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Abstract

We describe a simple and effective method
(Spectral Attribute removaL; SAL) to remove
private or guarded information from neural rep-
resentations. Our method uses matrix decom-
position to project the input representations
into directions with reduced covariance with
the guarded information rather than maximal
covariance as factorization methods normally
use. We begin with linear information removal
and proceed to generalize our algorithm to the
case of nonlinear information removal using
kernels. Our experiments demonstrate that our
algorithm retains better main task performance
after removing the guarded information com-
pared to previous work. In addition, our exper-
iments demonstrate that we need a relatively
small amount of guarded attribute data to re-
move information about these attributes, which
lowers the exposure to sensitive data and is
more suitable for low-resource scenarios.1

1 Introduction

Natural language processing (NLP) models cur-
rently play a critical role in decision-supporting
systems. Their predictions are often affected by
undesirable biases encoded in real-world data they
are trained on. Making sensitive predictions based
on irrelevant input attributes such as gender, race,
or religion (protected or guarded attributes) im-
pacts user trust and the practical broad utility of
NLP methods.

In recent years, representation learning ap-
proaches have become the mainstay of input en-
coding in NLP. While representation learning has
yielded state-of-the-art results in many NLP tasks,
controlling or inspecting the information encoded
in these representations is hard. Thus, using rule-
based methods to remove unwanted information
from such representations is often not feasible. In

1Code is available at https://github.com/
jasonshaoshun/SAL.
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Figure 1: The ratio ρ between the average t-
SNE similarity of representations between two gen-
der clusters c1, c2 (sim(c1, c2)) for each profession:
ρ =

(
after SAL sim(c1, c2)

/
before SAL sim(c1, c2)

)
.

Three values of ρ are computed, intra-cluster: (1)
c1 = c2 = male; (2) c1 = c2 = female; and inter-
cluster: (3) c1 = male, c2 = female. The ratios in the
inter-cluster case are smaller than 1, and larger than 1
for the intra-cluster case.

the context of protected attributes, Bolukbasi et al.
(2016) showed that word embeddings trained on
the Google News corpus encode gender stereotypes.
Later, Manzini et al. (2019) expanded this work and
showed that word embeddings trained on the Red-
dit L2 corpus (Rabinovich et al., 2018) encode race
and religion biases.

We propose a simple yet effective technique to
remove protected attribute information from neu-
ral representations. Our method, dubbed SAL for
Spectral Attribute removaL, applies Singular Value
Decomposition (SVD) on a covariance matrix be-
tween the input representation and the protected
attributes and prunes highly co-varying directions.
Figure 1 demonstrates how professional biography
text representations from labeled gender clusters
(each biography is marked with the gender of its
subject; De-Arteaga et al. 2019) for different pro-
fessions expand after the use of SAL, and become

https://github.com/jasonshaoshun/SAL
https://github.com/jasonshaoshun/SAL


closer, implying a higher spread of each profession
representations after SAL (§5.2.2).

In addition, we overcome the linear removal
limitations of SAL and previous work by using
eigenvalue decomposition of kernel matrices to
obtain projections into directions with reduced co-
variance in the kernel feature space. We refer to
this method as kSAL (for kernel SAL).

SAL outperforms the recent method of Ravfogel
et al. (2020) aimed at solving the same problem
and is able to remove guarded information much
faster while retaining better performance for the
main task. Further experiments demonstrate that
our method performs well even when the available
data for the protected attributes is limited.

2 Problem Formulation and Notation

For an integer n we denote by [n] the set
{1, . . . , n}. For a vector v, we denote by ||v||2
its ℓ2 norm. Matrices and vectors are in boldface
font (with uppercase or lowercase letters, respec-
tively). Random variable vectors are also denoted
by boldface uppercase letters. For a matrix A, we
denote by Aj its jth column (or by Ai:j the matrix
with columns Ak for k = i, . . . , j). Vectors are
assumed to be column vectors.

