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Abstract
For extreme multi-label classification (XMC),
existing classification-based models poorly per-
form for tail labels and often ignore the se-
mantic relations among labels, like treating
“Wikipedia” and “Wiki” as independent and
separate labels. In this paper, we cast XMC as
a generation task (XLGen), where we benefit
from pre-trained text-to-text models. However,
generating labels from the extremely large la-
bel space is challenging without any constraints
or guidance. We, therefore, propose to guide
label generation using label cluster informa-
tion to hierarchically generate lower-level la-
bels. We also find that frequency-based label
ordering and using decoding ensemble meth-
ods are critical factors for the improvements in
XLGen. XLGen with cluster guidance signifi-
cantly outperforms the classification and gener-
ation baselines on tail labels, and also generally
improves the overall performance in four popu-
lar XMC benchmarks. In human evaluation, we
also find XLGen generates unseen but plausible
labels. Our code is now available at https://
github.com/alexa/xlgen-eacl-2023.

1 Introduction

Extreme multi-label classification (XMC) is a task
to predict multiple relevant labels for a given input
where the label space is extremely large. Conven-
tional approaches for XMC decompose the prob-
lem into a set of binary classifications, training
one-vs-all classifiers for each label. However, they
encounter several issues in practical use cases.

First, the labels in XMC are long-tail distributed.
In other words, only a few labels have sufficient
positive samples, thereby the other infrequent la-
bels could be rarely predicted during inference as
we see the heavily right-skewed distribution in the
long-tail in Figure 2a. Second, multi-label clas-
sification techniques such as one-by-one and la-
bel powerset (Gibaja, 2015) assume independent

∗∗ Part of this work was done during an internship at Ama-
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Diet Coke and Mentos Eruption

Diet Coke and Mentos Eruption is a reaction of Diet 
Coke and mint Mentos candies, a bottle of Diet Coke 
(other carbonated beverages may be used instead) 
and dropping some Mentos. This causes the Coke to 
foam at a rapid rate and spew into the air. 
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Figure 1: The predicted and generated labels from At-
tentionXML (You et al., 2019), GPT-3 (Brown et al.,
2020), and XLGen-BCL, respectively, for Wikipedia
page on diet coke and mentos eruption. We marked
labels to be correct (blue), wrong (strikethrough), and
positive unlabeled (red). Our XLGen could generate
completely new labels from input text, e.g., soda, in-
ferred from context that other carbonated beverages can
replace diet coke.

and identically distributed labels, while the user-
generated labels in XMC are dependent on each
other. Moreover, annotated labels are only a portion
of possible labels, thus, resulting in positive and
unlabeled (PU) setting (Yu et al., 2014; Kanehira
and Harada, 2016).

In this paper, we tackle extreme multi-label clas-
sification with a generative approach, called ex-
treme multi-label generation (XLGen). In particu-
lar, we fine-tune a pre-trained Transformer-based
encoder-decoder model (Raffel et al., 2020) with
input documents and their known positive labels.
This (label) generation approach is more intuitive
and closely similar to how humans tag documents
with text labels without a fine-grained ontology or
guideline.

However, the generated labels from the ex-
tremely large label space without any constraints
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Figure 2: (a) Frequency histograms of top-100 occur-
ring labels in EUR-LEX (blue) and WIKI10-31K (red)
(b) Label-wise recall scores from AttentionXML and
XLGen-BCL on Wiki10-31K. For the presentation,
graphs are smoothed by least-squared polynomial re-
gression.

and/or guidance can be noisy and not cover infre-
quent labels. To address this issue, we propose
a method to leverage label clusters into genera-
tion: first, generate cluster IDs of semantically
similar labels, and then generate text labels utiliz-
ing the cluster IDs as additional contextual inputs.
Specifically, we propose two XLGen architectures
(XLGen-BCL, XLGen-MCG) in which such clus-
ters are jointly trained with labels in different ways.
Using clusters for label generation is motivated by
showing label categories to human annotators. As
an example, humans often start by setting high-
level topics first and then hierarchically create ac-
tual tags under each high-level topic. The clusters,
however, are treated as additional guidance rather
than a constraint since we do not restrict the model
to only predict labels under the given clusters.

Similarly to XLGen, Simig et al. (2022) pro-
posed GROOV, which fine-tunes T5 to generate
labels in XMC. In particular, GROOV aims to im-
plement a label order invariant training objective
by randomly shuffling label orders and using multi-
softmax function, which does not penalize if any
first tokens of true labels are predicted regardless
of the label orders. However, it does not outper-
form classification baselines consistently, and we
empirically find that label order by frequency helps
alleviate the issue in our ablation study.

Our experiment shows that XLGen (and its vari-
ants) outperforms classification baselines on four
XMC benchmarks. Furthermore, XLGen with clus-
ter guidance (XLGen-BCL and -MCG) significantly
and consistently outperforms the classification and
generation baseline (XLGen-base) on tail labels,
respectively. The effect on tail labels from XLGen-
BCL is demonstrated in Figure 2b.

Figure 1 shows predicted or generated labels
from different models. A Wikipedia page of diet
coke and mentos eruption has true labels such as
“beverage”, “fun”, and “eruption”. We find XLGen
can also generate a new positive label “soda” based
on the context of “carbonated beverage" in the in-
put text. From a human evaluation (S6.1), we find
newly generated labels by XLGen are highly asso-
ciated with the input texts, which potentially helps
automatically find new labels without manual tag-
ging. We also show the generated labels from large
language models (LLMs) like GPT-3 (Brown et al.,
2020): we find that the overall performance of in-
context learning is significantly less than XLGen
(See §4.4 for details), but LLMs could generate
reasonable labels with a few examples as XLGen
does.

2 Related Work

Extreme multi-label classification (XMC).
Classification-based approaches on XMC suffer
from dealing with enormous label spaces under
the one-vs-all classification setting (Babbar and
Schölkopf, 2017; Yen et al., 2017; Jain et al., 2019).
To address the efficiency issue, state-of-the-art
XMC models partition label space to the scalable
subsets via hierarchical clustering (Prabhu et al.,
2018; Wydmuch et al., 2018; You et al., 2019;
Chang et al., 2020; Yu et al., 2022; Tagami, 2017),
graph-based approximations (Jain et al., 2019;
Zong and Sun, 2022), or random forest (Siblini
et al., 2018). However, they still suffer from
predicting tail or unseen labels. To efficiently
deal with such long-tail issues, few-shot learning
frameworks and methods (Gupta et al., 2021;
Xiong et al., 2022) are proposed. Rather, we show
how encoder-decoder language model can improve
tail label scores by fine-tuning it with guidance
from label clusters.

