts
meaningful embeddings from the input document.
Stage 2 computes the term weights for each word to
represent the importance of each term, where high
weights are given to frequent terms in one seman-
tically coherent cluster (but not in other clusters).
The model selects words with top-k term weights
as the final word set for BoW representations. In
Stage 3, the model estimates the latent topic
distribution by reconstructing BoW representations
from inputs. Term weights can represent each
term’s importance, allowing the model to learn a
coherent topic. Contrastive learning manages the
entire process of instilling pre-trained knowledge
from the language model and generating a more
distinct topic distribution with a predefined prior.

Experiments show that UTopic outperforms con-
ventional methods in a wide range of scenarios, in-
cluding human-annotated datasets (Table 1). When
compared to SOTA models like CTM (Bianchi
et al., 2021a), ClusterTM (Sia et al., 2020), and
BERTopic (Grootendorst, 2022), our model consis-
tently achieves the overall highest topic coherence
score, while others excel in only one or two metrics
(Table 2). In the 20-Newsgroups dataset, for exam-
ple, the NPMI score increased by 3.65%. Our word
set selection scheme (Stages 1&2 in Fig. 1) can be
used as a standalone module to improve other mod-
els (Table 8). Major contributions are as follows:

• We present a unified method for combining
the benefits of two topic modeling approaches
(i.e., generative and clustering) into a single
framework via term weighting.

• We modify the contrastive objective to dis-
cover semantically coherent clusters, which
gives distinct and interpretable word sets for
each cluster.

• Our model consistently outperforms existing
baselines across multiple topic coherence mea-
sures and produces topics that align well with
human labels.

Codes and implementation details of the model
are available at a GitHub repository.1

1https://github.com/mingi-sid/utopic

2 Related Works

Topic modeling algorithms can be divided into two
major streams: generative and clustering-based.

2.1 Generative approach

Most generative approaches follow the p-LSA
assumption such that a set of tokens in each
document are independently sampled from a
mixture of topics (Hoffman, 1999). LDA (Blei
et al., 2003) is a representative example that
establishes the prior distribution following the
p-LSA assumption. Many variants have been
proposed, including Prod-LDA, Neural-LDA, and
Hierarchical-LDA (Srivastava and Sutton, 2017;
Blei et al., 2010). Some algorithms like NVDM,
VTMRL, Wasserstein-LDA, and TAN-NTM
use VAE for estimating the latent topic distribu-
tion (Miao et al., 2016; Gui et al., 2019; Nan
et al., 2019; Panwar et al., 2021), while other algo-
rithms, including DocNADE, use auto-regressive
architecture (Larochelle and Lauly, 2012).

Adding a pretrained language model (or word
embeddings) to traditional topic models has yielded
promising results (Grootendorst, 2022; Liu et al.,
2015; Qiang et al., 2017; Sia et al., 2020). Contextu-
alized topic model (CTM), for example, obtains the
embedding vector for each sentence using a model
like BERT (Devlin et al., 2019) and bundles the
embedding and the BoW (bag-of-words) (Bianchi
et al., 2021a). The bundled vector based on VAE is
then used to reconstruct BoW and uncover latent
topics. However, these approaches have common
limitations; word-level co-occurrences cannot fully
convey words that represent themes. Naturally, the
topic quality depends on the vocabulary set used for
calculating word co-occurrences (Gui et al., 2019).

2.2 Clustering based approach

Keeping up with the recent achievement on deep
representation learning in NLP domain (Devlin
et al., 2019; Mikolov et al., 2013a), several works
showed that discovering clusters over the sen-
tence/word representation space can be one viable
way to represent topics (Angelov, 2020; Grooten-
dorst, 2022; Sia et al., 2020). Unlike generative
approaches, they first extract high-level abstract
features from the input document. Then, centroid-
based clustering approaches are applied to identify
dense clusters, which are finally regarded as topics.
For example, Top2Vec (Angelov, 2020) utilizes
Doc2Vec embedding (Le and Mikolov, 2014) to
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Figure 1: The illustration of the proposed neural topic model, UTopic . It divides documents into clusters based on
their context (Stage 1). Then, term weights are computed according to every term’s importance. As a topic word set,
influential words with the highest term weight are retrieved (Stage 2). UTopic is fine-tuned by estimating the latent
topic distribution with the help of term weights and contrastive learning (Stage 3).

jointly embed word and sentence representations,
while BERTopic (Grootendorst, 2022) introduces
BERT’s sentence embedding to identify topic clus-
ters. Another work demonstrates that word-level
clusters can represent latent themes from the cor-
pus (Sia et al., 2020). Nevertheless, these methods
are clustering-based, so they cannot easily assign
multiple topics to each document.

3 Methods

Problem definition: Let x be an input document
and X be a collection of documents in the corpus
(i.e., x ∈ X ). A primary goal of our topic model is
to estimate the topic distribution p from X . Given a
finite number of topics K, we extract top-k relevant
words (hereafter referred to as topic words) Wi for
each topic i to interpret the underlying theme and
evaluate the topic quality. The topic word comes
from the word set Wdict, which has a size N (i.e.,
Wi ⊂ Wdict for all i).

We propose to compute the weight importance
of each term on semantically coherent clusters
and then estimate the latent topic distribution by
reconstructing the BoW representations based on
term weights. Our idea is depicted in Figure 1,
where a clustering model groups documents with
similar contexts in the corpus (Section 3.1). Term
weights are computed by treating each document
cluster as a single unified document. If certain
terms are significant in one group but not in others,
we consider them influential. Top-k influential
subject terms are selected as the word set Wdict

for constructing BoW representation (Section 3.2).
The model estimates topic distribution using the
discovered word set and its term weight to recover
the BoW representation of documents (Section 3.3).
Contrastive learning (hereafter CL) improves rep-
resentation quality at every phase, and the Dirichlet
prior controls the entropy of the topic distribution.
These steps are outlined in the following sections.

3.1 Stage 1: Document grouping via CL
Let f be a language model (e.g., BERT) that has
been pre-trained, and g be an unsupervised clas-
sifier attached on top of f ’s sentence embedding
(e.g., BERT’s [CLS] token embedding). First, the
models f and g are trained to classify incoming
documents into K topic categories. CL facilitates
this task with the InfoNCE loss (Oord et al., 2018),
which learns an embedding space to maximize
agreement between comparable examples while
minimizing agreement between different instances.
Assume that z is an input sample’s embedding in
the form of cluster assignment probability (i.e.,
z = softmax(g ◦ f(x))), and that Z+ and Z− are
a collection of positive and negative samples’ em-
beddings, respectively. The InfoNCE loss for each
sample is defined as follows:

LCL(z) = − log

∑
z′∈Z+

esim(z,z′)/τ

∑
z′∈(Z+∪Z−) e

sim(z,z′)/τ
(1)

= − log
∑

z′∈Z+

esim(z,z′)/τ + log
∑

z′∈(Z+∪Z−)

esim(z,z′)/τ

= −Lalign(z) + Ldistribution(z), (2)
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where sim(·) represents the similarity metric
between two embeddings, and τ is a temperature
value to control the entropy (Hinton et al., 2015).
The InfoNCE loss can be broken down into two
parts: alignment loss and distribution loss. The
first term, alignment loss (Lalign), directs the model
to place positive pair embeddings closer together.
The second term, distribution loss (Ldistribution),
pushes the embeddings of each sample as far apart
as possible. This policy requires the model to
match each instance’s embedding into the prede-
fined prior distribution with high entropy (Chen
and Li, 2020; Wang and Isola, 2020).

