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Abstract

Understanding empathy in text dialogue data
is a difficult, yet critical, skill for effective
human-machine interaction. In this work, we
ask whether systems are making meaningful
progress on this challenge. We consider a sim-
ple model that checks if an input utterance is
similar to a small set of empathetic examples.
Crucially, the model does not look at what the
utterance is a response to, i.e., the dialogue con-
text. This model performs comparably to prior
work on standard benchmarks and even outper-
forms state-of-the-art models for empathetic
rationale extraction by 16.7 points on T-F1 and
4.3 on IOU-F1. This indicates that current sys-
tems rely on the surface form of the response,
rather than whether it is suitable in context. To
confirm this, we create examples with dialogue
contexts that change the interpretation of the
response and show that current systems con-
tinue to label utterances as empathetic. We dis-
cuss the implications of our findings, including
improvements for empathetic benchmarks and
how our model can be an informative baseline.

1 Introduction

Empathy is a fundamental phenomenon that allows
us to better communicate and relate with others.
Studies show that empathy is significantly corre-
lated with counseling treatment outcomes (Moyers
and Miller, 2013; Elliott et al., 2018). Computer
systems could be improved by adding the ability to
understand empathy.

EPITOME (Sharma et al., 2020b) took a step
towards understanding empathy in language, intro-
ducing tasks such as empathy identification and
empathetic rationale extraction. Models built us-
ing EPITOME have been used to build or evaluate
empathetic dialogue systems (Sharma et al., 2021;
Zheng et al., 2021; Majumder et al., 2022; Kim
et al., 2021) or study social effects of empathy
(Chen and Xu, 2021).

In this work, we explore whether current models
are effectively considering dialogue context (short-
ened to context for the rest of this paper). We show
that a simple model that does not consider context
can achieve strong results, and that a model from
prior work does not change its predictions when we
make substantial changes to the context. Together,
these results indicate that models are more limited
than previously thought.

We introduce an adapted version of micromod-
els (Lee et al., 2021), a simple and explainable
approach that combines a set of models, with each
model identifying a specific linguistic phenomenon.
This approach performs much better than the EPIT-
OME’s model on five metrics, comparably on five
metrics, and much worse on two. Critically, we
achieve this without any use of context.

We inspect our model’s behavior and find that
it can achieve accuracy scores that are as good
as or better than the EPITOME model’s for em-
pathetic rationale extraction with as few as three
seed/training utterances for our model.

We also conduct an experiment to probe EPIT-
OME’s behavior. We take utterances from empa-
thetic responses and randomly insert them as part of
the response in another context. Despite these inser-
tions mainly being nonsensical and non-empathetic,
prior models nearly always predict these responses
as empathetic, demonstrating that the models rely
on the surface form of the response rather than
contextual understanding.

The authors of EPITOME noted that empathy
18 contextual; a “reaction to an emotional stimu-
lation” or a “deliberate process of understanding
and interpreting the experiences” of others.! How-
ever, current systems do not effectively account for
context: they may identify empathetic style, but
they do not consider whether a response is indeed a
reaction to feelings and experiences. Future work

'Section 2.1 of Sharma et al. (2020b)
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Figure 1: The micromodel framework training process.
Notably, our approach does not use any dialogue context,
yet still performs strongly on current empathy detection
benchmarks, raising the question of whether current
systems and benchmarks are accounting for context.

should conduct probing experiments like the one
we use here, and could consider micromodels as
a baseline. This will help assess the contextual
understanding of empathy for future models.

2 Benchmarks and Tasks: EPITOME

EPITOME (Sharma et al.,, 2020b) is a frame-
work for computationally assessing empathy in
text-based dialogue. We denote their dataset as
EPITOMEpD,, and the model as EPITOME odel-

EPITOMEp,, consists of pairs of dialogues
from Talklife and Reddit, and two tasks: empathy
prediction (EmpPred) and empathetic rationale
extraction (EmpRE). Given a seeker’s post .5; =
Sil, ---5 Sim and a response R; = r;1, ..., Tin, €ach
response R; is annotated with an empathy level
(None, Weak, or Strong) in the context of S; across
three communication mechanisms: Emotional Re-
actions, Interpretations, and Explorations.>

Empathetic rationales are spans of text that pro-
vide evidence of empathy. They are annotated
at the token-level, e.g., the response "I feel you.
Are you okay?" is represented as [1,1,1,0,0,0],
[0,0,0,1,1,1], and [0, 0,0, 0,0, 0] for Emotional
Reactions, Exploration, and Interpretations, with
one digit per token.