LMs and Generative approach in XMC. For
XMC, pre-trained LMs such as XLNet (Ye et al.,
2020) and Transformer (Chang et al., 2020) are
used but only for encoding input texts, thus, it still
relies on the classification approach for label predic-
tion. Previously, other works address multi-label
classification with generative approaches (Nam
et al., 2017; Tsai and Lee, 2020; Yang et al., 2018,
2019; Zhang et al., 2021b) but in much smaller
label spaces. Recently, Simig et al. (2022) also
used T5 (Raffel et al., 2020) for directly generat-
ing labels in end-to-end manners for XMC, but
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Figure 3: Three XLGen architectures, where the basic model can be any pre-trained text-to-text models like T5. (a,
base): Simple fine-tuning that encodes input text with a prefix of task name and decodes text of label sequences. (b,
BCL): A fine-tuning with a multi-cluster prediction layer as an auxiliary task. (c, MCG): A multi-task fine-tuning with
multi-cluster generation and multi-label generation (MCG); two tasks are trained simultaneously and at decoding
time the output of the cluster generation is concatenated to the input for the label generation.

its performance was not convincing compared to
classification-based models.

Positive and unlabeled data. In practice, XMC
is inherently with positive and unlabeled (PU) set-
ting as the label space is extremely large and it is
infeasible to manually review all the labels (Kim
and Kim, 2020). Multi-label performances on PU
tasks can be simulated by leaving only a few labels
per train instance (e.g., leaving 8 out of 10 positive
labels in one instance for label deficit rate 20%)
positive (Hu et al., 2021). In this work, we show
how XLGen works on such PU settings in §4.3.

3 Extreme Multi-label Generation
(XLGen) with Cluster Guidance

Classifying a document with multiple labels can
be regarded as tagging a document with possible
topical labels, which is basically decoding the free-
formed text labels in an encoder-decoder setting.
Moreover, if encoder and decoder are trained on
large text corpora, labels are generated with an un-
derstanding of their lexical variations and semantic
similarities. Our baseline framework fine-tunes a
pre-trained Transformer using the input text as an
encoder input and the label sequences as a decoder
output. In addition, to more effectively address a
huge number of labels in a long-tail distribution,
we propose two different architectures, XLGen-
BCL (§3.2) and XLGen-MCG (§3.3), generating la-
bels guided by pre-computed cluster information,
inspired by class-based language models (Brown
et al., 1992).
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Figure 4: Architecture of pre-computed label clusters.
For each label, we use the averaged embedding of posi-
tive documents including the label in train set and com-
pute the label cluster assignment matrix (top). For train-
ing, we assign label clusters for each training document
based on the true labels using the label cluster assign-
ment matrix (bottom).

Pre-computed clustering. We compute label
clusters using K-Means algorithm, as depicted in
Figure 4. We first obtain label features using av-
erage embedding of positive documents in a train
set, following Chang et al. (2020), and compute
the label-cluster assignment matrix. Label clusters
are assigned to each training document using this
matrix and ground-truth labels, and used as a multi-
cluster prediction layer for XLGen-BCL training or
sequence of cluster IDs for XLGen-MCG training.

3.1 Baseline Fine-Tuning

Figure 3a shows our baseline XLGen which simply
fine-tunes text-to-text Transformers, e.g., T5 (Raf-
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fel et al., 2020) or BART (Lewis et al., 2020), as
our encoder-decoder framework on XMC dataset.
• Input: task prefix: input text
• Output: A sequence of label texts
For encoding, we add a prefix token ‘MultiLabel’
to the input text to inform the task type. Then,
the output labels are generated as a sequence of
labels in decoding. The model is fine-tuned with
cross-entropy loss (Lxent) given the sequence of
label texts. In practice, the order of labels in decod-
ing significantly influences the model performance.
Following Yang et al. (2018), we sort the target
labels in decreasing order of the frequencies. We
also investigate various ordering effects and their
impact on performance in §5.1.

3.2 Fine-Tuning with Cluster Prediction
Figure 3b shows the fine-tuning of text-to-text
with an additional multi-cluster prediction layer
(XLGen-BCL). By doing so, we expect the model
learns label similarities and hence biases itself to
generate labels relevant to the given cluster.
• Input: task prefix: input text
• Multi-Cluster Layer: a vector of v1, ...vk where
vi = 1 if ith cluster ci is a positive cluster; other-
wise vi = 0 (1 1 0 ... 1...)

• Output: A sequence of label texts
The multi-cluster prediction layer is a vector of

0 or 1 that corresponds to the assigned clusters
of instance, and is trained using the sequence of
the last layer’s hidden states of the encoder with a
binary cross-entropy loss, Lbce. The final objective
is as follows:

Lxmc−bcl = Lxent + λLbce (1)

where Lxent is a cross-entropy loss term for the
original text-to-text framework and Lbce is a binary
cross entropy loss term for the cluster layer. λ is
a weighting parameter for controlling Lbce, to be
chosen by dev-set performance.

3.3 Fine-Tuning with Cluster Decoding
XLGen-BCL utilizes a cluster prediction only as
an auxiliary task to improve representations for a
label prediction, thus, predicted clusters are not
used in inference. Figure 3c shows the third vari-
ant, XLGen with a multi-cluster generation (MCG),
which leverages predicted clusters as additional in-
put tokens so that the cluster information can be
used in inference.
• Input1: task prefix: input text ; a sequence of

positive cluster IDs (c1 c2 c11..)

|Dtrn| |Dtst| |Lseen| |Lunseen|
EURLEX-4K 15,449 3,865 2,473 155
AMZNCAT-13K 1,186,239 306,782 13,275 0
WIKI10-31K 14,146 6,616 21,060 991
WIKI-500K 1,779,881 769,421 498,152 917

Table 1: Data statistics of the benchmark datasets; the
number of train examples (|Dtrn|), number of test ex-
amples (|Dtst|), number of labels in both train and
test set (|Lseen|), and number of labels only in test set
(|Lunseen|), which is zero-occurred labels in Table 3.

• Output1: A sequence of label texts
• Input2: cluster prediction prefix: input text
• Output2: A sequence of positive cluster IDs (c1

c2 c11..)
We add a sequence of cluster IDs to the input text

so that cluster information can be used while train-
ing (Input1-Output1). On the other hand, we have a
new task with a clustering prefix ‘MultiCluster’ ap-
pended to the input text and predicts the sequence
of labels (Input2-Output2). In training, these two
tasks are trained simultaneously. Note that in in-
ference, the predicted cluster IDs are appended to
Input1 for the final label generation.

4 Experiments

4.1 Experimental Setups
Datasets. We use four widely used XMC
benchmark datasets; three large-scale datasets
with 4K∼30K labels (EURLEX-4K,AMZNCAT-
13K, and WIKI10-31K) and one very-large-scale
datasets with 500K labels (WIKI-500K). See Ta-
ble 1 for the detailed data statistics.