The contrastive loss is used as follows in
document clustering. For a given anchor x, we
establish a set of positive samples Z+ and negative
samples Z−. Given that our model is unsupervised,
there is no ground-truth label to determine which
samples should be placed closer together in the
embedding space. Instead, we mine the pretrained
language model’s top-1 nearest neighbor in the
embedding space and consider it a positive sample
(i.e., x+ in Fig. 1). The remaining instances in the
same batch are considered negative samples.

Next, we guide the instance’s embedding distri-
bution to follow the prior with low entropy by modi-
fying Ldistribution and adopting the optimal transport
theory (Peyré et al., 2019; Rabin et al., 2011), a
mathematical framework for transporting two sets
of points while minimizing the transportation cost.
The Sliced Wasserstein Distance (SWD) (Kolouri
et al., 2019), a distance measure based on opti-
mum transport that projects embeddings to random
orthogonal subspaces and sums the 1-dimension
Wasserstein Distance for each subspace, is one
of its techniques. We replace Ldistribution with the
SWD between embedding distribution and prede-
fined low-entropy prior Zprior (Eq. 3).

The model does not directly minimize entropy
because documents can contain numerous topics;
instead, it assigns the prior Zprior to Dirichlet
distribution with α < 1 to assure low entropy of
the embedding space. The alignment loss with
adjusting factor λ is used to optimize the modified
distribution loss at the same time.

Lstage1(z) = −Lalign(z) + λ · L′
distribution(z),

where L′
distribution(z) = SWD(z,Zprior) (3)

We use the cluster assignment probability z to
discover K clusters after training (i.e., argmaxj zj
where j indexes the vector dimension).

3.2 Stage 2: Computing term weights
Given the newly identified cluster set C (i.e., c ∈
C), the next stage calculates the term importance
weight for each word from C and constructs the
word set Wdict. If words frequently appear in one
cluster but not in others, they are deemed influential.
This concept is consistent with TF-IDF (Ramos
et al., 2003), which measures the importance of
each word in a document by multiplying two terms:
term frequency (TF) and inverse document fre-
quency (IDF)2. Similar to (Grootendorst, 2022),
we treat each document cluster as a single unified
document and calculate the TF-IDF of each word
for term weights. The TF-IDF measure for each
cluster is as follows:

tf-idf(w, c, C) = tf(w, c) · idf(w, C) (4)

tf(w, c) =
freq(w, c)∑

w′∈c freq(w′, c)
(5)

idf(w, C) = log
|C|

|{c ∈ C : w ∈ c}| , (6)

where freq(w, c) denotes the number of times a
given word w is found in cluster c.

To build the word set Wdict for building BoWs
in the next stage, we select the top-k influential
topic words for each cluster with the highest term
weight (Eq. 7). The value of k is adaptively chosen
based on the dictionary size N = |Wdict|.
Wdict =

⋃

c∈C
{w| tf-idf(w, c, C) is top-k in c} (7)

3.3 Stage 3: Estimating topics via BoW
reconstruction with term weights

The model is then trained to estimate the latent
topic distribution in the final stage. We construct an
encoder-decoder network on top of the pretrained
language model f for training, following the litera-
ture (Bianchi et al., 2021a; Srivastava and Sutton,
2017). The encoder and decoder networks are re-
ferred to as qϕ and pθ, respectively. The input
document x is decomposed into the BoW represen-
tation y given the word set Wdict. To create the
context-aware representation, x is fed into the fixed
backbone language model f . The encoder network
qϕ and softmax function (Eq.8) are used to generate
the latent topic distribution t over x. The decoder
2A word’s relative importance within a document is repre-
sented by TF, which divides the word count in a document by
the total word count in the corpus. IDF represents the target
word’s uncommonness across the corpus as the logarithm
of the total document count divided by the document count
containing the target word.
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network, followed by the softmax function, recon-
structs the input document’s BoW representation
as x̂ (Eq. 9) with this topic distribution t.

t = softmax((qϕ ◦ f)(x)) (8)

x̂ = softmax(pθ(t)) (9)

Our topic model with the backbone network f is
trained by reconstructing the original document’s
BoW representation y from the latent topic distri-
bution t (depicted as a box in Figure 1). To focus
more on influential words when learning topics,
term weights wy from the previous stage are multi-
plied by the loss objective (Eq. 10). This leads the
model to filter out unnecessary terms and discover
more coherent and human-interpretable topics.

Lrecon(x,y) = −Eqϕ(t|f(x))[wy · log(pθ(y|t))].
(10)

The next step is to improve the representation
quality by matching the encoder’s posterior dis-
tribution to the predefined prior. This approach
is modulated by contrastive loss, which assumes
that documents with semantically identical content
have similar topic distributions. As a positive sam-
ple, we use the top-1 nearest neighbor x+ from the
embedding space of the pretrained language model.
All other instances in a batch are considered nega-
tive samples. The model then uses the alignment
loss Lalign (Eq. 11) to induce the topic distribution
of positive pairs (T+) to be similar. Distribution
loss is used to match the posterior topic distribu-
tion to the prior distribution Tprior and maintain a
low entropy. We set the prior Tprior to Dirichlet
distribution with α<1 to discover distinctive topics
from the corpus.

LCL(t) = −Lalign(t) + λ · L′
distribution(t),

where L′
distribution(t) = SWD(t, Tprior) (11)

The complete loss function is described in
(Eq. 12). There are no adjusting weight parameters
for objectives to reduce the tuning cost needed for
hyper-parameters.

Lstage3(x,y) = Lrecon(x,y) + LCL(t),

where t is calculated by Eq. 8. (12)

4 Experiments

4.1 Performance evaluation
Datasets: For evaluation, we employ a variety
of datasets with varying topics. 20-Newsgroups3,
3
http://qwone.com/~jason/20Newsgroups/.

Reuters-215784, Wikipedia, and BBC5. 20-
Newsgroups is a collection of 11,314 posts shared
in the newsgroups with a balanced set of topic
labels. Reuters-21578 is a news post collection
with 10,778 training data. We also use the
Wikipedia dataset, containing randomly collected
20,000 paragraphs from 2021-09-22. Finally, BBC
is a dataset of 2,225 documents excerpted from the
BBC news website. All datasets are in English.