The goal of EmpPred is to predict the correct
level of empathy given (S;, ;) across each com-
munication mechanism. The goal of EmpRE is to
correctly extract the rationale spans.

3 Micromodels

Lee et al. (2021) introduced the micromodel frame-
work to assess the mental health status of social
media users. We give a brief overview of the frame-

2The definition of each communication mechanism can be
found in the appendix.

work, followed by our adaptations to tackle each
task. Further details are provided in the appendix.

3.1 Micromodel Framework

Figure 1 depicts the micromodel framework. The
framework consists of a set of micromodels, in
which each micromodel M M is a binary classifier
that is initialized with a set of seed utterances Z =
21, ..., 2n. Given an input query ¢, micromodel
M M gives a binary prediction if g is semantically
similar to any of the seed utterances in Z:

MM (q) = 3.ezCo0sSim(BERT (q), BERT(z)) > 0
M
The outputs of the micromodels are used as fea-
tures to train a task-specific classifier. Lee et al.
(2021) uses explainable boosting machines (EBM)
(Caruana et al., 2015), which are generalized addi-
tive models (Lou et al., 2012) that make predictions
based on adding a set of feature functions learned
on each input feature, where each feature function
is trained using bagging and gradient boosting.

3.2 Micromodels for EmpPred

For EPITOME’s tasks, we build three micromod-
els, one for each communication mechanism c. For
each micromodel M M., the seed utterances Z. are
initialized using the annotated rationales of each
communication mechanism in the training split of
EPITOMEpy,,. Once initialized, rather than using
the binary outputs from each micromodel, we use
the maximum similarity score between each sen-
tence from the response post r;; € R; and each of
the seed utterances z € Z,.
MM.(R;) = r{?ea})éi(Sim(BERT(T”)’ BERT(z))) (2)
z€Zc
We use the resulting similarity scores as features
to train an EBM model® to predict the empathy
level. We use S-BERT (Reimers and Gurevych,
2019) models* to compute similarity scores.

3.3 Micromodels for EmpRE

Figure 2 depicts how we apply micromodels to
extract empathetic rationales. Given a response
post R;, we first split it into sentences r;1, ..., 'ip.
Each micromodel M M, runs on each sentence r;;,
returning 1 if sentence r;; is semantically similar
to any of the seed utterances Z. and O otherwise.
This results in a binary vector v, of length n. Each

3https://github.com/interpretml/interpret
#"paraphrase-xIm-r-multilingual-v1"
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Figure 2: Extracting empathy rationales using micro-
models. Each micromodel M M. determines if each
response sentence r;; is empathetic. Each token w;’ of
sentence r;; is then assigned the binary value of ;.

sentence r;; is then tokenized? into a set of tokens
wij , ...,wfj , where | = len(r;;) and each token
w,ij is assigned the binary value of 7;;. This results
in a sequence of 0’s and 1’s where spans of 1’s

represent rationales.

4 Experiments and Results

4.1 Experimental Setup

For our experiments, we use random splits of
75:5:20 for our train, validation, and test sets.
We report average scores from 10 runs. For 8 (Eq.
1), we use a threshold value of 0.7, based on ex-
periments from the validation set. Following EPIT-
OME’s authors, we report token-level F1 (T-F1)
and Intersection Over Union F1 (IOU-F1) scores.’

4.2 Baselines: EPITOMEodel

We compare our approach to several baselines, in-
cluding EPITOMEpode;. EPITOMEpo4e] 1S @ multi-
task bi-encoder model initialized with the weights
of RoBERTa. Each encoder encodes the seeker’s
post S; and the response post R;. An attention
layer attends over both encodings, which is then
jointly trained on the two EPITOME tasks. Further
details are provided in the appendix.

