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Abstract

Knowledge Distillation (KD) is a prominent
neural model compression technique that heav-
ily relies on teacher network predictions to
guide the training of a student model. Con-
sidering the ever-growing size of pre-trained
language models (PLMs), KD is often adopted
in many NLP tasks involving PLMs. How-
ever, it is evident that in KD, deploying the
teacher network during training adds to the
memory and computational requirements of
training. In the computer vision literature, the
necessity of the teacher network is put under
scrutiny by showing that KD is a label regu-
larization technique that can be replaced with
lighter teacher-free variants such as the label-
smoothing technique. However, to the best of
our knowledge, this issue is not investigated in
NLP. Therefore, this work concerns studying
different label regularization techniques and
whether we actually need them to improve the
fine-tuning of smaller PLM networks on down-
stream tasks. In this regard, we did a compre-
hensive set of experiments on different PLMs
such as BERT, RoBERTa, and GPT with more
than 600 distinct trials and ran each configu-
ration five times. This investigation led to a
surprising observation that KD and other la-
bel regularization techniques do not play any
meaningful role over regular fine-tuning when
the student model is pre-trained. We further
explore this phenomenon in different settings
of NLP and computer vision tasks and demon-
strate that pre-training itself acts as a kind of
regularization, and additional label regulariza-
tion is unnecessary.

1 Introduction

Nowadays, we witness the tendency of ever-
growing state-of-the-art neural networks. This is
especially more evident in natural language pro-
cessing (NLP): the famous GPT-3 (Brown et al.,
2020) has reached 175 billion parameters and a
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Figure 1: DistilRoBERTa results on the test set for the
average of seven GLUE tasks. Graph shows the mean
performance and one standard deviation interval for the
pre-trained and randomly initialized models computed
over five runs. For the pre-trained model all intervals
intersect, hence label regularization doesn’t improve the
performance, but for the model trained from scratch
label regularization methods outperform base training.

recent Chinese pre-trained language model (Zeng
et al., 2021) has 200 billion parameters. It is shown
that big over-parameterized neural networks not
only have higher VC dimension, and hence more
approximation ability (Shalev-Shwartz and Ben-
David, 2014), but also their optimization regime is
smoother (Safran et al., 2020). At the same time,
the optimal point found for big networks has better
generalization property (Brutzkus and Globerson,
2019).

One can use the advantages of trained big neu-
ral networks and transfer their learned knowledge
(weights and biases) to a smaller network. There
are several approaches to such transferring tech-
niques (Cheng et al., 2017), but here we will fo-
cus on Knowledge distillation (KD) (Hinton et al.,
2015), a prominent neural model compression tech-
nique, which has been applied in many different
forms across various domains (Gou et al., 2020)
such as computer vision and NLP. To distill knowl-
edge from a bigger model (a teacher) to a smaller
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model (a student), KD adds an extra loss term
to ensure the student predictions match with the
teacher output. In the NLP domain, KD is widely
adopted for compressing pre-trained language mod-
els (PLMs) (Sanh et al., 2019; Jiao et al., 2019;
Jafari et al., 2021). The success of KD is attributed
to different potential factors such as additional in-
formation presented by the dark knowledge (i.e.
a term referring to the notion of class similarity
information deriving from the teacher predictions
which can not be found in the one-hot ground-truth
labels) (Hinton, 2012), regularization effect of the
KD loss (Yuan et al., 2020), or transferring induc-
tive bias from one network to another (Abnar et al.,
2020; Touvron et al., 2021).

Despite the widespread use of KD, it strongly
depends on a trained teacher model, and calling
the teacher during training adds to the computa-
tional cost of the training process noticeably. On
the other hand, instead of adding the KD loss term
to the student’s loss, one can add a regularization
term forcing the student predictions to be close
to a uniform (or any arbitrary) distribution. Such
a label smoothing technique results in better cali-
brated and more accurate classifiers (Müller et al.,
2019). Recently, Yuan et al. (2020) demonstrated
that label smoothing can perform as well as or even
outperform KD in several computer vision tasks
and across various models.

This result motivated us to investigate whether
the teacher-free regularization techniques (TF) can
work on par or better than KD on natural language
understanding tasks. In this regard, we compare
KD, label smoothing, and several other teacher-
free methods for BERT and GPT type models. It
is worth mentioning that our setting is different
from the one of Yuan et al. (2020): 1) pre-trained
language models are generally much bigger than
the models from machine vision, and 2) classifi-
cation tasks in our setting are mostly binary or
three classes, compared to a hundred classes in CI-
FAR100 or two hundred in Tiny ImageNet. We ran
the experiments multiple times to take into account
the stochasticity of the training. Overall, we show
a similar pattern: teacher-free techniques perform
on par with KD methods; but we additionally ob-
served a surprisingly different phenomenon: the
gap between base fine-tuning (without KD) and
fine-tuning with label regularization (KD or TF)
diminished.