Evaluation: NPMI, Cp, and word2vec similarity
are used as evaluation criteria. The first two statis-
tics measure the degree of topic coherence between
each topic’s top-M term (M is set to 10 in our
experiments) using a reference corpus. The last
one, word2vec similarity, measures the semantic
similarity between the top-M terms. The details of
each metric are as follows.

• NPMI, the Normalized Point-wise Mutual In-
formation, is a metric that scores high if the
joint probability of pairs in the top-M words
is greater than their marginal probability (Ale-
tras and Stevenson, 2013). The co-occurrence
probabilities can be measured from external
corpora, such as Wikipedia (NPMI-Wiki) or
the source data itself (NPMI-In).

• Cp is another coherence metric computed by
an aggregation of Fitelson’s confirmation mea-
sure based on the sliding window over the ref-
erence corpus. It is known to be one of the
most well-correlated coherence scores with
human ratings. (Röder et al., 2015).

• word2vec similarity evaluates topic coherence
using an external embedding model to en-
sure fair comparisons with the baselines (Ding
et al., 2018). The average cosine similarity
value is reported across all pairs of top-M
words’ word2vec embeddings.

We used Palmetto, a publicly available tool for
measuring topic quality6 (Röder et al., 2015), and
its version of Wikipedia dump to calculate NPMI-
Wiki and Cp. For word2vec similarity, we used the
pre-trained model from Mikolov et al. (2013b).

Implementation details: As the pre-trained
language model, we used Sentence-BERT, all-
MiniLM-L6-v2 (Reimers and Gurevych, 2019). The
4
http://daviddlewis.com/resources/testcollections/
reuters21578/.

5
http://mlg.ucd.ie/datasets/bbc.html.

6
https://github.com/dice-group/Palmetto.
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20-Newsgroups Reuters-21578
NPMI-Wiki NPMI-In Cp Word2vec NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0052 0.0652 0.0652 0.1719 -0.0723 0.0708 -0.1496 0.1549
NeuralLDA -0.0180 -0.0229 -0.0540 0.1847 -0.0373 0.0651 -0.0347 0.1523
ETM 0.0192 0.0988 0.1066 0.2217 -0.0506 0.0791 -0.0855 0.1741
CTM -0.0135 0.0464 -0.0296 0.1755 -0.0465 0.1314 -0.0658 0.1656
Top2Vec 0.0248 -0.0279 -1.4809 0.2646 -0.0532 0.0466 -0.2426 0.2126
ClusterTM 0.0134 -0.2810 0.0006 0.2659 -0.0101 -0.1745 -0.0703 0.3082
BERTopic 0.0351 -0.0733 0.1555 0.2257 -0.0656 0.0156 -0.2252 0.1759
UTOPIC 0.0716 0.1016 0.3796 0.2175 -0.0117 0.1179 0.0852 0.2162

Wikipedia BBC
NPMI-Wiki NPMI-In Cp Word2vec NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0071 0.0296 0.0304 0.1458 -0.0721 -0.0186 -0.0711 0.1478
NeuralLDA 0.0133 0.0700 0.0862 0.1729 0.0017 0.0084 0.0562 0.1601
ETM -0.0294 0.0319 0.0543 0.1484 -0.0270 0.0313 0.0643 0.1949
CTM 0.0610 0.1547 0.2261 0.1962 0.0339 0.0991 0.2622 0.1746
Top2Vec -0.0215 -0.0876 -0.2111 0.1768 (0.0463) (0.0124) (0.1625) (0.2495)
ClusterTM 0.0567 -0.3212 0.1835 0.3398 0.0243 0.0873 0.0739 0.2959
BERTopic 0.0682 -0.0295 0.2010 0.2196 (0.0225) (0.0853) (0.1652) (0.1842)
UTOPIC 0.0702 0.1129 0.2565 0.2171 0.0848 0.1057 0.4587 0.2199

Table 1: Performance comparison over four datasets. Results are averaged over five trials from three different
number of topics (K=10,20,50). The best or comparable performances are highlighted. In the table, parentheses
indicate that the model failed for some topic counts; hence, only the success cases’ results are averaged.

Method NPMI-Wiki NPMI-In Cp Word2vec Total

LDA 7.0 5.0 6.3 7.8 6.5
NeuralLDA 5.5 5.0 5.3 6.8 5.6
ETM 6.0 3.5 5.0 5.0 4.9
CTM 4.3 2.0 3.3 5.8 3.8
Top2Vec 4.5 6.3 7.0 3.0 5.2
ClusterTM 3.5 6.8 4.5 1.0 3.9
BERTopic 4.0 6.0 3.8 3.5 4.3
UTopic 1.3 1.5 1.0 3.3 1.8

Table 2: Performance comparison based on the averaged
rank for each evaluation metric across four datasets.

topic count K was set to 10, 20, and 50, while the
corresponding Dirichlet prior α was set to 0.1, 0.05,
and 0.02 (i.e., 1/# of topics), respectively7. λ was
set to 1, and the vocabulary size to 2,000 following
the literature (Bianchi et al., 2021a).

In stage 1, a single layer perceptron, g, is added
to the Sentence-BERT model and trained for 100
epochs using the RangerLars (RAdam + LARS
+ Lookahead) optimizer with an initial learning
rate of 0.001 and a decay factor of 0.99. Input
text that exceeds the maximum sequence length
is truncated. In stage 3, an encoder, qϕ, and a
decoder, pθ, are trained for 50 epochs using the
Adam optimizer with a learning rate of 2E-2. The

7We set the topic range to 10∼50 because clustering-based
baselines (e.g., HDBSCAN in BERTopic or Top2Vec) failed
when the topic size exceeded 70.

20-Newsgroups BBC
Match Acc. NMI Match Acc. NMI

LDA 0.258 0.270 0.432 0.170
NeuralLDA 0.180 0.157 0.473 0.347
ETM 0.340 0.349 0.856 0.580
CTM 0.276 0.274 0.850 0.653
Top2Vec 0.264 0.260 0.636 0.520
ClusterTM 0.183 0.162 0.381 0.158
BERTopic 0.317 0.376 0.568 0.360
UTOPIC 0.509 0.454 0.898 0.692

Table 3: Performance comparison on topic assignment
quality. The proposed model shows superb results.

Model LDA NeuralLDA ETM CTM Ours

Match Acc. 0.112 0.098 0.204 0.298 0.351

Table 4: Performance on assigning multiple topics to
the newly synthesized 20-NewsGroup dataset.

encoder is a three-layer MLP with dropout and
batch normalization, and the decoder is a one-layer
linear model without bias. The backbone network,
f , is fixed during this stage.

Baselines: We used seven baselines for compar-
ison. The first four are generative methods: (1)
LDA (Blei et al., 2003), (2) NeuralLDA (Sri-
vastava and Sutton, 2017), which is an LDA
implementation with Autoencoding Variational
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Setup NPMI-Wiki NPMI-In Cp Word2vec Label acc.