Baseline and XLGen Training. We compare
XLGen with three state-of-the-art baselines in
XMC tasks; AttentionXML (You et al., 2019),
X-Transformer (Chang et al., 2020), and XR-
Linear (Yu et al., 2022). Note that all baseline
models partition labels using hierarchical cluster-
ing. See A.1 for the detailed setups of baselines.
Note it is common to upscale scores by ensemble
learning for XMC baselines. However, for a fair
comparison, we do not use any ensemble models
for XLGen and baselines.

We train XLGen with T5 because BART (Lewis
et al., 2020) performs worse for our task as shown
in Table 13. By default, we sort labels in the de-
creasing frequency order to provide the training
target sequence and infer the labels by beam search
with size 5. For XLGen-BCL and XLGen-MCG,
cluster sizes are optimized by dev set performance.
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EURLEX-4K AMZNCAT-13K WIKI10-31K WIKI-500K
Mic. Mac. Mic. Mac. Mic. Mac. Mic. Mac.

XR-Transformer 39.1 12.3 64.0 17.0 21.4 2.8 30.5 7.8
XR-Linear 44.6 15.1 53.2 18.6 19.2 3.6 17.2 3.3

AttentionXML 59.9 24.9 70.1 30.0 37.3 4.6 53.6 21.0
XLGen-base 59.8 27.5 69.8 38.8 37.6 9.9 55.1 35.0
XLGen-BCL 60.7 28.4 70.0 37.7 37.6 9.8 55.4 33.5
XLGen-MCG 60.2 28.2 71.8 46.4 37.4 9.6 55.4 33.6

Table 2: Full label performance. We report micro-averaged (Mic.) and macro-averaged (Mac.) F1 scores.

EURLEX-4K WIKI10-31K WIKI-500K

0-st 1-st 0-st 1-st 0-st 1-st
XR-Transformer 0.0 0.5 0.0 1.7 0.0 0.0

XR-Linear 0.0 1.1 0.0 2.3 0.0 0.1
AttentionXML 0.0 2.4 0.0 0.2 0.0 1.3
XLGen-base 3.2 3.5 2.9 8.4 22.5 24.1
XLGen-BCL 4.3 4.1 3.3 8.4 23.2 24.8
XLGen-MCG 4.5 2.7 11.1 8.1 23.7 25.5

Table 3: Macro-averaged F1 scores in tail labels, which
never occurred (0-st) or occurred once (1-st) in train set.

We get the input text embedding by averaging the
last hidden states from the pre-trained T5 encoder
since T5 model does not have a CLS token. See A.2
to check more details.

4.2 Evaluation Metrics
Following the prior work in XMC, we report F1
score (F@k) of top-k label probabilities as a sup-
plementary metric in A.4. However, such ranking
metrics are not applicable to label generation tasks
since the generative model only output positive la-
bel texts sequentially and the order of generated
labels does not align with the confidence of the
label; in other words, the formerly generated labels
do not need to be more confident than the latter
ones. Thus, we use conventional multi-label clas-
sification metrics, like micro-averaged F1 score
(Mic.) and macro-averaged F1 score (Mac.), as
main evaluation metrics.

In principle, evaluating XMC task with the rank-
ing format is not appropriate for most cases as it
requires predicting the number of correct labels as
well (Amigo and Delgado, 2022). We therefore se-
lect predicted labels only when the predicted score
is greater than the threshold optimized from the
validation set as in You et al. (2019).

4.3 Results
We compare performances of XLGen and baselines
in full labels (Table 2), tail labels (Table 3), and PU

EURLEX-4K WIKI10-31K WIKI-500K

XR-Transformer 8.6 3.3 7.0
XR-Linear 8.8 2.7 2.8

AttentionXML 18.7 1.3 11.3
XLGen-base 18.8 7.7 31.6
XLGen-BCL 19.3 8.0 31.4
XLGen-MCG 21.2 10.1 32.7

Table 4: Macro-averaged F1 scores in PU setting (50%
of label deficit ratio).

data setting (Table 4). For tail label and PU setting,
we do not include AMAZNCAT-13K as it does not
have zero-occurred labels. The best scores are bold
and the second best scores are underlined. See A.4
for the full scores on tail labels and PU setting.

Full label performance. In the evaluation with
full benchmark sets, all the XLGen models show
outperforming or competitive performance com-
pared to the classification-based baselines. For
macro F1 scores, XLGen models hugely outper-
form the baselines, which empirically represents
that our approach is strong at predicting infre-
quent but correct labels. In other words, XLGen
models are less biased to predicting frequent la-
bels. Compared to XLGen-base, both XLGen-
BCL and XLGen-MCG generally show better per-
formance, which demonstrates the effectiveness of
the cluster prediction as an auxiliary loss.

Tail label performance. We measure macro F1
scores only for tail labels which never or one-time
occur in the train set. We find every baseline ex-
tremely suffers from the tail labels, while XLGen
shows significant improvements, demonstrating
the power of generative models for long-tail la-
bels. Surprisingly, XLGen even predicts never-
seen, zero-occurred labels, only inferred from the
semantic meaning of the input text. Similarly to
full label performance, XLGen-BCL and XLGen-
MCG perform better than XLGen-base, indicating
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Figure 5: Macro-averaged F1 scores in PU setting on
WIKI10-31K.

that guidance of label cluster improves tail label
performance as well.

PU setting. In XMC, it is infeasible to annotate
all relevant labels for an input text by checking
every millions of labels. Therefore, many XMC
datasets are indeed in PU setting. To evaluate the
robustness against the positive and unlabeled prop-
erties, following Hu et al. (2021), we make PU data
setting by randomly eliminating positive labels for
each instance with 50% of deficit rate.

As XLGen is trained with fewer positive labels
in PU settings, the generated output labels tend
to be fewer as well, causing lower recall than ex-
pected. To increase the recall, we generate diverse
label sequences using various sampling schemes
in inference, which we call ensemble generation.
We combine generated results from three decoding
strategies; beam search with size 5, Top P + K
sampling, and sampling with 0.8 temperature.

We find XLGen models outperform the base-
lines. Specifically, XLGen-MCG shows signifi-
cantly strong scores, which indicates having pre-
dicted clusters as an additional input helps predict
infrequent but correct labels. In Figure 5, we addi-
tionally visualize macro F1 scores of PU settings on
WIKI10-31K with various deficit rates. Although
XLGen-MCG drops with an increasing deficit rate,
it still shows significant gaps with baseline scores.

4.4 Feasibility of in-context learning in XMC

In-context learning (Brown et al., 2020) shows a
potential of generating unseen but positive labels as
depicted in Figure 1, such as “geyser” and “physi-
cal_reaction”. In order to thoroughly validate the
feasibility of in-context learning in XMC problems,

EURLEX-4K WIKI10-31K

Mic. Mac. Mic. Mac.