We explore the reasons why the base fine-tuning

technique is a strong competitor of KD/TF regular-
ization on NLU tasks. This situation is somewhat
opposite to the one reported in computer vision.
We hypothesized and tested the following potential
explanations for our observations: 1) The small
number of classes in GLUE datasets (usually 2
or 3 classes) in contrast to 10 or 100 classes in
CV tasks; 2) Language models are extensively pre-
trained while CV models are not. Our experiments
indicate that the second hypothesis is true, whereas
the number of classes doesn’t play a big role in the
performance gap. To the best of our knowledge,
the effect of pre-training on fine-tuning with label
regularization was never mentioned in the literature
and deserves additional study.

Overall, our main contributions in this paper are
the following:

1. Thorough comparison of TF and KD methods
across both BERT and GPT models on the
GLUE and other NLU benchmarks (more than
600 distinct experiments overall). We showed
that, on average, KD does not significantly
outperform the fine-tuning or TF techniques.

2. We studied the gap between base fine-tuning
and fine-tuning with KD/TF and observed that
this gap is negligible for NLU tasks. We
demonstrated that this insignificant result is
unlikely to be caused by the number of classes
in the dataset.

3. We showed the evidence that the pre-training
of neural networks reduces the performance
gap on downstream tasks between the base
training and training with label regulariza-
tion both in NLP and computer vision do-
mains. We supported this claim by performing
Wilcoxon statistical test to demonstrate signif-
icance.

2 Background

In this section, we give a brief overview of the
KD and TF techniques we will be investigating.
Everywhere in the paper, we consider a classifica-
tion problem with K classes. Denote by q(x) the
one-hot label of a data point x.

2.1 Knowledge distillation (KD)

This classical method of transferring knowledge
gained traction after the paper (Hinton et al., 2015).
Assume that we have a trained network (a teacher)
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Figure 2: All the baselines of TF/KD methods we consider can be abstracted as cross-entropy training with smoothed
labels. The choice of label smoothing functions determines the method. The flow in the algorithms of each method
is indicated by a colored line, where

⊕
indicates the convex combination of the one-hot label and the output of the

label smoothing function.

and a network we want to train (a student). Let
pt(x) and ps(x) be teacher’s and student’s predic-
tions respectively. One wants to transfer the knowl-
edge from the teacher to the student. For that, one
can formulate a total loss for KD as:

L = (1− α)H(q, p) + αLKD, (1)

where H(q, p) is the cross-entropy loss and
LKD = DKL(p

t
τ , p

s
τ ) is a KL divergence between

the teacher’s and the student’s outputs scaled with
the temperature τ , i.e., pτ (k) = softmax(zk/τ),
where zk is the output logits of the model. When
τ = 1, KD training is equivalent to cross-entropy
training with the new labels “smoothed" by the
teacher:

q′(x) = (1− α)q(x) + αpt. (2)

2.2 Teacher-free methods
Label smoothing (LS) As Yuan et al. (2020) ob-
served, the loss in Equation 1 is structurally simi-
lar to the label smoothing loss, where one has to
replace the term LKD with LLS = DKL(u, p

s),
where u(k) = 1/K is the uniform distribution
on K classes. Training with the label smoothing
loss is equivalent to cross-entropy training with
smoothed labels:

q′(x) = (1− α)q(x) + αu. (3)

Varying the hyperparameter α, one can change the
shape of the new labels q′ from smoother (higher
values of α) to sharper (α closer to zero).

TF-reg (Yuan et al., 2020)) introduced a mod-
ification of LS with a sharper label-dependent
smoothing distribution. More formally, for TF-reg
one switches the uniform distribution u in Equa-
tion 3 to a more peaky label-dependent distribution
pdc(k), defined by:

pdc(k) =

{
a, if k = c

(1− a)/(K − 1), otherwise.
(4)

The smoothed label for x in TF-reg is given by:

q′(x) = (1− α)q(x) + αpdc(x), (5)

where c(x) is the correct label for x. Here one has
two hyperparameters (a and α) instead of just one
(α), which allows for better tuning, even though
mathematically it is the same as LS.

Yuan et al. (2020) showed that LS and TF-reg
perform on par or even outperform KD in ma-
chine vision for several models and across several
datasets.

Self distillation (Self KD) Furlanello et al.
(2018) and Yuan et al. (2020) considered the situ-
ation where the student and the teacher have the
same architectures, and a student distills the knowl-
edge from its fine-tuned alter-ego. In particular,
first, we fine-tune a copy of the student on the
dataset and then freeze it. Denote its outputs by
p̄s. Then take the second copy and train it with the
cross-entropy loss with smoothed labels:

q′(x) = (1− α)q(x) + αp̄s(x). (6)
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The summary of all the TF and KD methods we
compare can be found in Figure 2.

3 Experiments on GLUE benchmark

Inspired by the results of Yuan et al. (2020) in ma-
chine vision, we wanted to investigate the perfor-
mance of TF training on NLP data. In this section,
we evaluate the performance of the methods intro-
duced in the Background section.