UTOPIC .0653 .1211 .3629 .2143 .5087
V1 (only stage 3) .0409 .1052 .3144 .2222 .4539
V2 (no stage 3) .0639 .1082 .3286 .2292 .3607
V3 (no Lalign in Lstage3) .0485 .0920 .3020 .2275 .4974
V4 (no SWD loss in Lstage3) .0546 .1023 .3192 .2027 .4515
V5 (no term weight wy in Lstage3) .0638 .1065 .3609 .2129 .4733
V6 (only Lrecon in Lstage3) .0169 .0561 .2190 .2327 .4926
V7 (only Lrecon without term weight wy in Lstage3) .0082 .0465 .2149 .2290 .4834

Table 5: The ablation study results upon the overall architecture on 20-Newsgroup (K=20) confirm the substantial
contribution of every model component we designed (V stands for version). The best results are highlighted.

NPMI-Wiki NPMI-In Cp

Ours (AE) 0.0653 0.1231 0.3709
V8 (VAE) 0.0611 0.0943 0.3562

Table 6: Ablation study results on the model architec-
ture (AE vs. VAE): 20-Newsgroups dataset is used.

Inference for Topic Models (AVITM), (3) ETM
(Embedded Topic Model) (Dieng et al., 2020),
where the likelihood of a word is produced by
the dot product between the word and topic
embeddings, and (4) CTM (Contextualized Topic
Model), where a vector representation of the
document from SentenceBERT is additionally
encoded on top of ProdLDA (Bianchi et al., 2021a).
The remaining three are clustering methods: (5)
Top2Vec (Angelov, 2020), where Doc2Vec is used
for jointly embedding sentences and words to
discover topic clusters, (6) ClusterTM (Sia et al.,
2020), a word-level clustering-based approach, and
(7) BERTopic (Grootendorst, 2022), which applies
BERT’s sentence embeddings to identify topics.

We applied common preprocessing procedures,
such as removing English stop-words based on
NLTK (Bird et al., 2009), non-alphabetic words,
and words with less than three characters, and lem-
matizing all tokens using the WordNet lemmatizer.
All baselines used the same standard parameter val-
ues, such as topic count and vocabulary size, to
ensure a fair comparison.

Results: Tables 1 and 2 show the performance
comparisons and their summaries. UTopic pro-
vides the best or comparable topic coherence
scores against other baselines over all datasets. Our
technique consistently achieves satisfactory results
in all other measures, while generative methods
perform poorly on Word2vec similarity and
clustering methods often fail on NPMI measures.
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Figure 2: The effect of the hyper-parameter α for Dirich-
let prior on two evaluation metrics on 20-Newsgroups.
Consistent performance is achieved by keeping α within
a suitable range (0.025 ∼ 0.2).

Our model also shows the best scores based on the
average rank of each evaluation metric.

Topic assignment quality analysis: It is important
to check whether the discovered topics from each
model are well aligned with the actual ground-truth
labels. Two additional evaluation metrics were ob-
served: Label Matching Accuracy (Match Acc.)
and Normalized Mutual Information (NMI). Given
the estimated topic from each document, the Hun-
garian method (Kuhn, 1955) was applied to obtain
the best bijection permutation mapping between
the estimated topics and labels. Then, the label
matching accuracy is computed with top-1 classifi-
cation accuracy. The NMI measure is the mutual
information between the mapping and labels with
normalization to 0∼1 range.

Table 3 reports the comparison results among
baselines over the 20-Newsgroups and BBC-News
dataset because only these datasets contain human-
annotated labels. Our model outperformed all
baselines in accuracy by a large margin, even when
compared with recent approaches, implying that
it can generate more human-interpretable topics.

Evaluation for assigning multiple topics: We
next conducted an experiment to assess UTopic ’s
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ability to assign multiple topics. We created a syn-
thetic dataset with multiple topic labels by merg-
ing two random documents from 20-Newsgroups.
Then, each topic model trained only using the orig-
inal 20-Newsgroups dataset was evaluated using
the newly created synthetic test set. The evalua-
tion compares the accuracy of counting whether
the top-2 estimated topics match the ground truth.
Here, random selection will have an accuracy of 0.1
(=2/20). Table 4 shows that our model again outper-
formed baselines on this new test. Clustering-based
approaches were excluded from the comparison be-
cause they are limited in assigning multiple topics.

4.2 Component analysis
Ablation studies iteratively remove one module or
component to assess its unique contribution to the
overall model. We now present results from the
ablation study and hyper-parameters’ effect over
the 20-Newsgroup dataset.

Ablation study: The proposed model has three
stages: document clustering, computing term
weights, and estimating latent topic distribution.
Our first ablation is a model with only stage 3
by directly estimating the latent topic distribution
on top of the pretrained language model (V1 in
Table 5). The model without stage 3 utilizes
the discovered clusters from the first stage as
a topic embedding (V2). In this ablation, topic
words extracted from the second stage are used
for evaluating topic coherence. The next set of
ablations remove each module in stage 3 to assess
its effect (V3–V7). Table 5 reports the results for
each ablation with five evaluation metrics: four
topic coherence measures and label matching
accuracy with human-annotated ground truths.
The model with all components achieves the best
topic coherence with label accuracy, indicating
that each component plays an important role.

In contrast to previous works based on
VAE (Bianchi et al., 2021a; Srivastava and Sutton,
2017), we used Autoencoder to enforce that the
final topic distribution follows the predefined
prior. To validate our design choice, we consider
another ablation that uses the VAE architecture
(V8). Experiments on 20 newsgroups show that
using VAE can have a negative impact on overall
performance (Table 6).

Hyper-parameter analysis: We study the effect
of adjusting hyper-parameter α and λ in terms of
various evaluation metrics. The α controls the den-

λ NPMI-Wiki NPMI-In Cp Word2vec
0.1 0.055 0.105 0.364 0.210
0.2 0.058 0.102 0.354 0.206
0.5 0.061 0.102 0.367 0.208
1 0.072 0.102 0.380 0.218
2 0.072 0.103 0.376 0.215
5 0.066 0.112 0.382 0.211
10 0.060 0.109 0.362 0.202

Table 7: Hyper-parameter analysis on the loss adjusting
factor λ. Results are based on 20-Newsgroups.

sity of Dirichlet prior to the match with the model’s
latent topic distribution. The smaller the α<1, the
less the topic distribution overlaps. The results are
summarized in Figure 2. Our model delivers favor-
able results for both measures when α is within a
suitable range of 0.025∼0.2. However, setting α to
a value that is too low can result in poor score. This
is because decreasing entropy to an excessive de-
gree can cause the model to learn incoherent topics
and have a heterogeneous word distribution. We set
α to 1/K (i.e., 0.05 for K=20), which is a common
value in LDA (Rehurek and Sojka, 2011).

Table 7 reports additional results on the effect
of λ, the ratio between the alignment loss and the
distribution loss (Eq. 11). Our model performs
stable within a reasonable lambda range for most
metrics. One exception is NPMI-Wiki, where
the model appears influenced by extreme lambda
values (λ=0.1 or 10).