XLGen-BCL 60.7 52.4 37.7 20.0

GPT-3
0-shot 9.2 6.3 7.6 4.5
1-shot 17.2 14.7 20.3 13.4
5-shot 15.7 10.4 23.5 16.6

Table 5: Label performance of XLGen-BCL and in-
context learning settings on 100 randomly selected sam-
ples.

we select 100 samples randomly from EURLEX-
4K and WIKI10-31K, and predict their labels us-
ing GPT-3 (Brown et al., 2020) in zero/one/five-
shot setups. We explore a few variations of prompts
by tweaking label order or selecting few-shot ex-
amples differently, and report the best scores in
Table 5. The performance of in-context learning
significantly improves when we use more exam-
ples in the prompt, but they are far from the per-
formance of XLGen. Moreover, the performance
gap between GPT-3 and XLGen is much larger in
EURLEX-4K where labels are formally annotated
than in WIKI10-31K where labels are annotated
by random users without a solid guideline. Unlike
other multi-label classification tasks, XMC treats
an extremely large number of labels, making it
difficult to predict most unseen labels based on a
few examples in in-context learning. See A.3 for
the details of the experimental setup for in-context
learning and the performance comparison among
prompt variations.

5 Ablation Study

We explore various factors that impact the perfor-
mance of XLGen on WIKI10-31K, such as la-
bel orders (§5.1) and sampling strategies (§5.2)
In order to reduce training costs, we mainly train
XLGen-base on the base size model with epoch
5 for ablation tests. We then investigate the model
performance by clustering sizes and algorithms
(§5.3).

5.1 Label Orders
Label orders in decoder are important as XLGen
sequentially generates labels. We compare three
different label orders; label frequencies from high
to low (Frequency), inverse label frequencies from
low to high (Inverse), and shuffling where labels
are randomly ordered per training epoch. Inspired
by Lee et al. (2019), we also consider ignoring
label orders by resetting positional embeddings of
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Figure 6: Ablation study results on WIKI10-31K. (a) Performances of XLGen-base trained with various label
orders. (b) Performances of XLGen-base trained with various decoding strategies. (c) Cluster sizes vs task and
clustering performance. We also report oracle scores by using ground-truth cluster information in inference time.

each label as initial values in decoder 1 which we
call label positional invariant setting (PosInv.).

Figure 6a shows task performance across dif-
ferent label orders. We find trade-offs between
macro and micro F1 scores by the label frequency
order (Frequency and Inverse) because inversely
frequent label orders make the model generate long-
tail labels earlier with certainty, thus, the scores of
long-tail labels could improve. On the other hand,
shuffling (Simig et al., 2022) crucially downgrades
the performance since with randomly shuffled la-
bels, XLGen tends to ignore co-occurrence patterns
among labels in training time. Also, we conjecture
that positional invariant setting does not work well
as it tweaks the original positional embeddings of
pre-trained T5 model.

5.2 Decoding Strategy

We now explore task performances with various
sampling strategies in label generation. We com-
pare greedy search, beam search, sampling with
restrictions such as Top-K (Fan et al., 2018) and
Top-P (Holtzman et al., 2020), and sharpening vo-
cabulary distributions with a temperature parameter.
In Figure 6b, we find that beam search with size 5
achieves the best scores. Interestingly, most sam-
pling methods heavily degrade performances since
our label spaces are not entirely open-ended. We
also explore ensemble methods to combine label
outputs from different sampling strategies. Unlike
the PU setting, however, they are not helpful in the
full data setup since a sufficient number of labels
are already generated by a single best generation
strategy. Find the Appendix A.6 for details.

1But we keep the position embeddings for token sequences
in one label to learn token positions.

5.3 Cluster Strategy

We show the effect of clustering algorithms and
their parameters. We train XLGen-MCG fine-tuning
T5-base with epoch 5. We compare two clustering
methods; K-means and Agglomerative clustering,
and two text representations; TF-IDF and the recent
T5 encoder. We find K-means and pre-trained T5
encoder shows the best performance over other
combinations, as described in Appendix A.7.

Cluster size is another important factor for model
performance. For example, a larger cluster size
helps find label groups at a higher granularity, while
it is much harder to be accurately predicted in in-
ference time. Here, we choose cluster size to be
a power of two on average (e.g., around 30 con-
taining 1024 labels for WIKI10-31K on average).
Figure 6c shows micro F1 scores of XLGen-MCG
across cluster sizes in WIKI10-31K. Here we also
report the upper bound of task performance (ora-
cle) by using ground-truth cluster information. As
we expect, clustering performance decreases as the
cluster size increases since it is much harder to
predict clusters in a larger cluster space. In terms
of label prediction, we find that the model with
smaller cluster sizes (e.g., ≤ 30) outperforms the
larger ones, where the peak is around 30. Although
a larger cluster size helps elaborately specify la-
bels in the same category, lower cluster prediction
performance harms label performances as well and
leads to a bigger performance gap compared with
oracle task scores.

6 Qualitative Analysis

Lastly, we evaluate the quality of generated labels
via human evaluation (§6.1) and visualization of
the semantic relations among labels (§6.2).
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AttentionXML XLGen-BCL
# % # %

Existing
labels

Correct 674 39.2% 596 39.2%
Wrong 776 45.1% 457 30.0%

PU 270 15.7% 393 25.8%
New
labels

Correct 0 0.0% 45 3.0%
Wrong 0 0.0% 30 2.0%

Total 1,720 100% 1,521 100%

Table 6: Human evaluation on WIKI10-31K having
1,720 true labels. The predicted labels are annotated
and categorized to correct, wrong, and PU labels, with
their precision scores. Note that correct labels in the
newly generated labels means they are possibly correct,
according to the human annotators’ decision.

6.1 Human Evaluation

The benchmark datasets have different label quali-
ties. For example, the labels from EURLEX-4K,
annotated by the Publication Office of EU, are re-
fined and structured while Wiki datasets are collab-
oratively labeled by general users, so the quality
of labels is relatively lower than the other bench-
marks. Hence, we conduct human evaluations in
both quantitative and qualitative ways to accurately
measure the potential existence of PU labels and
newly-generated labels. In particular, we randomly
select 100 instances from the test set and extract
incorrectly predicted labels and/or newly predicted
labels by XLGen and baseline models. We then
ask three human annotators to annotate and decide
on possibly positive labels via majority voting.

Table 6 shows human evaluation results on the
annotated WIKI10-31K. Note that the number
of predicted labels by XLGen-BCL is less than
true labels because XLGen does not generate la-
bel with low confidence. In AttentionXML, on the
other hand, we choose top-K labels as many as
the number of true labels for each instance, so it
has the same total labels as true labels. Compared
to the best baseline, AttentionXML, XLGen-BCL
could generate more PU labels and reduce the num-
ber of wrong labels. Also, our method generates
75 (=45+30) newly generated labels out of 1,521
where 60% (=45/75) of them are correct, showing
a relatively good generation quality of new labels.
Of course, we can control our model to only count
the candidate labels and not any of these new la-
bels for more accurate predictions, as measured in
Table 2.