3.1 Dataset

We considered seven classification datasets of
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018). These
datasets include linguistic acceptability (CoLA),
sentiment analysis (SST-2), paraphrasing (MRPC
and QQP), Natural Language Inference (MNLI,
RTE) and Question Answering (QNLI). Notice that
unlike most of the popular datasets in computer
vision, GLUE tasks are either binary or ternary
classification (only MNLI has three classes).

3.2 Experimental Setup

We explored all the KD/TF methods in three differ-
ent setups to check the consistency of the results
across different models. Our first student is Dis-
tilRoBERTa (Sanh et al., 2019). It has 6 layers,
768 hidden dimensions, 8 attention heads, and 82
million parameters. In the KD scenarios, we use
RoBERTa-large (Liu et al., 2019) as its teacher (it
has 24 layers, 1024 hidden dimensions, 16 atten-
tion heads, and 355 million parameters). In the
second experiment, we use the BERT-small (Turc
et al., 2019) model with 4 layers, 512 hidden dimen-
sions, 8 heads, and 28.7 million parameters. As a
teacher, we use BERT-large (Devlin et al., 2018)
with 24 layers, 1024 hidden dimensions, and 336
million parameters. The third student is DistilGPT-
2 with 6 layers, 768 hidden dimensions, and 82
million parameters. As its teacher, the 12-layer
GPT-2 (Radford et al., 2019) model is used with
the 768 hidden dimensions and 117 million param-
eters. For all these setups, we use the pre-trained
models from Huggingface (Wolf et al., 2019). All
the hyperparameters and the process of their tuning
are reported in the Appendix in more detail.

Hardware Setup For our experiments, we used 8
NVIDIA TESLA V100 GPUs. Each task is trained
on a single GPU.

3.3 Results

DistilRoBERTa We start with conducting the
GLUE experiments over the DistilRoBERTa model.
We report the results on GLUE dev and test sets in
Table 1. On the dev set, we observe the following
patterns: 1) The teacher-free methods (LS, TF-reg,
Self-KD) outperform the Finetune baseline; 2) KD
is the best technique but the standard deviation
intervals intersect with the TF baselines.

Although the results of the dev set in the first
experiments follow the trends of TF results in CV,
examining the test results reveals some irregulari-
ties (Table 1). In particular, we observe that: 1) all
the TF regularization techniques perform slightly
worse than Finetune; 2) KD is on average the best
technique, but it is comparable with Finetune up to
one standard deviation. See Figure 1 (left) for the
summary.

BERT-small In the second experiment, we eval-
uate the BERT-small model. Even here the story is
more or less similar to our first experiment on Dis-
tilRoBERTa. Results are reported in Table 2. On
the dev set, we observe that: 1) TF performs on par
(up to one standard deviation) with Finetune while
LS is slightly better. 2) KD is the best performer,
but standard deviation intervals intersect with some
of the TF baselines. On the test set, we observe that
all the methods perform more or less on par up to
one standard deviation while LS is slightly better.

DistilGPT-2 For DistilGPT-2, we see roughly
similar patterns as in our previous experiments (Ta-
ble 3). On both dev and test sets, all the methods’
performance is more or less similar, with the stan-
dard deviation intervals overlapping.

The overall conclusion of our experiments is
that, on average, KD or TF methods are slightly
better, but the gap between the regularization tech-
niques and the pure fine-tuning technique is not
significant. Our results on the GLUE benchmark
are very different from the reported results in the
CV domain where pure fine-tuning without TF or
KD underperforms. To explain the results, we for-
mulate some hypotheses and scrutinize them with
more experiments in the next section.

4 Analysis

In this section, we investigate potential reasons for
getting the negligible difference in the relative per-
formance of base fine-tuning, teacher-free training,
and KD. We conduct some experiments to evaluate
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baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 68.14 81.23 91.62 96.44 94.60 90.23 91.00 87.67
Finetune 60.53 ± 0.70 68.66 ± 1.28 90.58 ± 0.69 92.43 ± 0.16 90.78 ± 0.12 84.04 ± 0.25 91.44 ± 0.03 82.64 ± 0.11

LS 60.46 ± 0.74 69.24 ± 0.90 90.87 ± 0.42 92.75 ± 0.41 90.71 ± 0.09 83.99 ± 0.13 91.41 ± 0.07 82.78 ± 0.15

TF-reg 60.74 ± 0.98 68.81 ± 0.98 90.78 ± 0.77 92.68 ± 0.15 91.13 ± 0.43 83.86 ± 0.17 91.45 ± 0.10 82.78 ± 0.29

Self-KD 60.48 ± 0.59 69.24 ± 1.20 90.97 ± 0.46 92.43 ± 0.29 90.91 ± 0.27 84.00 ± 0.19 91.62 ± 0.09 82.81 ± 0.19

KD 62.13 ± 0.67 68.66 ± 1.24 90.83 ± 0.31 92.73 ± 0.34 91.23 ± 0.29 84.34 ± 0.22 91.68 ± 0.08 83.08 ± 0.14

TEST

Teacher 65.1 82.6 89.5 92.1 91.5 84.3 88.7 84.82
Finetune 51.62 ± 0.96 62.70 ± 0.41 88.12 ± 0.35 93.22 ± 0.46 90.66 ± 0.15 83.52 ± 0.26 88.92 ± 0.19 79.82 ± 0.18