4.3 Qualitative analysis
Cluster visualization: To understand the method’s
inner workings, we visualize the cluster assign-
ment snapshots on the 20-Newsgroups dataset af-
ter stage 1 over four different training epochs in
Figure 3. Ground-truth labels for 20 themes are
displayed in different colors. More visually sep-
arable class-coherent clusters emerge as training
advances. Evaluating the clustering performance
via the Hungarian approach (Kuhn, 1955), epoch
30 in stage 1 already reaches a prediction accuracy
of 48% without using any labels.

Application: The suggested topic word selection
approach is a stand-alone module that can be used
in various topic models. For example, we created
the vocabulary set Wdict by extracting 2,000 topic
words from our stage-2 model. Then we used
Wdict to train three existing topic models: LDA,
NeuralLDA, and CTM, and compared them with
a traditional technique of employing the most
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(a) Epoch=0, p=0.30 (b) Epoch=2, p=0.41 (c) Epoch=5, p=0.45 (d) Epoch=30, p=0.48

Figure 3: The 20-Newsgroups dataset was used to visualize intermediate clustering results at Stage 1 of UTopic .
Colors represent the ground-truth class names (i.e., one of the 20 news topics), whereas dots reflect document cluster
assignment. The p-value indicates that the model has already achieved a clustering accuracy of 48% after 30 epochs.

Setup NPMI-Wiki NPMI-Internal

LDA -0.0056 0.0661
+ Our method -0.0016 0.0841

ETM 0.0234 0.0927
+ Our method 0.0404 0.0752

CTM -0.0086 0.1149
+ Our method -0.0021 0.1208

Table 8: Performance improvement with our topic word
extraction strategy on existing topic models on the 20-
Newsgroups dataset (K=20).

frequent 2,000 words after ignoring stop-words.
For all models, we limited the number of topics
to 20. The findings are provided in Table 8 for the
20-Newsgroups dataset, which shows that using
our context-aware topic word selection technique
improves NPMI-Wiki by about 0.7∼1.7 percent
point for all evaluated models.

5 Conclusion

This work proposed a new way to leverage the
benefits of combining generative and clustering
methods of topic modeling into a single framework.
Diverse topic coherence measures have been
used to assess the quality of topics. Compared to
baselines that excel in only one or two coherence
measures, UTopic showed consistent improvement
across multiple coherence measures and discovered
topics that align well with human annotations. Our
method has a wide range of applicability because
it can be added as a module to other existing
approaches.

Limitations

This work comes with several limitations. First, be-
cause the nearest neighbor in the embedding space
of the pretrained language model is considered a
positive sample, the pretrained knowledge can im-
pact overall performance. We plan to develop ad-
vanced text data augmentation and positive sample
selection approaches for topic modeling to over-
come this limitation. Second, since our clustering
step needs a large batch (more than 128), the pro-
posed method may be unattainable in some real-
world scenarios due to memory constraints. To
reduce this memory cost, we introduce a dynamic
queue to save many samples’ embeddings for every
iteration (see Appendix for further details). How-
ever, training is only required once per dataset and
is, therefore, acceptable.

Ethical Consideration

We acknowledge that presenting a data summary
using topic modeling may not adequately represent
the voice of minorities and that pre-trained knowl-
edge from an online corpus may exacerbate such
bias. When applying topic modeling in high-risk
real-world scenarios, human annotators can help
understand the predominant view of each topic to
ensure that minor viewpoints are included. This is
part of the larger challenge of AI ethics, and we
plan to consider this challenge in the future.

Acknowledgement

This research was supported by the National Re-
search Foundation of Korea (RS-2022-00165347),
the Institute for Basic Science (IBS-R029-C2), and
the 2022 Research Grant from Kangwon National
University in South Korea.

1810



References
Nikolaos Aletras and Mark Stevenson. 2013. Evaluat-

ing topic coherence using distributional semantics.
In proc. of the International Conference on Compu-
tational Semantics (IWCS), pages 13–22.

Dimo Angelov. 2020. Top2vec: Distributed representa-
tions of topics. arXiv preprint arXiv:2008.09470.

Federico Bianchi, Silvia Terragni, and Dirk Hovy.
2021a. Pre-training is a hot topic: Contextualized
document embeddings improve topic coherence. In
proc. of the Association for Computational Linguis-
tics (ACL), pages 759–766.

Federico Bianchi, Silvia Terragni, Dirk Hovy, Debora
Nozza, and Elisabetta Fersini. 2021b. Cross-lingual
contextualized topic models with zero-shot learning.
In proc. of the Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL), pages 1676–1683.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. O’Reilly Media,
Inc.

David M Blei, Thomas L Griffiths, and Michael I Jor-
dan. 2010. The nested chinese restaurant process
and bayesian nonparametric inference of topic hierar-
chies. Journal of the ACM (JACM), 57(2):1–30.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Ting Chen and Lala Li. 2020. Intriguing properties of
contrastive losses. arXiv preprint arXiv:2011.02803.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In proc. of the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 4171–4186.

Adji B Dieng, Francisco JR Ruiz, and David M Blei.
2020. Topic modeling in embedding spaces. Trans-
actions of the Association for Computational Linguis-
tics, 8:439–453.

Ran Ding, Ramesh Nallapati, and Bing Xiang. 2018.
Coherence-aware neural topic modeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
830–836.

Dan Fisher, Mark Kozdoba, and Shie Mannor. 2020.
Topic modeling via full dependence mixtures. In
proc. of the International Conference on Machine
Learning (ICML), pages 3188–3198.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794.

Lin Gui, Jia Leng, Gabriele Pergola, Yu Zhou, Ruifeng
Xu, and Yulan He. 2019. Neural topic model with
reinforcement learning. In proc. of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3478–3483.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. stat,
1050:9.

Thomas Hoffman. 1999. Probabilistic latent semantic
analysis. In proc. of the Conference on Uncertainty
in Artificial Intelligence (UAI).

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland
Badeau, and Gustavo Rohde. 2019. Generalized
sliced wasserstein distances. Advances in Neural
Information Processing Systems, 32:261–272.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval Research Logistics Quar-
terly, 2(1-2):83–97.

Hugo Larochelle and Stanislas Lauly. 2012. A neu-
ral autoregressive topic model. Advances in Neural
Information Processing Systems, 25:2708–2716.

Jey Han Lau, Nigel Collier, and Timothy Baldwin. 2012.
On-line trend analysis with topic models:# twitter
trends detection topic model online. In proc. of the
International Conference on Computational Linguis-
tics (COLING), pages 1519–1534.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196. PMLR.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015. Topical word embeddings. In proc. of the
AAAI Conference on Artificial Intelligence (AAAI).

Yishu Miao, Edward Grefenstette, and Phil Blunsom.
2017. Discovering discrete latent topics with neural
variational inference. In proc. of the International
Conference on Machine Learning (ICML), pages
2410–2419.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural
variational inference for text processing. In proc. of
the International Conference on Machine Learning,
pages 1727–1736.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
Advances in Neural Information Processing Systems
(NeuIPS), 26.