In our problem formulation, we assume three
random variables: X ∈ Rd, Y ∈ R and Z ∈ Rd′ .
Samples of X are the inputs for a classifier to pre-
dict corresponding samples of Y. The random vec-
tor Z represents the guarded attributes. We want to
maximize the ability to predict Y from X, while
minimizing the ability to predict Z from X. With-
out loss of generality, we assume that the mean
values of X, Y and Z are 0, and that d′ ≤ d.2

We assume n samples of (X,Y,Z), denoted by
(x(i),y(i), z(i)) for i ∈ [n]. These samples are used
to train the classifier to predict the target values (y)
from the inputs (x). These samples are also used to
remove the information from the inputs based on
the guarded attributes (z).

3 Erasing Principal Directions

We describe SAL in this section. We explain the
use of SVD on cross-covariance matrices (§3.1)
and describe the core algorithm in §3.2.

2For example, Z may be a multi-class label such as gender
represented as a short vector over {−1, 1} and X may be a
complex input, which before removal of information about the
guarded attribute Z, can be used to predict Z. An example of
X would be an encoding of a post on a message board.

3.1 SVD on Cross-covariance Matrix
Let A = E[XZ⊤], the matrix of cross-covariance
between X and Z. In that case, Aij = Cov(Xi,Zj)
for i ∈ [d] and j ∈ [d′].

A simple observation is that for any two vectors
a ∈ Rd,b ∈ Rd′ , the following holds due to the
linearity of expectation:

aAb⊤ = Cov(a⊤X,b⊤Z). (1)

This motivates the use of the cross-covariance
matrix to find the so-called principal directions:
directions in which the projection of X and Z
maximize their covariance, where the projections
are represented as two matrices U ∈ Rd×d and
V ∈ Rd′×d′ . Each column in these matrices plays
the role of the vectors a and b in Eq. 1. More
specifically, we find U and V such that for any
i ∈ [d′] it holds that:

Cov(U⊤
i X,V ⊤

i Z) = max
(a,b)∈Oi

Cov(a⊤X,b⊤Z),

where Oi is the set of pairs of vectors (a,b) such
that ||a||2 = ||b||2 = 1, a is orthogonal to
U1, . . . ,Ui−1 and similarly, b is orthogonal to
V1, . . . ,Vi−1.

It can be shown that such maximization can
be done by applying the SVD on A such that
A = UΣV ⊤, where U ∈ Rd×d, Σ ∈ Rd×d′

and V ∈ Rd′×d′ . In the case of SVD, U and V are
orthonormal matrices, and Σ is a diagonal matrix
with non-negative values on the diagonal. We let
the vector of singular values on the diagonal of Σ
be denoted by σ1, . . . , σd′ .

Once the orthogonal matrices in the form of U
and V are found, one can truncate them (for ex-
ample, use only a subset of the columns of U ,
represented as the semi-orthonormal matrix Û ) to
use, for example, Û⊤X, as a representation (linear
projection) of X which co-varies the most with Z.

We suggest that rather than using the largest
singular value vectors in U to project X, we should
project X using the principal directions with the
smallest singular values. This means we find a
representative of X that co-varies the least with Z,
essentially removing the information from X that
is most related to Z and can be detected through
covariance.

In addition, once such a projection matrix U is
calculated, we can use the projection X = UU

⊤
X

such that the value of E[||X−X||2] is minimized,



while removing the information from X.3 This al-
lows us to potentially use the new projected values
of the input random variable X without changing
a classifier that was originally trained on samples
from X, though as we see in §5, using the pro-
jected input as-is without retraining the classifier
may lead to performance issues with our method
and other methods as well.

3.2 The SAL Algorithm

Our algorithm (SAL) follows the following proce-
dure. First, the empirical cross-covariance matrix,
estimating E[XZ⊤] is calculated:

Ω =
1

n

n∑
i=1

x(i)(z(i))⊤. (2)

SVD is then performed on Ω to obtain
(U ,Σ,V ). We choose an integer value k and de-
fine U = U(k+1):d. The value of k is bounded by
the rank of Ω. The rank of Ω is bounded from
above by d and d′, the dimensions of the vectors of
X and Z.