LS 49.46 ± 3.84 62.52 ± 0.38 87.94 ± 0.51 93.42 ± 0.33 90.26 ± 0.43 83.34 ± 0.32 89.04 ± 0.08 79.43 ± 0.62

TF-reg 49.16 ± 3.82 62.92 ± 0.32 87.44 ± 0.74 93.26 ± 0.28 90.28 ± 0.21 83.36 ± 0.36 89.04 ± 0.08 79.35 ± 0.70

Self-KD 51.56 ± 1.04 62.88 ± 0.82 87.92 ± 0.43 93.10 ± 0.11 90.58 ± 0.27 83.46 ± 0.29 89.12 ± 0.10 79.80 ± 0.20

KD 50.28 ± 3.07 63.04 ± 0.43 88.80 ± 0.54 93.44 ± 0.48 90.74 ± 0.26 83.64 ± 0.21 89.42 ± 0.04 79.91 ± 0.54

Table 1: DistilRoBERTa results on the dev and test sets for the GLUE benchmark. F1 scores are reported for MRPC,
Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is RoBERTa-large. Averages
and standard deviations are over 5 runs.

baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 65.80 71.48 89.38 92.77 92.82 86.3 91.45 82.19
Finetune 41.76 ± 1.09 65.13 ± 1.22 87.09 ± 0.62 88.83 ± 0.27 86.96 ± 0.11 78.46 ± 0.13 90.02 ± 0.08 76.89 ± 0.25

LS 41.97 ± 1.63 65.85 ± 1.16 87.41 ± 0.55 88.56 ± 0.24 86.90 ± 0.16 78.51 ± 0.14 90.04 ± 0.03 77.03 ± 0.24

TF-reg 42.13 ± 0.74 64.98 ± 1.57 87.19 ± 0.43 88.58 ± 0.31 86.96 ± 0.13 78.54 ± 0.11 90.02 ± 0.04 76.91 ± 0.18

Self-KD 41.52 ± 1.74 65.63 ± 1.52 86.73 ± 0.25 88.72 ± 0.28 86.74 ± 0.58 78.63 ± 0.29 90.08 ± 0.09 76.86 ± 0.39

KD 42.48 ± 1.34 65.42 ± 0.95 88.56 ± 0.40 88.60 ± 0.60 87.31 ± 0.22 78.73 ± 0.19 90.23 ± 0.08 77.33 ± 0.15

TEST

Teacher 63.8 69.2 85.1 89.7 89.2 83.2 86.2 80.91
Finetune 38.58 ± 0.87 62.74 ± 0.31 83.12 ± 0.42 89.56 ± 0.65 86.62 ± 0.65 78.26 ± 0.27 87.80 ± 0.17 75.24 ± 0.29

LS 40.08 ± 0.58 62.84 ± 0.22 83.24 ± 0.56 89.88 ± 0.50 86.60 ± 0.79 78.48 ± 0.26 87.78 ± 0.15 75.56 ± 0.14

TF-reg 38.92 ± 1.25 60.70 ± 3.03 82.92 ± 0.50 89.82 ± 0.42 86.22 ± 0.70 78.16 ± 0.33 87.78 ± 0.12 74.93 ± 0.63

Self-KD 38.92 ± 2.44 61.32 ± 1.26 83.12 ± 0.64 89.82 ± 0.43 86.60 ± 0.30 78.22 ± 0.53 87.76 ± 0.05 75.11 ± 0.41

KD 38.26 ± 2.20 62.32 ± 1.04 84.74 ± 0.65 89.96 ± 0.22 86.58 ± 0.27 78.34 ± 0.20 88.02 ± 0.12 75.46 ± 0.51

Table 2: BERT-small results on the dev and test sets of the GLUE benchmark. F1 scores are reported for MRPC,
Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is BERT-large. Averages and
standard deviations are over 5 runs.

two particular hypotheses we have as potential rea-
sons behind these inconsistencies: 1) the number
of classes in the GLUE tasks is much lower than
for the CV tasks; 2) NLU models are pre-trained
and pre-training can attenuate the regularization
impact of KD and TF methods. In the remainder of
this section, we will go over some new experiments
which were done to evaluate these two hypotheses
respectively.