>We use NLTK for tokenization

SThis is the same ratio used in the original EPITOME
paper. There were no official splits.

"We use the same IOU match threshold as EPITOME (0.5).

4.3 Baselines: Other

We also include baseline results as reported by the
authors of EPITOME. These baseline models in-
clude popular models used in similar tasks, each
of which have been fine-tuned or trained on the
EPITOME tasks:

* Logistic regression over tf-idf vectors

* Recurrent neural network

e Hierarchical recurrent encoder-decoder
(HRED, Sordoni et al. (2015))
BERT (Devlin et al., 2019)
GPT-2 (Radford et al.)
DialoGPT (GPT-2 adapted for dialogue,
Zhang et al. (2020))
RoBERTa (Liu et al., 2019)

4.4 Results

EmpPredgprr. The first six columns of Table 1
show the accuracy and F-1 scores of empathy
prediction. While our F-1 scores are lower than
EPITOME)po4c1, they often outperform other fine-
tuned language models.

EmpRE. The last six columns of Table 1 show
the T-F1 and IOU-F1 scores for empathetic ratio-
nale extraction. Other than for Interpretations, we
demonstrate significant improvements of up to 16.7
points for T-F1 and 4.3 points for IOU-F1, resulting
in the highest scores to our knowledge.

4.5 Follow-Up Analyses

Probing our model: As a post-analysis, we ex-
amine which seed utterances z € Z, trigger each
micromodel during testing and observe that only
a small subset of seed utterances are meaningfully
used. To demonstrate this, we conduct an exper-
iment in which we iteratively reduce the number
of seed utterances used by each micromodel based
on how frequently they trigger a micromodel dur-
ing testing. Figure 3 shows the resulting IOU-F1
scores® from 10 random runs, demonstrating that
for some communication mechanisms, state-of-the-
art results can be achieved by simply checking for
semantic similarity against as few as three seed
utterances, which are shown in Table 2. Note, this
analysis requires modifying the training based on
the test performance, so the results are not neces-
sarily representative beyond that dataset.

Probing EPITOME,qe: We run an experi-
ment to study whether these utterances are also driv-
ing EPITOME)pjo4e1’s behavior. We gather 1,000

8T-F1 showed nearly identical patterns
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Model Empathy Prediction Empathetic Rationale Extraction
Emotional . . Emotional . .
Reactions Interpretations Explorations Reactions Interpretations Explorations
Acc. F-1 Acc. F-1 Acc. F-1 T-F1  IOU-F1 T-F1 I0OU-F1 T-F1 IOU-F1
Majority | 6638 26.60 | 54.58 23.54 | 83.90 3041 | 66.98 66.98 | 54.94 5494 | 84.53 84.53
Log. Reg. 41.69 42.69 | 70.58 49.77 | 67.08 46.63 43.26 61.27 49.85 31.31 48.21 70.36
RNN 71.63 4285 | 76.21 51.76 | 85.58 30.74 45.54 43.94 48.22 51.35 65.11 78.27
HRED 71.11 4410 | 79.65 54.16 | 85.58 30.74 46.34 45.65 48.88 52.12 66.66 80.33
BERT 72.13 5041 | 82.16 61.20 | 89.35 56.54 51.06 54.81 48.38 50.75 67.91 71.00
GPT-2 76.69 71.65 | 8232 6227 | 88.25 58.28 51.44 57.10 54.53 52.38 73.39 82.89
DialoGPT 66.07 51.16 | 81.85 68.95 | 89.65 70.65 51.83 49.37 54.43 55.85 73.43 85.20
RoBERTa 76.99 7035 | 82.16 61.38 | 90.58 63.41 51.89 58.31 55.62 54.60 69.76 83.33
EPITOMEodel \ 7943 74.46 \ 84.04  62.60 \ 92.61 7258 | 53.57 64.83 \ 57.40 55.90 \ 71.56 84.48
Micromodels \ 88.26 59.52 \ 92.71 62.73 \ 9527 6147 | 7030 69.13 \ 54.94 54.08 \ 86.92 86.64
Table 1: Performance on empathy prediction and empathetic rationale extraction.
—— Micromodels (Subset)
=== Micromodels (All)
. . . —-= EPITOME (Model)
Empathetic Rationale Extraction: IOU-F1
72 Emotional Reactions 58 Interpretations 90 Explorations
O I — DB ¢+ ¢ o ¢ e s 88
ces 7 T g6 oos=======
%66 GAI T
964 ....................... 52 82
62 50 80
6075260 400 600 800 81 200 400 600 800 1000 1200 'S 1 50 100 150 200 250 300 350
Seed Size Seed Size Seed Size