Then, the vectors x(i) are projected using either
U

⊤ or UU
⊤. The latter projection attempts to

project x(i) to the original dimensionality and space
after removing the information. More specifically,
UU

⊤ is a projection matrix to the range of Ω.
The criterion we use to choose k is based on the

singular values in Σ. More specifically, we choose
a threshold α ≥ 1 and choose the minimal k such
that Σ11/Σk+1,k+1 > α.

3.3 Connection to CCA and PCA

We describe connections to other matrix factoriza-
tion methods.

How is SAL related to Canonical Correla-
tion Analysis? The use of SVD on the cross-
covariance matrix is very much related to the tech-
nique of Canonical Correlation Analysis (CCA), in
which projections of X and Z are found such that
they maximize the cross-correlation between these
two random vectors. Rather than applying SVD on
the cross-correlation matrix (CCA), we apply it on
the cross-covariance matrix to preserve the X scale
in our projection.

3This can be formalized using the min-max theorem of
linear algebra, also referred to as the Courant–Fischer–Weyl
min-max principle.

How is SAL related to Principal Compo-
nent Analysis? The use of SVD on the cross-
covariance matrix is reminiscent of Principal Com-
ponent Analysis (PCA), in which eigenvalue de-
composition is applied on E[XX⊤] to reduce the
dimensionality of X. However, PCA does not re-
duce the dimensionality of X while removing in-
formation present in the guarded r.v. Z. Rather, it
finds a projection of X in which the covariance of
a linear combination of X with itself is maximized.

In all three cases of CCA, PCA and in addition,
LSA (Latent Semantic Analysis; Dumais 2004),
SVD or eigenvalue decomposition is used with the
aim of maximizing the correlation or covariance be-
tween one or two random vectors. In our case, the
SVD is used to minimize the covariance between
projections of X and Z.

4 Kernel Extension to SAL

To enrich the type of information that is detected
as co-varying, it is possible to use two feature func-
tions, ϕ : Rd → Rm and ψ : Rd′ → Rm′

, and apply
the procedure in §3 on E[ϕ(X)(ψ(Z))⊤]. In that
case, we can erase the information from ϕ(X) and
treat it as the input for further classification. If the
classifier is already learned, it would have to take
input vectors of the form ϕ(X), otherwise, it can
be re-trained with the erased inputs.

4.1 The Kernel Trick

The kernel trick refers to learning and predic-
tion without explicitly representing ϕ(x) or ψ(z).
Rather than that, we assume two kernel functions,
Kϕ(x,x

′) and Kψ(z, z
′) that calculate similarities

between two xs or between two zs.
Every kernel that satisfies the necessary prop-

erties can be shown to be a dot product in some
feature space. This means that for a given kernel
function Kϕ(x,x

′) it holds that

Kϕ(x,x
′) = ⟨ϕ(x), ϕ(x′)⟩, (3)

for some ϕ function and similarly for Kψ(z, z
′).

Masking learning and prediction through a kernel
function is often useful when the feature represen-
tations ϕ and ψ are hard to explicitly compute, for
example, because m = ∞ or m′ = ∞ (such as the
case with the Radial Basis Function, RBF, kernel).

We show next that the kernel trick can be used to
generalize SAL to nonlinear information removal.



4.2 Removal with the Kernel Trick
Rather than assuming a set of examples in the form
mentioned in §2, we assume we are given as input
two kernel matrices of dimension n× n:

[Kϕ]ij = Kϕ(x
(i),x(j)),

[Kψ]ij = Kψ(z
(i), z(j)).

In addition, for the justification of our algorithm,
we define the following two feature matrices based
on the kernel feature functions:

∀i ∈ [m], j ∈ [n] [Φ]ij = ϕ(x(j))i,

∀i ∈ [m′], j ∈ [n] [Ψ]ij = ψ(x(j))i.