4.1 Hypothesis 1: Number of Classes

4.1.1 SST-5
SST-5 is a fine-grained sentiment classification
dataset with 5 classes introduced in (Socher et al.,
2013). We consider a setting of DistilRoBERTa stu-
dent and RoBERTa-large (24 layers) teacher. We
ran experiments for 5 seeds. The results are pre-
sented in Table 4. Overall, we can see that the stan-
dard deviations of the results are quite big, which
prevents us from concluding that any technique is
superior. Similar to GLUE, we note that the gap
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baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 43.2 66.8 87.6 92.2 88.6 82.3 89.5 78.6
Finetune 38.20 ± 1.23 64.92 ± 0.92 87.74 ± 0.34 91.54 ± 0.34 86.48 ± 0.52 79.93 ±0.08 89.70 ± 0.06 77.13 ±0.34

LS 38.24 ± 1.25 64.84 ± 0.66 87.50 ± 0.28 91.54 ± 0.25 86.56 ± 0.36 80.14 ± 0.14 89.67 ± 0.10 76.93 ± 0.27

TF-reg 38.04 ± 1.23 64.90 ± 0.62 87.58 ± 0.26 91.34 ± 0.14 86.72 ± 0.34 80.14 ± 0.22 89.64 ± 0.08 76.91 ± 0.27

Self-KD 39.41 ± 0.91 65.62 ± 1.61 87.24 ± 0.21 90.84 ± 0.31 87.04 ± 0.17 80.57 ± 0.16 89.83 ± 0.04 77.16 ± 0.33

KD 38.94 ± 1.10 66.80 ± 0.82 87.22 ± 0.74 90.86 ± 0.33 86.82 ± 0.32 80.30 ± 0.17 89.97 ± 0.24 77.34 ± 0.30

TEST

Teacher 46.7 65.0 86.4 88.3 88.5 81.8 87.9 77.8
Finetune 31.00 ± 1.32 60.52 ± 0.66 84.52 ± 0.56 90.22 ± 1.08 85.34 ± 0.30 79.84 ± 0.22 87.68 ± 0.12 74.16 ± 0.28

LS 31.30 ± 2.00 60.18 ± 0.63 84.68 ± 0.41 91.18 ± 0.41 85.28 ± 0.30 79.78 ± 0.19 87.76 ± 0.14 74.31 ± 0.25

TF-reg 31.74 ± 2.06 60.22 ± 0.40 84.50 ± 0.46 90.62 ± 0.56 85.38 ± 0.32 79.68 ± 0.28 87.24 ± 0.50 74.20 ± 0.40

Self-KD 35.28 ± 1.55 61.02 ± 1.23 83.72 ± 0.50 90.30 ± 0.54 86.14 ± 0.33 80.12 ± 0.15 87.86 ± 0.16 74.92 ± 0.18

KD 32.96 ± 2.84 60.40 ± 0.20 84.76 ± 0.56 90.38 ± 0.53 85.82 ± 0.15 80.10 ± 0.14 88.08 ± 0.14 74.64 ± 0.43

Table 3: DistilGPT-2 results on the dev and test sets of the GLUE benchmark. F1 scores are reported for MRPC,
Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is GPT-2 (12 layers). Averages
and standard deviations are over 5 runs.

between fine-tuning and TF/KD is not observed.
In our next experiment, we increase the number

of classes even more to see if the gap appears.

baseline Accuracy (dev) Accuracy (test)
Teacher 56.86 59.95
Finetune 53.40 ± 0.85 54.43 ± 0.56

LS 53.50 ± 0.98 53.96 ± 0.77

TF-reg 53.62 ± 0.90 53.93 ± 0.42

KD 53.59 ± 0.26 54.14 ± 0.92

Table 4: DistilRoBERTa results on SST-5. Averages
and standard deviations are over 5 runs.

4.1.2 FewRel
Han et al. (2018) introduced this dataset for relation
classification. Originally, this dataset was designed
for few-shot learning, so we had to slightly modify
it for our purpose. First, we consider the train set
of FewRel. It has 64 classes and each class has 700
instances. We shuffle the data for each class and
allocated 500 instances to our train set, 100 to our
dev set, and 100 to our test set. We perform the ex-
periments five times and get a new dataset for each
seed, as recommended by Bouthillier et al. (2021).
The detailed procedure can be found in Appendix.
Overall, we generated a text classification dataset
with 64 classes.

We took DistilRoBERTa as a student and
RoBERTa-base (12 layers) as a teacher. We ran
experiments for 5 seeds and tuned hyperparameters

for the first one (see Appendix for details). The
results are in Table 5. We can observe that all the
methods perform similarly up to one standard devi-
ation and we don’t see a gap between Finetune and
KD/TF again.

As a conclusion of SST-5 (5 classes) and FewRel
(64 classes) experiments, we do not see any evi-
dence that the number of classes in classification
tasks affects the gap.

baseline Accuracy (dev) Accuracy (test)
Teacher 88.93 ± 0.27 88.63 ± 0.45

Finetune 86.31 ± 0.32 86.28 ± 0.51

LS 86.35 ± 0.31 86.22 ± 0.47

TF-reg 86.35 ± 0.31 86.26 ± 0.47

KD 86.66 ± 0.36 86.41 ± 0.54

Table 5: DistilRoBERTa results on FewRel (64 classes).
Averages and standard deviations are over 5 runs.