Lastly, we provide annotation examples in Ta-
ble 7. As we sort the label sequence by frequency
in training for XLGen, frequently generated labels

such as “wikipedia" or “wiki" are predicted first,
followed by long-tail labels specified in the input
text. For AttentionXML, on the other hand, top
predicted labels seem more aligned with the input
context, although frequently generated labels still
come in front. Interestingly, new labels generated
by XLGen come not only from the input context,
but also previously generated labels. For instance,
on the Wikipedia page of diet coke and mentos
eruption, a new label “soda" is generated because
input text contains “carbonated beverages" which
is synonym of “soda". On the Wiki page of Vimeo,
on the other hand, after XLGen generates the PU la-
bel “socialnetworking", followed by its synonyms
such as “social_network" and “social_networking".

6.2 Label Semantics in XLGen

To better understand the semantics behind labels
generated by XLGen, we visualize an annotated
labels of three examples from Table 7 in Figure 7.
We get label embeddings from the last hidden state
of the fine-tuned XLGen-BCL decoder and project
them into two-dimensional T-SNE (van der Maaten
and Hinton, 2008). If a single label is split by mul-
tiple tokens, we average the last hidden layers of all
tokens. We observe that frequently co-occurred la-
bels (e.g., “wiki"-“wikipedia" or “weird"-“funny")
have similar label embeddings. Also, the newly
generated labels become close to the co-occurred
labels (e.g., “soda" - “funny" or “eruption" in diet
coke and mentos eruptions) via XLGen optimiza-
tion.

7 Conclusion

We apply text-to-text Transformers to extreme
multi-label classification, by tweaking the classi-
fication problem as generation of label texts. As
we do not control the vocabulary space of gener-
ated labels, XLGen can create completely unseen
but still relevant labels, inferred from the input
context and semantic relationship from the previ-
ously generated labels. Our experiments show that
XLGen outperforms the classification baselines in
general, and significantly improves the long-tail
performance and PU setting. Also, we observe
utilizing label cluster information helps improve
the performance in various settings. XLGen is ex-
pected to more benefit from pre-trained models as
they become larger and powerful (Kaplan et al.,
2020).
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Input Document Models Labels

Emily Elizabeth Dickinson (December 10,
1830– May 15, 1886) was an American poet.
Born in Amherst, Massachusetts to a successful
family with strong community ties, she lived a
mostly introverted and reclusive life. After she
studied at the Amherst Academy for seven years
in her youth, she spent a short time at ...

True
authors biography dickinson emily journal library liter-
ature openaccess people poem poet poetry reference re-
search to-read wiki wikipedia writers

AttentionXML
wiki poet writers wikipedia literature authors books
writing history poets writer people poetry biography
inspiration american poems luule

XLGen-BCL wikipedia wiki people art books literature english poetry
writers writer poet elizabeth dickinson emilydickinson

Screenshot of vimeo.com home page Vimeo is
a video-centric social network site (owned by
IAC/InterActiveCorp) which launched in
November 2004. The site supports embedding,
sharing, video storage, and allows
user-commenting on each video page...

True articles computer reference socialnetworks technology
tools video web2.0 wikipedia

AttentionXML video web2.0 wikipedia wiki media youtube videos
videoblogging streaming

XLGen-BCL
wikipedia wiki reference technology web internet social
video web2.0 no_tag socialnetworking socialsoftware phd
social_networking social_network vimeo

Diet Coke and Mentos Eruption is a reaction of
Diet Coke and mint Mentos candies, a bottle of
Diet Coke (other carbonated beverages may be
used instead) and dropping some Mentos. This
causes the Coke to foam at a rapid rate and
spew into the air...

True
beverage candy chemistry coca-cola coke dietcoke drink
eruption experiment experiments video explosion food
fun funny interesting mint prank science

AttentionXML wikipedia fun science diet wiki funny coke tv video health
interesting humor food

XLGen-BCL wikipedia wiki science interesting fun video funny food
humor weird humour wtf #afterdarkclub soda eruption

Table 7: Ground-truth and predicted labels from XLGen-BCL and AttentionXML on input documents in WIKI10-
31K. We ask human annotators to annotate labels to be correct (blue), wrong (strikethrough), and PU (red). For
XLGen, we additionally mark potentially correct labels from the newly generated labels and their relevant contexts
in input text with yellow box. (e.g., a possibly correct label soda is newly generated based on the fact that diet coke
can be replaced with other carbonated beverage.)
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(c) Diet Coke and Mentos Eruptions

Figure 7: Visualization of generated labels by XLGen-BCL for the Wikipedia page examples in Table 7.

Limitations and Future Directions

First, we conduct our main experiments and addi-
tional analyses on certain languages such as En-
glish that has tremendous text corpora. Extension
to the low-resource languages might be challeng-
ing since this work requires text2text pre-trained
models where those languages are applicable (e.g.,
multilingual T5 model), as well as the correspond-
ing XMC datasets.

Also, compared to the efficient classification
baselines, generative models are relatively expen-
sive in terms of memory and time. For example,
our experiment requires a lot of training resource as
pre-trained models have >200 millions parameters
to be tuned. Thus, we use three p3.16xlarge AWS

instances with 8 Nvidia V100 GPUs for training.
Using more efficient version of Transformers (Tay
et al., 2022) or applying distributed training should
be considered for a resource reduction.

While in-context learning does not show compa-
rable performance in XMC, we do observe that as
the number of examples increases from zero to one
to five, in-context learning can generate reasonable
unseen but positive labels. It would be interesting
to explore the potential of in-context learning in
XMC with more advanced prompting and example
sampling in the future.

Lastly, the XMC task has a risk of being biased
or overfit to small training datasets (e.g., EURLEX-
4K and WIKI10-31K contain only about 15,000
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training examples). As with other commonly used
NLP benchmarks, there is a potential risk that our
proposed method may not work properly in the new
test/train sets, though we anticipate that such a risk
will be quite small.

Ethics Statement

We use the four XMC benchmark datasets which
are publicly available and widely used in research 2.
The datasets with social tags (e.g., WIKI10-31K
and WIKI-500K) may contain inappropriate vul-
garisms if they are not filtered out from the original
data processing.
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A Appendix

A.1 Details on Baseline Models

AttentionXML (You et al., 2019) is a label tree-
based deep learning model. It uses a shallow and
wide probabilistic label tree which allows to han-
dle millions of labels and a multi-label attention
mechanism by using raw text as input to capture
the most relevant part of text to each label.