Figure 3: F1 scores with varying seed sizes per micromodel. Simply checking for semantic similarity with as few
as three utterances in Table 2 demonstrates either better or competitive performance scores compared to previous
state-of-the-art models. The shaded light blue regions indicate the standard deviation across our 10 runs.

Communication Mechanism \ Seed Utterance

"I know how you feel."
"I’'m sorry."
"I feel you."

Emotional Reactions

"I feel the same way."

Interpretations "I know how you feel."
"I understand how you feel."
"Why?"

Explorations "What happened?"

"Why do you feel like that?"

Table 2: Utterances from the smallest subset of seed
data used in Figure 3. Simply checking for semantic
similarity between response utterances and these seed
utterances may outperforms prior state-of-the-art mod-
els in empathetic rationale extraction.

random conversations from PersonaChat (Zhang
et al., 2018), an open-domain dialogue dataset,
and Ubuntu Dialogue (Lowe et al., 2015), a dia-
logue dataset around technical support for Ubuntu-
related problems. For each sample, we insert
one of the three utterances from Table 2 as part
of the response, resulting in a nonsensical and
non-empathetic response. Table 3 shows the re-
sults, with EPITOMEjo4.; almost always predict-
ing these artificial dialogues as empathetic. This

PersonaChat Ubuntu
Is Empathetic? No | Yes | No | Yes
Emotional Reactions | 3 997 8 992
Interpretations 305 | 695 556 | 444
Interpretations} 10 990 11 989
Explorations 31 969 6 994

Table 3: Number of times non-empathetic dialogues are
predicted as empathetic by EPITOMEjp 4.1 Tindicates
when we always insert "I feel the same way" (The most
commonly seen seed utterance for Interpretations — see
Table 2).

indicates that it relies on the surface form of the
response for its prediction, regardless of context.

5 Related Work

Limited access to treatment for mental health,
along with a rise in demand for scalable yet high-
quality interventions (Miner et al., 2019), has led
to an abundance of conversational systems that
provide mental health support (Shen et al., 2020;
Welch et al., 2020; Han et al., 2013).°10 A criti-
cal capability for these systems is to understand
and interact with empathy, as studies show that

*https://woebothealth.com/
Ohttps://www.wysa.io/
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empathy is significantly correlated with counsel-
ing treatment outcomes (Moyers and Miller, 2013;
Elliott et al., 2018).

Broadly, recognizing empathy within dialogue
has been studied under the following contexts: on-
line platforms (Sharma et al., 2020a, 2021; Khan-
pour et al., 2017), formal counseling settings (Gib-
son et al., 2015; Zhang and Danescu-Niculescu-
Mizil, 2020; Pérez-Rosas et al., 2017), or social me-
dia interactions (Hosseini and Caragea, 2021; Lah-
nala et al., 2021; Wang and Jurgens, 2018; Zhou
and Jurgens, 2020).

For instance, Lahnala et al. (2021) examined
the interactions between practitioners and non-
practitioners that provide support on Reddit. Wang
and Jurgens (2018) and Zhou and Jurgens (2020)
analyzed the language of condolence and empathy
in various social platforms. Other settings for as-
sessing empathy include reacations to news stories
(Buechel et al., 2018).

Another direction in the study of empathy within
dialogue includes empathetic response generation
(Rashkin et al., 2019; Liu et al., 2021; Zhong et al.,
2020; Zheng et al., 2021). In order to assess the em-
pathy level of their systems, researchers often use
models such as EPITOME. (Sharma et al., 2021;
Zheng et al., 2021; Majumder et al., 2022; Kim
et al., 2021). Our work demonstrates the pitfalls
that researchers should be aware of when taking
such approach.