Note that these two matrices are never calculated
explicitly. Given the definition of the kernel as a dot
product in the feature space (Eq. 3), it can be shown
that Kϕ = Φ⊤Φ and Kψ = Ψ⊤Ψ. In addition,
we slightly change the empirical cross-covariance
matrix Ω definition in Eq. 2 to: Ω = ΦΨ⊤. (This
means we ignore the constant 1/n in the above
definition of Ω, the constant that normalizes the
matrix with respect to the number of examples.
This does not change the nature of the following
discussion, but it makes it simpler.) At this point,
the question is how to perform SVD on Ω without
ever accessing directly the feature functions. This
is where the spectral theory of matrices comes in
handy.

More specifically, it is known that the left singu-
lar vectors of Ω (U ) are the eigenvectors of ΩΩ⊤.
In addition, the singular values of Ω correspond to
the square-root values of the eigenvalues of ΩΩ⊤.

In addition, we show in Appendix A why an
eigenvector w of Γ = KϕKψ can be transformed
to an eigenvector of ΩΩ⊤ by multiplying w on the
left by Φ and calculating Φw.

With this fact in mind, we are now ready to find
the left singular vectors of Ω by finding the eigen-
values of Γ, a matrix which is solely based on the
kernel functions of x and z.

Let w1, . . . ,wk be eigenvectors of Γ and let
w′

1, . . . ,w
′
k be the orthonormalization of wi,

i ∈ [k] based on the inner product ⟨wi,wj⟩ =
wiKϕwj

⊤. If we denote by W the matrix such
that Wj = w′

j for j ∈ [k], then ΦW = U where
U is the left singular vector matrix of Ω. Then,

U⊤ϕ(x) = (W⊤Φ⊤)ϕ(x) = W⊤κ(x), (4)

where κ(x) is a function that returns a vector of
length n such that [κ(x)]j = K(x(j),x). Eq. 4
shows we can calculate the projection of ϕ(x)
while removing the information in ψ(z) by using
the smallest eigenvalue eigenvectors of Γ and ker-
nel calculations of each training example with x.

4.3 Practical Kernel Removal

Using the kernel algorithm as above may lead to
issues with tractability, as it possibly requires calcu-
lating the full eigenvector matrix of a large matrix
(the product of two kernel matrices). We propose
an alternative algorithm (kSAL) for the kernel case,
which is more tractable.

For a fixed 0 ≤ k ≤ n (which does not need
to be larger than the rank of either kernel matri-
ces), we compute only the top k eigenvectors of
Γ. We then compute an orthonormal basis for
the null space of the matrix (Kϕ,1/2W1:k)

⊤ where

Kϕ,1/2 = UϕΣ
1/2
ϕ V ⊤

ϕ , with (Uϕ,Σϕ,Vϕ) being
the SVD of Kϕ. Practically, this means we find a
matrix Lϕ ∈ Rn×(n−d) such that L⊤

ϕLϕ = I and
that ||(Kϕ,1/2Γ)

⊤Lϕ||2 ≈ 0. The final data points
x̂(j) we use further down the pipeline correspond
to the rows of Kϕ,1/2Lϕ ∈ Rn×(n−k). If we are in-
terested in using directly the reduced kernel matrix
for the input vectors, we can use

K̂ϕ = Kϕ,1/2LϕL
⊤
ϕK

⊤
ϕ,1/2. (5)

Time Complexity Absorbing the kernel function
computation as a constant, computing the kernel
matrices is O(n2) and their product Γ in O(nω)
for ω < 2.808 using Strassen’s algorithm, but can
be done much more efficiently when Kψ is sparse,
as normally expected. Calculating the top k eigen-
vectors of Γ, has a cost of O(nk2 + k3) using, for
example, the Arnoldi method.4 In §5.4, we report
the clock running time for the kernel method.

Below, we experiment with RBF kernels (where
Kϕ(x,x

′) = exp(−γ||x − x′||22); we use γ =
0.1) and polynomial kernel of degree 2 (where
Kϕ(x,x

′) = (1 + x⊤x′)2). The z kernel remains
linear (dot product).