X-Transformer (Chang et al., 2020) is the first
scalable approach to apply deep transformer mod-
els in XMC task. In particular, it uses a pre-trained
transformer encoder to assign labels to correspond-
ing cluster. For each hierarchical cluster level,
OVA classifiers are trained by only using sample in-
stances under the same cluster, called teacher forc-
ing negative (TFN) strategy. Unlike AttentionXML
which only uses negative sampling, X-Transformer
also uses the negative instances positively predicted
by the classifier from the previous cluster level,
called matcher-aware negatives (MAN). Recently,
Zhang et al. (2021a) proposed XR-Transformer to
speed up X-Transformer’s training time in recur-
sive manner. Thus, we use XR-Transformer instead
of X-Transformer for the comparison.

XR-Linear (Yu et al., 2022) has a very similar
architecture with XR-Transformer, except that it
only uses simple tf-idf text features instead of trans-
former encoder outputs. For OVA classification, lin-
ear matchers recursively solve XMC sub-problem
for each hierarchical cluster level.

In order to fit score outputs into [0,1], we apply
sigmoid post processor implemented by the authors
for XR-Transformer and XR-Linear.

A.2 Details on XLGen Training

XLGen-BCL XLGen-MCG
EURLEX-4K 80 20
AMZNCAT-13K 80 20
WIKI10-31K 60 20
WIKI-500K 80 20

Table 8: Optimal cluster sizes for the XLGen training.

We finetune the T5-large (EURLEX-4K,
WIKI10-31K) or the T5-base (AMAZONCAT-
13K, WIKI-500K), with epoch 10 (EURLEX-4K,
AMAZONCAT-13K) or epoch 5 (WIKI10-31K,
WIKI-500K) based on the data and/or label size.

We set up input length as 500 for all benchmark
datasets and use different output length based on
the label lengths in train set; 90 for EURLEX-4K

Sample Label
EURLEX-4K WIKI10-31K

Mic. Mac. Mic. Mac.

0-shot

Random Random 5.3 3.8 7.1 3.8
Random Frequency 9.2 6.3 7.6 4.5

Most Label Random 6.0 4.3 7.2 4.4
Most Label Frequency 5.0 3.5 6.7 3.5

1-shot

Random Random 14.8 10.7 13.6 11.8
Random Frequency 16.1 10.4 20.3 13.4

Most Label Random 17.2 14.7 17.9 16.8
Most Label Frequency 15.1 12.2 18.1 16.1

5-shot

Random Random 15.7 10.4 17.9 14.2
Random Frequency 13.1 9.7 23.5 16.6

Most Label Random 11.0 9.6 19.8 18.0
Most Label Frequency 12.5 11.3 21.5 15.1

Table 9: Micro-averaged and macro-averaged F1 scores
in-context learning settings on 100 randomly selected
samples. We test two label ordering strategies, random
and decreasing label frequency (frequency), as well as
two sampling strategies, random and selecting examples
with the most labels (most label). The highest scores
are bold.

and 165 for other three benchmarks. We opti-
mize XLGen using AdamW (Loshchilov and Hut-
ter, 2019) with learning rate 2e-4.

For XLGen-BCL, we set up an initial weight
value λ as 1.0 and reduce it to 1

k for every epoch
number k.

For cluster-based XLGen architectures, we
train k-means clustering and optimize the clus-
ter size via cross-validation from the range of
{10,20,30,...,100}. In Table 8, we report optimal
cluster sizes for XLGen training.

Note that each of T5 models have 220 million
(T5-base) or 770 million (T5-large) parameters to
be tuned. Also for training, we use a small batch
size (1) since pre-trained T5 models are large to
be fitted in a single GPU machine. Due to the
model size, we use two GPU machines via model
parallelism for T5-large and a single GPU ma-
chine for T5-base in training. Also, due to the
training cost and time, we report the performance
scores from the single running of training and infer-
ence. We basically modify the T5 code from hug-
gingface library 3, and our code will be publicly
available at https://github.com/alexa/
xlgen-eacl-2023.

A.3 In-context learning in XMC

For in-context learning, we use OpenAI GPT-3
text-davinci-002 model with temperature 0.7 and
max tokens 256. To find the optimal prompt, we
use prompt variations with different label orders

3https://huggingface.co/
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EURLEX-4K AMZNCAT-13K WIKI10-31K WIKI-500K
F@1/F@3/F@5/F@10 F@1/F@3/F@5/F@10 F@1/F@3/F@5/F@10 F@1/F@3/F@5/F@10

XR-Transformer 27.4/47.5/47.2/34.7 31.6/55.2/53.5/38.0 8.8/20.3/24.4/23.8 24.1/34.2/32.8/25.5
XR-Linear 26.1/47.8/51.1/41.2 30.5/55.8/58.6/45.7 8.5/19.2/24.9/29.3 22.8/32.5/31.3/24.4
AttentionXML 26.9/51.9/58.8/59.9 30.8/59.2/67.0/ 69.9 8.6/21.0/28.1/35.6 24.4/42.9/48.9/52.8
XLGen-base 21.3/46.9/57.8/59.8 30.8/57.4/65.3/69.0 8.1/15.5/21.7/30.1 23.7/44.0/50.4/54.6
XLGen-BCL 21.2/47.2/58.7/60.7 31.0/57.7/65.5/69.2 8.1/15.4/21.5/30.1 23.8/43.8/50.3/54.6
XLGen-MCG 20.9/47.0/58.1/60.2 31.2/58.8/67.5/71.2 8.1/15.6/22.2/31.2 23.8/44.0/50.5/54.8

Table 10: Supplementary scores on benchmark datasets. We report ranking-based @k (k=1,3,5,10) F1 scores (F@k)
as supplementary metrics. The highest scores are bold.

EURLEX-4K WIKI10-31K WIKI-500K
0-shot 1-shot 5-shot 0-shot 1-shot 5-shot 0-shot 1-shot 5-shot

XR-Transformer 0.0/0.0 1.5/0.5 4.7/2.3 0.0/0.0 2.5/1.6 2.9/1.7 0.0/0.0 0.0/0.0 0.0/0.0
XR-Linear 0.0/0.0 5.9/1.1 8.6/2.7 0.0/0.0 2.8/2.3 2.9/2.4 0.0/0.0 0.2/0.1 1.4/0.9
AttentionXML 0.0/0.0 16.3/2.4 28.4/8.3 0.0/0.0 0.3/0.2 5.6/1.9 0.0/0.0 2.2/1.3 16.1/9.2
XLGen 5.3/3.2 21.4/3.5 34.9/10.8 4.5/2.9 14.4/8.4 17.9/7.5 21.6/22.5 35.6/24.1 39.6/28.7
XLGen-BCL 7.3/4.3 25.0/4.1 36.1/11.4 5.0/3.3 14.5/8.4 17.6/7.3 18.6/23.2 36.2/24.8 40.2/29.5
XLGen-MCG 7.3/4.5 16.7/2.7 35.9/11.1 5.0/11.1 13.9/8.1 17.3/7.2 20.7/23.7 37.0/25.5 40.6/29.9

Table 11: Task performances on benchmark datasets in full few-shot setup. We use conventional micro-averaged
(Mic.) and macro-averaged (Mac.) F1 scores and mark Mic./Mac. in the table. The highest scores are bold.