4.2 Hypothesis 2: Effect of Pre-training

We pose the following question: what is the major
difference between Language Models and Com-
puter Vision Models that might affect the perfor-
mance gap between base training and label regular-
ization? As an immediate hypothesis, we thought
that extensive pre-training of the models we experi-
mented with in the previous sections might be the
reason.
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baseline From scratch Pre-trained
Base 77.04 ± 0.26 78.17 ± 0.27

LS 78.01 ± 0.20 78.67 ± 0.20

TF-reg 78.16 ± 0.20 78.94 ± 0.28

Table 6: ResNet18 on CIFAR100. Pre-training is done
on the ImageNet dataset. Averages and standard devia-
tions are over 10 runs.

4.2.1 Computer vision
First, we did a sanity check and performed some
experiments from (Yuan et al., 2020) for multiple
seeds. In the paper, they didn’t mention the stan-
dard deviation, but it is important for us to check
if the gap we hoped to find is not a result of ran-
domness. We considered CIFAR100 (Krizhevsky
et al., 2009) and trained ResNet18 student (He et al.,
2016) without label regularization and with LS and
TF-reg techniques. At the same time we repeated
similar experiments, but now with ResNet18 pre-
trained on ImageNet dataset (Russakovsky et al.,
2015). The results are reported in Table 6. Here, we
can see that for the unpretrained model the standard
deviation intervals between base training and label
regularization don’t intersect and the gap is reason-
ably large. However, the gap diminishes notably
for the pre-trained model.

This gives us some initial evidence that our hy-
pothesis might be true. In our next experiment, we
report results that support this hypothesis.

4.2.2 NLU
GLUE experiments To investigate the effect
of pre-training on the relative performance, we
took a model with the same architecture as Dis-
tilRoBERTa, but instead of initializing it with pre-
trained weights, we randomly initialize it (with
normal distribution using the built-in Huggingface
function). We used the hyperparameters from the
pre-trained experiments. Then we ran experiments
for 5 seeds. The results are reported in Table 7.
We can see that, unlike the pre-trained model, the
gap between base training and all the label regu-
larization methods is bigger and the intersection
of standard deviation intervals is much smaller or
nonexistent. See Figure 1 (right) for the summary.

SST-5 experiments As a next step, we wanted
to formally check the statistical significance of the
findings that we reported in the previous sections.
For this, we considered again the SST-5 dataset and
trained both the pre-trained and randomly initial-

ized DistilRoBERTa on it. We aim to determine
whether there is a statistically significant differ-
ence between base training and TF/KD training
for each of the pre-trained and randomly initial-
ized cases. We used the (two-sided) Wilcoxon
signed-rank test (Wilcoxon, 1945) over the results
of eight random seeds. The Wilcoxon test is a
non-parametric statistical test that checks the null
hypothesis, i.e., whether two related paired sam-
ples come from the same distribution. The results
are reported in Table 8. We can see that for the pre-
trained model there is no statistically significant
difference between base training and label regular-
ization (p-value is greater than 0.05). However, if
the model is trained from scratch, the difference
becomes statistically significant.

We also tried state-of-the-art KD method, An-
nealing KD (AKD) (Jafari et al., 2021) which is
like vanilla KD doesn’t require data augmentation
or an access to teacher’s intermediate layers. The
result of the Wilcoxon test (Table 8) shows that
similarly it doesn’t give a significantly better per-
formance for a pre-trained model.

5 Related Work

Our finding that pre-training reduces or even re-
moves the gap between base training and TF/KD
training can serve as an indication of a regulariza-
tion property of pre-training. Several works are
exploring this in the literature.

Tu et al. (2020) studied the relation between pre-
training and spurious correlations. They demon-
strated that pre-trained models are more robust to
spurious correlations because they can generalize
from a minority of training examples that counter
the spurious pattern. Furrer et al. (2020) demon-
strated that Masked Language Model pre-training
helps in semantic parsing scenarios to improve
compositional generalization. The authors hypoth-
esize that the primary benefit provided by MLM
pre-training is the improvement of the model’s abil-
ity to substitute similar words or word phrases by
ensuring they are close to each other in the rep-
resentation space. Turc et al. (2019) showed that
pre-training is very beneficial for smaller architec-
tures, and fine-tuning pre-trained compact models
can be competitive with more elaborate methods.

6 Discussion and Future Work

We started this comparison of KD and TF regular-
izations on NLU tasks in the hope that a pattern
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baseline CoLA RTE MRPC SST-2 QNLI MNLI QQP Score

DEV

Teacher 68.14 81.23 91.62 96.44 94.60 90.23 91.00 87.67
Base 13.3 ± 0.9 53.0 ± 0.4 81.4 ± 0.3 81.2 ± 0.5 60.8 ± 0.6 62.1 ± 1.1 80.8 ± 0.2 61.87 ± 0.21

LS 14.0 ± 0.9 53.8 ± 1.0 82.1 ± 0.7 81.7 ± 0.5 61.5 ± 0.6 62.8 ± 0.8 81.1 ± 0.5 62.45 ± 0.45

TF-reg 14.4 ± 1.2 53.0 ± 0.5 82.3± 0.4 81.8 ± 0.4 61.5 ± 1.3 62.7 ± 1.1 80.6 ± 0.2 62.35 ± 0.25