Other efforts include a taxonomy of empathetic
responses (Welivita and Pu, 2020), fine-tuned lan-
guage models for empathy (Guda et al., 2021), as
well as empathy-lexicons (Sedoc et al., 2020).

6 Conclusion

In this paper, we assessed whether empathetic sys-
tems are correctly taking dialogue context into ac-
count. We demonstrated that a simple model with
no contextual understanding can achieve results
comparable to the EPITOME model and better
than all baselines. We find that these results can
be achieved by simply checking for semantic simi-
larity to just three utterances. We also found that
EPITOME) 041 nearly always classifies a response
as empathetic regardless of context, as long as it
contains one of these three utterances. We conclude
that current empathy recognition models do not ef-
fectively take contextual information into account.

Future work on benchmarks should consider in-
cluding examples that require contextual under-

standing to answer (S: "I got promoted!" R: "That’s
terrible, I'm sorry."). Work on models should con-
sider comparing with Micromodels, a simple and
practical baseline that serves as a reference point
for performance without contextual understanding.
These changes will better inform progress on mod-
els that meaningfully capture empathy.

The code for our experiments is pub-
licly available at https://github.com/
MichiganNLP/micromodels.

7 Limitations

The main focus of our paper is on the limitations
of empathy recognition models, both our micro-
model approach as well as the prior state-of-the-
art model EPITOME)oge;. Namely, our micro-
model approach is based on semantic similarity
matching, and lacks any representation learning
and contextual knowledge. On the other hand, our
experiments demonstrate that EPITOME)og4e1 also
does not account for context. Despite given non-
empathetic contexts, it continues to predict a re-
sponse as empathetic as long as the style of em-
pathy is present. Other limitations of our work
include the scope of our study, as we only exam-
ine a single benchmark. This is due to the lack
of available resources regarding the task of empa-
thy recognition in dialogue. Datasets like Empa-
theticDialogue (Rashkin et al., 2019) consists of
empathetic conversations, but do not measure the
empathy level of utterances. Other empathy predic-
tion tasks (Hosseini and Caragea, 2021; Buechel
et al., 2018) do not pertain to dialogue. With more
benchmarks regarding empathy recognition in dia-
logue available, a more thorough study should be
conducted.

8 Ethical Considerations

It is important to distinguish our improved accu-
racy scores from the ability to computationally un-
derstand empathy. Because of the lack of repre-
sentational learning or contextual knowledge, our
approach would undoubtedly fail in distinguish-
ing empathetic utterances from false-positive cases,
such as sarcastic or even offensive statements (R:
"What’s the matter?" versus "What’s the matter
with you?"). Given the sensitive nature of the men-
tal health domain, mishandling these situations can
exacerbate one’s situation. Another risk of rely-
ing too heavily on such accuracy numbers include
overlooking the degree to which a mishandling of
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a situation can affect an afflicted user. Measuring
this additional personal and humanistic dimension
in benchmarks for computational systems is unde-
niably a difficult problem, but likely a necessary
step to bridge the gap for effective systems for
mental health support. Lastly, while we are able
to do a thorough analysis of our findings with the
explanations provided by micromodels, there are
still portions of their decision making process that
remain opaque. Concretely, the computation of
semantic similarity by large pre-trained language
models like BERT is a key step in our procedure.
Using a simpler, more transparent representation
for micromodels may mitigate this problem. We
believe there is an interesting trade off between
accuracy and explainability in designing each mi-
cromodel.
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Training Data:
Response Utterances

Micromodel Seeds
Emotional Reaction
“Everything will be ok.”,

“I would also be

Interpretation
upset. Let me know

“I would also be upset.”,

if you want to talk.
How are you now?

Everything will be w s
ok.” How are you now?”,

Exploration

Figure 4: The annotated rationales in the training split
of EPITOMEp,., are used as the seed data for each
micromodel.