1811



Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xi-
ang. 2019. Topic modeling with wasserstein autoen-
coders. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 6345–6381.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Madhur Panwar, Shashank Shailabh, Milan Aggarwal,
and Balaji Krishnamurthy. 2021. TAN-NTM: Topic
attention networks for neural topic modeling. In
proc. of the Association for Computational Linguis-
tics (ACL)), pages 3865–3880.

Sungkyu Park, Sungwon Han, Jeongwook Kim, Mir Ma-
jid Molaie, Hoang Dieu Vu, Karandeep Singh, Jiy-
oung Han, Wonjae Lee, and Meeyoung Cha. 2021.
Covid-19 discourse on twitter in four asian countries:
Case study of risk communication. Journal of Medi-
cal Internet Research, 23(3):e23272.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport: With applications to data sci-
ence. Foundations and Trends® in Machine Learn-
ing, 11(5-6):355–607.

Jipeng Qiang, Ping Chen, Tong Wang, and Xindong Wu.
2017. Topic modeling over short texts by incorpo-
rating word embeddings. In proc. of the Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing (PAKDD), pages 363–374. Springer.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc
Bernot. 2011. Wasserstein barycenter and its applica-
tion to texture mixing. In proc. of the International
Conference on Scale Space and Variational Methods
in Computer Vision (SSVM), pages 435–446.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. In proc. of the Inter-
national Conference on Machine Learning (ICML),
volume 242, pages 29–48.

Radim Rehurek and Petr Sojka. 2011. Gensim–python
framework for vector space modelling. NLP Centre,
Faculty of Informatics, Masaryk University, Brno,
Czech Republic, 3(2).

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In proc. of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3982–3992.

Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In proc. of the ACM International Con-
ference on Web Search and Data Mining (WSDM),
pages 399–408.

Mingi Shin, Sungwon Han, Sungkyu Park, and Meey-
oung Cha. 2020. A risk communication event de-
tection model via contrastive learning. In proc. of
the NLP4IF Workshop on NLP for Internet Freedom:

Censorship, Disinformation, and Propaganda, pages
39–43.

Suzanna Sia, Ayush Dalmia, and Sabrina J Mielke. 2020.
Tired of topic models? clusters of pretrained word
embeddings make for fast and good topics too! In
proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1728–
1736.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. In 5th
International Conference on Learning Representa-
tions (ICLR).

Tongzhou Wang and Phillip Isola. 2020. Understand-
ing contrastive representation learning through align-
ment and uniformity on the hypersphere. In proc. of
the International Conference on Machine Learning
(ICML), pages 9929–9939.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi
Cheng. 2013. A biterm topic model for short texts.
In proc. of the Web Conference (WWW).

1812



A Appendix

A.1 Release

Codes and implementation details of the model are
available at https://github.com/mingi-sid/
utopic.

A.2 Dataset details

For evaluation, we employ a variety of datasets
with varying topics: (1) 20-Newsgroups8 contains
11,314 posts from the newsgroups from 20 number
of balanced topic labels, (2) Reuters-215789

includes 10,778 news posts from Reuters newswire
in 1987, (3) Wikipedia, comprising 20,000
abstracts that have more than 200 characters, was
randomly sampled from the Wikipedia dump from
2021-09-22, and (4) NeurIPS10 has 7,241 titles
of articles from the NeurIPS conference. Since
the topic modeling algorithm is an unsupervised
approach, we use the whole dataset for evaluation
without splitting.

A.3 Implementation details

For the pretrained language model f , we
use Sentence-BERT, all-MiniLM-L6-v2 specifi-
cally (Reimers and Gurevych, 2019). In stage 1, a
fully connected layer g with a single layer percep-
tron is appended on top of the [CLS] representation
from the Sentence-BERT. The total number of pa-
rameters is about 22.8M, including the parameters
from the backbone language model. The original
text is used as input, and any input tokens that
exceed the maximum input sequence length are
truncated. We train both f and g for 100 epochs.
RangerLars (RAdam + LARS + Lookahead) opti-
mizer with exponential learning rate decay is uti-
lized. The initial learning rate and decay factor are
set to 0.001 and 0.99, respectively.

In stage 3, we use three-layer MLP, including
dropout and batch normalization as an encoder qϕ,
and use one linear layer without bias as a decoder
pθ. For all phases, λ is set to 1, and the vocabulary
size is set to 2,000. The backbone network f is
fixed, and the encoder-decoder network is trained
for 20 epochs. The Adam optimizer is used, with a
learning rate of 2e-2. The number of topics K is set
to 20, the batch size is set to 128, and the Dirichlet

8
http://qwone.com/~jason/20Newsgroups/.

9
http://daviddlewis.com/resources/testcollections/
reuters21578/.

10
https://www.kaggle.com/datasets/benhamner/nips-papers.

prior hyper-parameter α is set to 0.05 (i.e., 1/# of
topics) for all phases.

Computing the Sliced Wasserstein Distance
(SWD) between the embedding distribution and
the prior requires a large batch for concise estima-
tion. However, expanding the batch size is unattain-
able in many real-world scenarios due to memory
constraints. We use a simple approach involving
a dynamic queue, which does not require comput-
ing many samples’ embeddings in a single itera-
tion because embeddings from earlier iterations
are saved. Embeddings computed from the cur-
rent batch are concatenated with saved embeddings
from the queue during training. Then, the stacked
embeddings are finally used to calculate the distri-
bution loss (Eq. 3, 11).

We should point out that the model’s computing
cost is not excessive. It took less than an hour for
all datasets to perform all training phases with four
A100 GPU processors.

A.4 Full evaluation results
In Table 9-20, we present the full performance eval-
uation results over four datasets with three different
numbers of topics: 10, 20, and 50. For each ex-
periment, results are averaged over five trials; the
mean and standard deviation are reported. Also, to
determine if a model successfully distinguish latent
topics, we report results of topic diversity analysis
for 20-Newsgroup, which shows that our method
continues to outperform the baselines (Table 21).
Top2Vec and ClusterTM are excluded in compari-
son, since they directly apply clustering algorithm
(e.g.., DBSCAN) over the word set and inevitably
make a complete split (i.e., topic diversity = 1),
which is unfair to compare with.