Self-KD 14.3 ± 0.5 53.0 ± 0.4 82.3 ± 0.5 81.4 ± 0.1 61.3 ± 0.4 63.5 ± 1.2 80.7 ± 0.1 62.39 ± 0.28

KD 16.6 ± 0.7 53.6± 0.9 81.8 ± 0.4 81.2± 0.5 61.4 ± 0.4 63.1 ± 0.3 81.6 ± 0.1 62.80 ± 0.45

TEST

Teacher 65.1 82.6 89.5 92.1 91.5 84.3 88.7 84.82
Base 9.8 ± 0.1 51.6 ± 1.3 79.6 ± 0.3 80.3 ± 0.0 60.7 ± 0.5 61.4 ± 0.3 80.8± 0.2 60.60 ± 0.21

LS 10.5 ± 0.2 53.0 ± 0.0 80.0 ± 0.4 80.9 ± 0.4 60.7 ± 0.7 61.7 ± 0.1 81.1 ± 0.7 60.72 ± 0.07

TF-reg 11.8 ± 1.1 51.8 ± 1.5 79.2 ± 1.5 81.2 ± 0.3 60.9 ± 0.4 61.7 ± 0.1 81.2 ± 0.4 61.08 ± 0.32

Self-KD 11.5 ± 0.3 51.0 ± 0.7 79.5 ± 1.2 80.6 ± 0.1 61.9 ± 0.4 62.3 ± 0.2 81.3 ± 0.1 61.13 ± 0.31

KD 12.8 ± 2.8 51.5 ± 1.1 79.3 ± 0.6 82.1 ± 0.4 61.2 ± 0.2 62.6 ± 0.0 81.4 ± 0.4 61.54 ± 0.60

Table 7: Randomly initialized DistilRoBERTa results on the dev and test sets for the GLUE benchmark. F1 scores
are reported for MRPC, Matthew’s Correlation for CoLA, and accuracy scores for all other tasks. The teacher is
RoBERTa-large. Averages and standard deviations are over 5 runs.

Comparison Pre-trained From scratch
Base vs TF-reg 0.46 0.01

Base vs KD 0.94 0.01
Finetune vs AKD 0.74 -

Table 8: Wilcoxon signed-rank test results for Distil-
RoBERTa model trained on SST-5 dataset. P-values of
the test are reported with p-value less than 0.05 meaning
the difference is significant. The results are over the test
results of 8 runs.

similar to the one in computer vision (Yuan et al.,
2020) will emerge. In particular, we expected to
see TF and KD perform on par while outperform-
ing Finetune. However, it turned out that the gap,
even if it exists for some seeds, is not significant.

We further scrutinized the gap between Finetune
and KD/TF regularization. We hypothesized that
the lack of this gap in NLU might be the result of
a small number of classes in GLUE classification
tasks, however, this doesn’t seem to be the case:
experiments on SST-5 (5 classes) and FewRel (64
classes) datasets didn’t show a significant gap ei-
ther. We showed that another hypothesis is likely
to be true: the extensive pre-training of Language
Models erases the gap. The application of a statisti-
cal test confirms that a non-negligible gap appears
when models are trained from scratch. It seems
that pre-training discovers a good enough initializa-
tion for fine-tuning so that even basic unregularized

training can find a solution as good as training with
(TF or KD) regularization. A rigorous explanation
of this phenomenon is an interesting challenge for
future work.

We would like to add one important remark. Our
finding of this work does not suggest disregarding
KD or other types of regularizations in NLP but
rather using the more advanced or enhanced ver-
sions of these techniques. First of all, as shown in
several works in the literature (Sanh et al., 2019;
Sun et al., 2019; Turc et al., 2019; Jiao et al., 2019;
Tahaei et al., 2021), KD is very important for the
pre-training stage of the student models. Similarly,
Gao et al. (2020) demonstrated the value of label
smoothing for training machine translation models.

Moreover, improved variants of KD might still
facilitate fine-tuning of pre-trained models. Even
when vanilla KD doesn’t give a statistically signifi-
cant advantage over base fine-tuning, several works
in the literature show that improved versions of KD
with different auxiliary training schemes could be
beneficial. For example, one can incorporate inter-
mediate layer distillation (Sun et al., 2019; Passban
et al., 2021; Wu et al., 2020, 2021), data augmenta-
tion (Rashid et al., 2021; Kamalloo et al., 2021) or
contrastive training (Sun et al., 2020). Investigat-
ing better KD techniques or, more generally, better
regularization methods that can improve the fine-
tuning of PLMs even further will be an important
direction for future work.

173



Limitations

In the current work we present an extensive em-
pirical evidence that label regularization doesn’t
improve fine-tuning of a pre-trained model. How-
ever, we don’t have any theoretical explanation of
this puzzling phenomenon. Understanding the in-
teractions of different regularization methods and
how they affect the optimization is a highly non-
trivial problem.
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A Hyperparameters for GLUE and SST-5
experiments

We ran experiments for seeds 42, 549, 1237, 230
and 805. For all baselines we run experiments
for 30 epoch. All hyperparameters for pre-trained
and randomly initialized models are listed in the
Tables 9, 10.