EURLEX-4K WIKI10-31K WIKI-500K
Positive Unlabeled Deficit Ratio Positive Unlabeled Deficit Ratio Positive Unlabeled Deficit Ratio
20% 50% 80% 20% 50% 80% 20% 50% 80%

XR-Transformer 32.6/10.9 25.9/8.6 14.6/4.7 20.7/3.5 16.7/3.4 12.0/3.3 29.2/8.0 24.5/7.0 17.7/5.1
XR-Linear 38.6/12.1 27.8/8.8 12.5/3.7 16.1/3.9 11.5/2.7 5.1/1.7 14.4/3.7 9.9/2.8 5.9/2.0
AttentionXML 57.6/23.6 52.3/18.7 40.0/11.1 34.7/3.3 27.7/1.3 14.1/0.0 50.9/18.9 46.0/11.3 35.5/5.0
XLGen-base 55.7/24.4 47.5/18.8 31.3/9.8 33.6/9.1 32.3/7.7 22.7/2.8 51.1/37.3 48.7/31.6 37.9/25.4
XLGen-BCL 56.0/24.4 47.9/19.3 31.4/10.0 33.2/9.1 33.0/8.0 23.6/2.9 50.8/37.0 48.5/31.4 37.8/25.2
XLGen-MCG 55.5/27.8 48.2/21.2 32.6/13.3 32.4/11.7 33.0/ 10.1 24.0/7.9 50.7/37.3 48.5/32.7 35.9/24.8

Table 12: Task performances on benchmark datasets in full PU setup. We use conventional micro-averaged (Mic.)
and macro-averaged (Mac.) F1 scores and mark Mic./Mac. in the table. The highest scores are bold.

(a) Label frequency order with random sample (b) Label random order with random sample

Figure 8: Input prompt and generated outputs (green-shaded) for Wikipedia page of Elizabeth Dickinson with
1-shot example.

and few-shot example sampling strategy. Further-
more, we test two label ordering strategies, ran-
dom and decreasing label frequency, as well as two
sampling strategies, random and selecting exam-
ples with the most labels. See Figure 8 for GPT-3
prompt input and generated output. Table 9 shows
the in-context learning performances across differ-

ent label ordering and sampling strategies. The
best macro-averaged F1 scores for WIKI10-31K
are achieved with label frequency ordering with
random sampling; however, there is no consistently
outperforming strategy for EURLEX-4K.
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A.4 Additional Task Performances on
Benchmark Datasets

For the full setup, we also report ranking based
scores in Table 10. In general, for supplementary
metrics (F@k) XLGen shows comparable results
with baselines except F@1, and F@3 in EURLEX-
4K and WIKI10-31K. Note that for XLGen, we
just treat the order of generated labels as a rank,
which might not be correct since such generated la-
bels should have a equal priority in theory. For this
reason, XLGen has lower F@k scores with smaller
k. However, such score gaps between baselines and
XLGen decrease as k increases, like EURLEX-4K
with XLGen-BCL, or even XLGen achieves higher
performances in the larger benchmarks (e.g., F@5
and F@10 in AMZNCAT-13K and WIKI-500K).
Also, full micro/macro F1 scores for tail labels and
PU settings are in Table 11 and Table 12, respec-
tively.

A.5 Additional Analyses on Base Model
Comparison

XLGen-base EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

T5-base 58.0 23.8 35.8 7.9
BART-base 55.6 23.4 35.0 7.7

Table 13: Task performances of XLGen-base trained
with different pre-trained model architectures on
EURLEX-4K and WIKI10-31K. The highest scores
are bold.

For XLGen, we can use any pre-trained text-to-
text models. We compare task performance of two
popular text-to-text models in Table 13; T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020) by
finetuning XLGen-base. In general T5 model
outperforms BART, therefore, we use pre-trained
T5 architectures for our main experiments.

A.6 Additional Analyses on Decoding
Strategy

Followed by Figure 6b, Table 14 shows a task per-
formance across various decoding strategies, in-
cluding different beam size for beam search and a
single sampling restriction.

Additionally, instead of choosing single genera-
tion strategy, we can even consider to integrate gen-
eration outputs from different generation strategies.
For ensemble generations, we choose three single
generation strategies; beam search with size 5, Top
K + P sampling and sampling with temperature
0.8 to get diverse label sequences. We also consider

EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

Greedy 57.5 23.3 35.6 7.0
Beam (3) 58.0 23.7 35.7 7.8
Beam (5) 58.0 23.8 35.8 7.9
Beam (10) 57.9 23.8 35.4 7.8
Tmp. (0.8) 53.7 21.9 30.6 7.1
Top-K (50) 51.7 20.8 28.7 6.8
Top-P (0.9) 53.2 21.1 28.8 6.5
Top P +K 53.6 21.5 31.1 7.4

Table 14: Performances of XLGen-base trained with
different decoding strategies.

XLGen-base EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

Beam (5) 58.0 23.8 35.8 7.9
Ens. Outer 53.5 24.5 31.5 10.0
Ens. Inner 54.0 18.9 29.2 4.2

Table 15: Task performance of XLGen-base from the
best single stratagy (beam search with size 5) and en-
semble generations on EURLEX-4K and WIKI10-31K.
The highest scores are bold.

two different types of joining method; inner join
to union all labels and outer join to intersect labels
from single generations.

Table 15 shows task performance of ensemble
generations. We find that outer joining ensemble
generation could improve macro F1 scores as it
includes more labels than single result. However, it
simultaneously drops other micro F1 scores due to
the high chance to contain wrongly predicted labels
as well. On the other hand, inner joining ensemble
generation in general harms the performance by
restricting predicted labels occurring at any single
generations, though this yields higher micro F1
scores than inner joining ensemble results.

A.7 Additional Analyses on Clustering and
Representation

XLGen-base EURLEX-4K WIKI10-31K
Mic. Mac. Mic. Mac.

Kmn. + tf-idf 58.4 24.1 36.6 8.9
Kmn. + t5-enc. 58.5 23.9 36.8 8.8
Ahcl. + tf-idf 58.4 24.4 36.8 8.8
Ahcl. + t5-enc 58.0 24.0 37.0 8.6

Table 16: Task performances trained with different clus-
ter algorithm and input features on EURLEX-4K and
WIKI10-31K. Here we fix cluster size as 30. The high-
est scores are bold.