A.5 Qualitative analyses
Table 22 reports the top 10 words for each topic ex-
tracted from our model. As discussed, we can find
that the proposed model produces sufficiently rep-
resentative words to interpret topics. For example,
we can easily infer that topic #0 refers to the “com-
puter" theme and topic #1 represents the “sports"
theme. Our topic word selection strategy and con-
trastive learning framework successfully estimate
the latent topics with improved interpretability.
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NPMI-Wiki NPMI-In Cp Word2vec

LDA 0.0057±0.0023 0.0801±0.0057 0.0727±0.0103 0.1845±0.0028
NeuralLDA -0.0158±0.0051 -0.0610±0.0158 -0.0429±0.0195 0.1741±0.0063
ETM 0.0052±0.0091 0.1219±0.0060 0.0527±0.0316 0.2027±0.0040
CTM -0.0161±0.0080 0.1244±0.0135 -0.1415±0.0421 0.1818±0.0059
Top2Vec 0.0253±0.0017 0.0586±0.0020 -4.6113±0.0034 0.2677±0.0009
ClusterTM 0.0135±0.0025 -0.2870±0.0082 0.0160±0.0257 0.238±0.002
BERTopic 0.0609±0.0049 -0.0903±0.0180 0.2318±0.0063 0.2331±0.0070
UTopic 0.1069±0.0029 0.1130±0.0038 0.4850±0.0052 0.2416±0.0024

Table 9: Performance comparison over 20-Newsgroup with the number of topic K = 10. [Note] Mean and standard
error over five trials are reported for Table 9-20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0056±0.0051 0.0661±0.0074 0.0719±0.0118 0.1751±0.0042
NeuralLDA -0.0227±0.0056 -0.0083±0.0090 -0.0634±0.0182 0.1933±0.0054
ETM 0.0234±0.0027 0.0927±0.0096 0.1207±0.0157 0.2247±0.0033
CTM -0.0086±0.0048 0.1149±0.0138 0.0156±0.0173 0.1793±0.0055
Top2Vec 0.0302±0.0022 -0.0811±0.0046 0.1328±0.0089 0.2740±0.0033
ClusterTM 0.0154±0.0007 -0.2863±0.0062 0.0082±0.0103 0.2614±0.0021
BERTopic 0.0322±0.0035 -0.0563±0.0057 0.1515±0.0134 0.2210±0.0054
UTopic 0.0653±0.0030 0.1231±0.0059 0.3709±0.0098 0.2143±0.0029

Table 10: Performance comparison over 20-Newsgroup with the number of topic K = 20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0157±0.0007 0.0495±0.0042 0.0511±0.0062 0.1561±0.0022
NeuralLDA -0.0154±0.0020 0.0008±0.0104 -0.0557±0.0111 0.1867±0.0030
ETM 0.0290±0.0030 0.0817±0.0025 0.1465±0.0078 0.2377±0.0019
CTM -0.0159±0.0024 -0.1000±0.0038 0.0371±0.0072 0.1654±0.0012
Top2Vec 0.0188±0.0033 -0.0610±0.0042 0.0357±0.0126 0.2520±0.0054
ClusterTM 0.0115±0.0016 -0.2698±0.0033 -0.0223±0.0097 0.2982±0.0037
BERTopic 0.0122±0.0036 -0.0734±0.0092 0.0830±0.0177 0.2230±0.0043
UTopic 0.0425±0.0064 0.0685±0.0038 0.2829±0.0194 0.1966±0.0051

Table 11: Performance comparison over 20-Newsgroup with the number of topic K = 50.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0771±0.0041 0.0854±0.0039 -0.1658±0.0158 0.1629±0.0034
NeuralLDA -0.0446±0.0063 0.0536±0.0081 -0.0458±0.0193 0.1504±0.0031
ETM -0.0569±0.0050 0.1031±0.0049 -0.1054±0.0137 0.1742±0.0021
CTM -0.0467±0.0026 0.1262±0.0097 -0.0512±0.0093 0.1806±0.0025
Top2Vec -0.0589±0.0069 0.0274±0.0093 -0.2803±0.0263 0.2206±0.0026
ClusterTM -0.0164±0.0019 -0.2389±0.0096 -0.1115±0.0213 0.2942±0.0055
BERTopic -0.0807±0.0022 0.0115±0.0060 -0.2706±0.0083 0.1870±0.0042
UTopic -0.0138±0.0039 0.1225±0.0064 0.0884±0.0111 0.2350±0.0051

Table 12: Performance comparison over Reuters-21578 with the number of topic K = 10.
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NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0663±0.0040 0.0793±0.0037 -0.1327±0.0122 0.1622±0.0024
NeuralLDA -0.0374±0.0035 0.0584±0.0017 -0.0264±0.0058 0.1521±0.0022
ETM -0.0552±0.0019 0.0733±0.0021 -0.1063±0.0080 0.1740±0.0019
CTM -0.0438±0.0048 0.1259±0.0055 -0.0580±0.0082 0.1669±0.0029
Top2Vec -0.0448±0.0020 0.0595±0.0094 -0.2350±0.0073 0.2207±0.0033
ClusterTM -0.0084±0.0025 -0.1105±0.0062 -0.0814±0.0119 0.2998±0.0069
BERTopic -0.0724±0.0016 0.0126±0.0052 -0.2647±0.0136 0.1609±0.0052
UTopic -0.0094±0.0052 0.1231±0.0047 0.0832±0.0192 0.2198±0.0050

Table 13: Performance comparison over Reuters-21578 with the number of topic K = 20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0734±0.0005 0.0477±0.0025 -0.1502±0.0050 0.1397±0.0019
NeuralLDA -0.0300±0.0019 0.0833±0.0042 -0.0319±0.0122 0.1542±0.0022
ETM -0.0399±0.0025 0.0609±0.0013 -0.0449±0.0078 0.1740±0.0024
CTM -0.0491±0.0011 0.1420±0.0041 -0.0881±0.0050 0.1494±0.0011
Top2Vec -0.0559±0.0024 0.0529±0.0054 -0.2125±0.0072 0.1966±0.0012
ClusterTM -0.0056±0.0019 -0.1742±0.0034 -0.0181±0.0087 0.3307±0.0017
BERTopic -0.0436±0.0030 0.0228±0.0055 -0.1403±0.0140 0.1797±0.0023
UTopic -0.0117±0.0035 0.1081±0.0076 0.0841±0.0154 0.1938±0.0018

Table 14: Performance comparison over Reuters-21578 with the number of topic K = 50.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0095±0.0041 0.0519±0.0067 0.0345±0.0140 0.1591±0.0032
NeuralLDA 0.0018±0.0060 0.0301±0.0074 0.0744±0.0145 0.1677±0.0032
ETM -0.0152±0.0042 0.0545±0.0027 0.0843±0.0077 0.1642±0.0032
CTM 0.0608±0.0064 0.1556±0.0077 0.2320±0.0168 0.2058±0.0052
Top2Vec -0.0121±0.0064 -0.0774±0.0308 -0.2059±0.0439 0.1858±0.0013
ClusterTM 0.0501±0.0020 -0.3748±0.0047 0.1637±0.0087 0.3132±0.0148
BERTopic 0.0578±0.0093 0.0106±0.0097 0.1580±0.0341 0.2136±0.0044
UTopic 0.0663±0.0021 0.0895±0.0054 0.1987±0.0089 0.2127±0.0023