When we do 8 seeds for the statistical test, we
add seeds 4653, 5589 and 992.

Hyperparameters for Annealing KD on SST-5
are listed in Table 11

B Experiments on FewRel

B.1 How we constructed the dataset

For each seed (42, 549, 1237, 230 and 805) sepa-
rately we constructed a new dataset.

Train set of FewRel has 64 classes, each class
has 700 instances. We shuffle the data for each
class (with a current seed) and allocated first 500
instances for our train set, second 100 for our dev
set and last 100 for our test set.

We concatenated the context, head, and tail of
the relation into one piece of text to be classified.

B.2 Hyperparameters

All hyperparameters are shown in Table 12

C Experiments on CIFAR100

We follow the experimental setup (Yuan et al.,
2020). For optimization we used SGD with a mo-
mentum of 0.9. The learning rate starts at 0.1 and
is then divided by 5 at epochs 60, 120 and 160. All
experiments are repeated 10 times with different
random initialization. The seeds we used: 11, 125,
1350, 23, 230, 4653, 5589, 56, 6, and 992. The
validation set is made up of 10% of the training
data. For experiments with pre-trained models, we
use the checkpoints available at 2.

D Hyper-parameter tuning

For hyper-parameter tuning, we use the ray tune
library (Liaw et al., 2018). The tuned hyper-
parameters are batch size, learning rate, α, and
temperature where they have been selected among
{8, 16, 32, 64}, {9e-6, 1e-5, 2e-5, 3e-5}, {0.4,
0.5, 0.7, 0.8, 0.9, 0.95}, and {1, 2, 5, 10} sets re-
spectively. We use ASHAScheduler algorithm of
ray tune to find the best hyper-parameters. The

2https://pytorch.org/vision/stable/models.html

metric of choosing them was maximum perfor-
mance on dev set. The sample size of tuning hyper-
parameters was 20 and 1 GPU was used for each
experiment. Also, the maximum number of epochs
for each trial was 20 epochs.

Since tuning hyper-parameters requires a huge
amount of computational resources, we tried
hyper-parameter tuning for vanilla KD on Distill-
RoBERTa model for GLUE benchmark. Then we
chose the five best hyper-parameter sets from this
experiment and checked their performance with
other baselines and chose the one with highest av-
erage performance among all baselines. Only dif-
ferent α parameters for random initialization and
pre-trained experiments on GLUE tasks and SST-5
made considerable differences in results. Therefore
we used different α values in these experiments.

Tuning hyper-parameters individually for each
baseline would be a better option, but this would
require a very large amount of computational re-
sources. However, after careful hyper-parameter
tuning for vanilla KD and less intensive hyper-
parameter tuning for teacher-free baselines, the lat-
ter show very close performance to vanilla KD and
this fact supports the main message of our paper.
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Hyper-parameter Value
Learning rate 2 · 10−5

Batch Size 32
Temperature 1

Training epoch 30
α for LS 0.1

α for KD, Self-KD and TF-reg 0.5
α for KD and TF-reg RI SST-5 0.9

a for TF-reg 0.95

Table 9: Hyperparameters for DistilRoBERTa and BERT-Small models on GLUE and SST-5 for pre-trained and
randomly initialized (RI) models

Hyper-parameter CoLA RTE MRPC SST-2 QNLI QQP MNLI
Learning rate 10−5 2 · 10−5 10−5 2 · 10−5 10−5 2 · 10−5 2 · 10−5

Batch Size 16 16 16 16 16 16 16
Temperature 1 1 1 1 1 1 1

Training epoch 30 30 30 30 30 30 30
α for LS 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α for KD 0.5 0.5 0.5 0.5 0.5 0.5 0.5

α for Self-KD 0.5 0.5 0.5 0.5 0.5 0.5 0.5
α for TF-reg 0.5 0.5 0.5 0.5 0.5 0.5 0.5
a for TF-reg 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Table 10: Hyperparameters for DistilGPT-2 on GLUE tasks for Finetune and regular KD and TF

Hyper-parameter Value
Learning rate 2 · 10−5

Batch Size 8
Max Temperature 10

Training epochs Phase I 20
Training epochs Phase II 10

Table 11: Hyperparameters for Annealing KD for DistilRoBERTa on SST-5

Hyper-parameter Value
Learning rate 1.5 · 10−5

Batch Size 32
Temperature 1

Training epoch 30
α for LS 0.1
α for KD 0.5

α for TF-reg 0.5
a for TF-reg 0.95

Table 12: Hyperparameters for DistilRoBERTa on
FewRel for Finetune, KD and TF

Hyper-parameter Value
Learning rate 0.1

Batch size 128
Weight decay 5 · 10−4

Training epoch 200
α for LS 0.1

α for TF-reg 0.1
Temperature for TF-reg 20

Table 13: Hyper-parameters for ResNet18 on CI-
FAR100.
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