A Empathetic Communication
Mechanisms

The EPITOME (Sharma et al., 2020b) framework
introduces three communication mechanisms to
capture the multi-dimensionality of empathy in
text-based dialogue — Emotional Reactions, Inter-
pretations, and Explorations. The definitions and
examples of each communication mechanism ac-
cording to the original EPITOME paper can be
found below.

Emotional Reactions Expressions of emotions
such as warmth, compassion as a response to the
seeker’s post. These expressions can explicitly la-
bel an emotion (e.g., "I feel really sad for you.") or
may allude to an emotion (e.g., "Everything will be

fine.").

Interpretations A reactive statement of one’s
own understanding of feelings and experiences in-
ferred from the seeker’s post. Such statement may
simply state their understanding (e.g., "I under-
stand how you feel.") or specify their inferred feel-
ings or similar experiences (e.g., "This must be
terrifying.”, "l also have anxiety attacks at times
which makes me really terrified.").

Explorations Seeking further information to im-
prove one’s understanding of the seeker and their
feelings and experiences. These can include
generic follow-ups (e.g., "what happened?") or spe-
cific inquiries (e.g., "Are you feeling alone right
now?").

B Detailed Explanation of Micromodels

Micromodels (Lee et al., 2021) were originally
inspired by recent work in microservice architec-
tures, in which complex web applications are built
by orchestrating a collection of loosely coupled
microservices. Each of these microservices has

a fine-grained focus of responsibility. In a simi-
lar manner, the micromodel framework consists of
multiple micromodels, in which each micromodel
is responsible for representing or identifying a spe-
cific linguistic phenomena. In this work we build a
micromodel for each communication mechanism.

Here we describe the training procedure using
micromodels.

The first step in the framework is to initialize
each micromodel. The original authors scrape Red-
dit and use BERT to look for utterances that are
representative of each micromodel. In this work,
we simply use the annotated rationales that are
available in the training split of EPITOME (see
Figure 4). Each micromodel only needs to be ini-
tialized once.

Next, given supervised training data in the form
of (x,y), each micromodel M M runs on the input
query x. While any algorithm of choice can be used
for micromodels, the original authors use binary
classifiers based on semantic similarity. Concretely,
each micromodel that is initialized with a set of
seed utterances Z = z1, ..., 2, makes a binary deci-
sion, returning 1 if its input query g is semantically
similar to any of the seed utterances z € Z:

MM(z) = 3,ezCo08Stm(BERT (z), BERT(z)) > 6
3

In this work we use our validation set to deter-
mine the # value.

Once every micromodel runs on z, we are left
with a binary vector v of size n where n is the
number of micromodels that were used. The binary
vector v serves as a feature vector for a task-specific
classifier to train off of. One can think of the in-
ference from the micromodels to be a featurization
step to convert the input data (z, y) into a feature
vector (v,y), while the task-specific classifier is
an independent classification model that actually
learns a task from such featurized values.

Given (v,y), a task-specific classifier can be
trained. Similar to micromodels, the framework
allows for any algorithm of choice to be used for
task-specific classification, from simple regression
models to complex neural networks. The original
authors use explainable boosting machines (EBM)
(Caruana et al., 2015) because of the explanations
it provides. More specifically, the use of EBMs
allows one to understand the impact that each mi-
cromodel had on the task-specific classifier’s deci-
sion making process. For more details on EBMs,
we point our readers to both the original paper
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as well as its widely used open-source repository
(https://github.com/interpretml/interpret).

C Detailed Explanation of
EPITOME04e1

Epitomepode; 1S @ multi-task bi-encoder model
in which the two encoders are initialized with
the weights of ROBERTa and pre-trained with in-
domain data that was available to the authors of
EPITOME. The two encoders then each encode the
seeker’s post S; and the response post R;.

e!®) = S-Encoder(5;); /") = R-Encoder(R;)  (4)

Borrowing terminology from transformers, the
response post encoding is used as a query and the
seeker post is used as keys and values.

ai(e(-R), e(s)) = softmax(egR)egs)/\/g)egs) (5)

)

(R)

,  1s summed with the

output of the attention layer ai(eER) to obtain a
residual mapping, resulting in a seeker-context
aware representation of the response post, which is

used to jointly train on the two tasks.

The encoded response e
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