Table 15: Performance comparison over Wikipedia with the number of topic K = 10.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0072±0.0047 0.0618±0.0074 0.0377±0.0116 0.1462±0.0017
NeuralLDA 0.0121±0.0035 0.0792±0.0060 0.0784±0.0129 0.1628±0.0027
ETM -0.0262±0.0016 0.0331±0.0030 0.0850±0.0074 0.1566±0.0007
CTM 0.0594±0.0037 0.1507±0.0026 0.2200±0.0084 0.2000±0.0019
Top2Vec -0.0288±0.0038 -0.0730±0.0125 -0.2245±0.0265 0.1745±0.0046
ClusterTM 0.0533±0.0007 -0.3175±0.0068 0.1764±0.0084 0.3541±0.0043
BERTopic 0.0569±0.0044 -0.0374±0.0135 0.1786±0.0123 0.2164±0.0043
UTopic 0.0772±0.0037 0.1538±0.0044 0.2954±0.0092 0.2162±0.0018

Table 16: Performance comparison over Wikipedia with the number of topic K = 20.
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NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0047±0.0046 -0.0250±0.0055 0.0189±0.0143 0.1322±0.0028
NeuralLDA 0.0258±0.0021 0.1008±0.0032 0.1058±0.0090 0.1882±0.0028
ETM -0.0468±0.0023 0.0081±0.0022 -0.0064±0.0040 0.1245±0.0008
CTM 0.0628±0.0023 0.1579±0.0025 0.2263±0.0081 0.1827±0.0023
Top2Vec -0.0238±0.0026 -0.1124±0.0069 -0.2030±0.0089 0.1700±0.0039
ClusterTM 0.0667±0.0029 -0.2714±0.0093 0.2104±0.0115 0.3520±0.0032
BERTopic 0.0898±0.0043 -0.0617±0.0042 0.2664±0.0146 0.2287±0.0021
UTopic 0.0670±0.0018 0.0955±0.0031 0.2754±0.0085 0.2224±0.0027

Table 17: Performance comparison over Wikipedia with the number of topic K = 50.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0746±0.0041 -0.0199±0.0009 -0.0684±0.0101 0.1573±0.0012
NeuralLDA 0.0001±0.0026 -0.0105±0.0124 0.0647±0.0076 0.1604±0.0061
ETM -0.0212±0.0060 0.0441±0.0010 0.0829±0.0123 0.1865±0.0052
CTM 0.0436±0.0083 0.0714±0.0202 0.2543±0.0308 0.1822±0.0003
Top2Vec 0.0463±0.0022 0.0124±0.0101 0.1625±0.0056 0.2495±0.0002
ClusterTM 0.0255±0.0041 0.0656±0.0043 0.0588±0.0044 0.2732±0.0076
BERTopic -0.0007±0.0145 0.0943±0.0006 0.0747±0.0074 0.1741±0.0068
UTopic 0.0938±0.0048 0.1256±0.0138 0.5388±0.0167 0.2265±0.0006

Table 18: Performance comparison over BBC with the number of topic K = 10.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0718±0.0033 -0.0205±0.0025 -0.0709±0.0094 0.1486±0.0010
NeuralLDA 0.0084±0.0010 0.0110±0.0089 0.0569±0.0036 0.1622±0.0026
ETM -0.0333±0.0032 0.0251±0.0002 0.0416±0.0086 0.1908±0.0046
CTM 0.0289±0.0062 0.1109±0.0014 0.3254±0.0245 0.1715±0.0012
Top2Vec N/A N/A N/A N/A
ClusterTM 0.0339±0.0020 0.0990±0.0127 0.0908±0.0019 0.2858±0.0083
BERTopic 0.0456±0.0031 0.0762±0.0121 0.2556±0.0140 0.1943±0.0006
UTopic 0.0708±0.0061 0.1018±0.0113 0.3925±0.0124 0.2121±0.0006

Table 19: Performance comparison over BBC with the number of topic K = 20. [Note] N/A represents the model
failed to detect topics for Table 19 and 20.

NPMI-Wiki NPMI-In Cp Word2vec

LDA -0.0700±0.0010 -0.0153±0.0032 -0.0739±0.0036 0.1375±0.0006
NeuralLDA -0.0035±0.0022 0.0248±0.0014 0.0471±0.0087 0.1577±0.0018
ETM -0.0264±0.0018 0.0246±0.0010 0.0683±0.0109 0.2073±0.0098
CTM 0.0291±0.0022 0.1149±0.0059 0.2069±0.0109 0.1701±0.0004
Top2Vec N/A N/A N/A N/A
ClusterTM 0.0136±0.0032 0.0973±0.0007 0.0721±0.0037 0.3286±0.0043
BERTopic N/A N/A N/A N/A
UTopic 0.0897±0.0024 0.0898±0.0070 0.4448±0.0022 0.2212±0.0027

Table 20: Performance comparison over BBC with the number of topic K = 50.

Model LDA NeuralLDA ProdLDA ETM CTM BERTopic UTopic
Diversity 0.7 0.81 0.85 0.52 0.83 0.91 0.92

Table 21: Performance comparison over 20-Newsgroup in terms of topic diversity (K = 20).
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Topic # Top-10 words from each topic

0 drive, disk, scsi, floppy, hard, ide, controller, cd, card, rom
1 game, baseball, team, pitching, brave, year, player, run, hitter, hit
2 window, widget, xterm, server, lib, x11r5, motif, program, client, libxmu
3 clinton, president, government, bush, tax, administration, libertarian, fbi, id, party
4 encryption, key, chip, clipper, phone, algorithm, government, escrow, encrypted, patent
5 god, jesus, satan, christian, heaven, christ, hell, sin, faith, bible
6 voltage, game, input, motorola, chip, amp, circuit, amplifier, board, audio
7 space, orbit, nasa, satellite, spacecraft, lunar, moon, earth, comet, jupiter
8 christian, islam, religion, jew, church, morality, christianity, quran, muslim, objective
9 food, patient, disease, doctor, treatment, pain, blood, medical, infection, cancer

10 mac, cpu, simms, modem, computer, 040, scsi, system, clock, motherboard
11 armenian, israel, israeli, turkish, arab, jew, armenia, turk, turkey, greek
12 homosexual, hey, sex, gay, men, steve, homosexuality, serdar, life, sexual
13 file, window, zip, directory, bmp, printer, format, microsoft, convert, program
14 test, max, article, printer, eric, matthew, pl, 145, david, email
15 car, engine, ford, oil, battery, dealer, gt, taurus, auto, vehicle
16 card, monitor, video, driver, printer, window, color, vga, ati, bus
17 bike, motorcycle, honda, helmet, bmw, rider, ride, riding, shaft, rear
18 gun, weapon, crime, firearm, handgun, police, criminal, homicide, defense, assault
19 game, team, hockey, nhl, playoff, player, season, goal, ranger, detroit

Table 22: Top-10 words selected for each topic from our model. The model is trained over the 20-Newsgroups
dataset and the number of topics is set to 20. The discovered word set is human-interpretable and substantially
different from one another.
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