We compare two clustering algorithms; K-means
and Agglomerative hierarchical clustering, and two
text representations for the label features; TF-IDF
and the last hidden states of T5 encoder in Table 16.
We find that both algorithms show comparable per-
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Figure 9: Visualization of generated labels by XLGen-BCL for Wikipedia pages of annotated examples in Table 17.

formances. As computing cost is more expensive in
Agglomerative hierarchical clustering, we mainly
use K-means in our experiments. For text represen-
tation, the pre-trained T5 encoder achieves similar
or slightly better performance to TF-IDF vectors.
Pre-trained T5 encoder is more efficient in training
as it has much lower size of dimensionality (e.g.,
768 in t5-base) than tfidf (e.g., >100,000 for both
EUR-LEX and WIKI10-31K). Thus, for all exper-
iments with clustering method, we use K-means
with pre-trained T5 encoder text representation.

A.8 Additional Examples of Human
Annotation

In Table 17, We provide more annotation exam-
ples from WIKI10-31K, following the Table 7 to
show how XLGen generates labels. In Figure 9,
we also provide visualizations of generated labels

by XLGen for examples in Table 17.
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Input Document Models Labels

Emily Elizabeth Dickinson (December 10,
1830– May 15, 1886) was an American poet.
Born in Amherst, Massachusetts to a successful
family with strong community ties, she lived a
mostly introverted and reclusive life. After she
studied at the Amherst Academy for seven years
in her youth, she spent a short time at ...

True
authors biography dickinson emily journal library liter-
ature openaccess people poem poet poetry reference re-
search to-read wiki wikipedia writers

AttentionXML
wiki poet writers wikipedia literature authors books
writing history poets writer people poetry biography
inspiration american poems luule

XLGen-BCL wikipedia wiki people art books literature english poetry
writers writer poet elizabeth dickinson emilydickinson

Screenshot of vimeo.com home page Vimeo is
a video-centric social network site (owned by
IAC/InterActiveCorp) which launched in
November 2004. The site supports embedding,
sharing, video storage, and allows
user-commenting on each video page...

True articles computer reference socialnetworks technology
tools video web2.0 wikipedia

AttentionXML video web2.0 wikipedia wiki media youtube videos
videoblogging streaming

XLGen-BCL
wikipedia wiki reference technology web internet social
video web2.0 no_tag socialnetworking socialsoftware phd
social_networking social_network vimeo

Diet Coke and Mentos Eruption is a reaction of
Diet Coke and mint Mentos candies, a bottle of
Diet Coke (other carbonated beverages may be
used instead) and dropping some Mentos. This
causes the Coke to foam at a rapid rate and
spew into the air...

True
beverage candy chemistry coca-cola coke dietcoke drink
eruption experiment experiments video explosion food
fun funny interesting mint prank science

AttentionXML wikipedia fun science diet wiki funny coke tv video health
interesting humor food

XLGen-BCL wikipedia wiki science interesting fun video funny food
humor weird humour wtf #afterdarkclub soda eruption

David Leo Fincher (born August 28, 1962) is an
Academy Award-nominated
American filmmaker and music video director
known for his dark and stylish movies such as
Seven, Fight Club, Zodiac and The Curious
Case of Benjamin Button...

True cinema david director directors figures film filmmaking
films fincher inspiration movie people wiki wikipedia

AttentionXML wiki directors video wikipedia cinema pitt people director
films movies movie film filmmaker brad

XLGen-BCL
wikipedia wiki people art film biography movies artist
movie cinema films director directors auteurs hollywood
hollywood_films

Brain Age: Train Your Brain in Minutes a Day!,
also known as Dr. Kawashima’s Brain Training:
How Old Is Your Brain? in PAL regions, is an
entertainment video game that employs puzzles.
It was developed and published by the video
gaming company Nintendo for the Nintendo DS
handheld video game console...

True
@mentat biology brain braintraining computer exercise
fitness fun game games health medical nintendo read sci-
ence sudoku unit4 wikipedia

AttentionXML
wikipedia game games fun science nintendo sudoku
brain mind ds wiki video memory gaming puzzle puz-
zles videogames nds

XLGen-BCL

games wikipedia fun health brain nintendo nintendods
wiki gaming wishlist article interesting cool ds brain-age
brainage

A croque-monsieur is a hot ham and cheese
(typically emmental[citation needed] or gruyère)
grilled sandwich. It originated in France as a
fast-food snack served in cafés and bars ...

True cooking food french recipe sandwich
AttentionXML food wikipedia cooking french wiki

XLGen-BCL
wikipedia food france french cooking ham_and_cheese
fastfood snack

Typography of Apple Inc. refers to Apple Inc.’s
use of typefaces in marketing, operating
systems, and industrial design. Apple has used
three corporate fonts throughout its history:
Motter Tektura, Apple Garamond and Adobe
Myriad. For at least 18 years, Apple’s corporate
font was a custom variant of the ITC Garamond
typeface, called Apple Garamond ...

True

adobe apple branding chronology computer computers de-
sign design.fonts fmp font fonts helpful history imac ipod
list mac macintosh marketing myriad print pro product
reference sda spunti storia typography wiki wikipedia

AttentionXML

typography fonts apple font design wikipedia type
typeface wiki tipografia ttf macintosh reference mac
history graphics logo graphic designers webdesign
graphicdesign diseño computer typographer ipod brand
article technology business advertising

XLGen-BCL
wikipedia wiki history article design technology computer
webdesign mac apple typography fonts font apple_inc

The jackalope — also called an antelabbit, aunt
benny, Wyoming thistled hare or stagbunny —
is an imaginary animal of folklore and a
supposed cross between a jackrabbit and an
antelope, goat, or deer, which is usually ...

True american animal creatureproject cryptozoology culture fic-
tion humor humour myth mythology storyideas wikipedia

AttentionXML folklore wikipedia animals mythology wiki cryptozoology
culture monsters animal weird interesting myth

XLGen-BCL
wikipedia wiki reference research culture mythology ani-
mals folklore wtf myths monsters jackalope

Anti-humor and anti-jokes[1] (also known as
unjokes) are a kind of humor based on the
surprise factor of absence of an expected joke or
of a punch line in a narration which is set up as
a joke. This kind of anticlimax is similar to that
of the shaggy dog story.[2] In fact, John
Henderson sees the "shaggy dog story" ...

True comedy favourites fun funny humor humour information
interesting jokes people postmodernism wiki wikipedia

AttentionXML humor wikipedia funny comedy humour fun satire wiki
dog animals standup parody joke

XLGen-BCL

wikipedia wiki reference interesting article culture fun
funny humor irc foonetic foonetic/#xkcd definitions
dictionary humour comedy satire anti cdc foonetic/#boats
anti-humor

Table 17: Additional examples of ground-truth and predicted labels in WIKI10-31K, following Table 7.
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