5 Experiments

In our experiments, our main comparison algorithm
is the iterative null space projection (INLP) algo-
rithm of Ravfogel et al. (2020), which aims at solv-

4For example, Matlab implements a variant of the Arnoldi
method for its function eigs.



SL WS-S WS-R Mturk
Before 0.37 0.69 0.6 0.68
After ↑0.02 0.39 ↑0.01 0.7 0.6 ↑0.01 0.69

Table 1: The semantic evaluation of word embeddings
before and after removing gender bias.

ing an equivalent problem to ours. For the word
embedding debiasing and fair classification (both
setups), we follow the experimental settings of Rav-
fogel et al. (2020).5 SAL provides linear guarding,
similarly to INLP, while kSAL also captures nonlin-
ear regularities with respect to Z (one-hot vector).
We can provide such guarding for representations
of state-of-the-art encoders (such as BERT), pro-
vided the representations are eventually fed into a
classifier for prediction. The protected attributes
we experiment with are gender and race.

Datasets For debiasing word embeddings (§5.1),
we use 7,500 male and female associated words,
15K words overall. The dataset train/validation/test
split sizes are (49%/21%/30%). All the splits are
balanced, i.e., containing an equal amount of male
and female associated words. For the fair senti-
ment classification task (§5.2), we use 10K training
examples across all authors’ ethnicity ratios (0.5,
0.6, 0.7, and 0.8). All training sets have an equal
amount of positive and negative sentiment exam-
ples. The test set is balanced for both sentiment and
authors’ ethnicity labels. For the profession classi-
fication task (§5.2.2), the data train/validation/test
split sizes are (65%/10%/25%), and all the splits
combined contain 115K samples.

5.1 Word Embedding Debiasing

Word embeddings are often prone to encoding bi-
ases in various ways (see §6). We evaluate our
methods on gender bias removal from GloVe word
embeddings. We use the 150,000 most common
words and discard the rest. We sort the embed-
dings by their projection on the

−→
he-

−→
she direction.

Then we consider the top 7,500 word embeddings
as male-associated words (z = 1) and the bottom
7,500 as female-associated words (z = −1).

Results with SAL A linear classifier can per-
fectly predict the guarded gender attribute when
trained on out-of-the-box GloVe embeddings. Re-
moving the first direction (k = 1) does not affect

5We use the authors’ implementation for both the INLP
method and the experimental settings: https://github.
com/shauli-ravfogel/nullspace_projection.

Figure 2: A classifier accuracy for gender prediction
as a function of the number of principal directions that
are linearly removed. For the linear classifier, we use a
linear SVM. For the nonlinear classifiers, we use SVM
with the polynomial kernel and with the RBF kernel.

the accuracy demonstrated in Figure 2. For k = 2,
the performance drops to 50.2%, almost a random
guess.

We further perform intrinsic semantic tests to
ensure the debiased embeddings remain useful.
We use SimLex-999, WordSim353, and Mturk771
(similarity and relatedness datasets) to calculate
the correlation between cosine similarities of the
word embeddings to the human-annotated similar-
ity score (Hill et al., 2015; Finkelstein et al., 2001;
Halawi et al., 2012). We observed minor improve-
ments for all tests when using debiased embeddings
(Table 1), suggesting that our method keeps the
embeddings intact. We also report the three most
similar words (nearest neighbors) for ten random
words before and after SAL (see Appendix B). We
observe almost no change between the two sets of
embedding results.

SAL debiasing does not provide a nonlinear in-
formation removal. In Figure 2 we plot the perfor-
mance of nonlinear classifiers in the prediction of
the linearly-guarded attribute (gender) as a func-
tion of the number of removed directions. We also
provide linear classifier results for reference. We
see that even after removing up to 30 principal di-
rections, (linear) SAL is not sufficient for nonlinear
classifiers – the gender can still be predicted. This
finding is also noted by Ravfogel et al. (2020), who
did not offer a direct solution. This finding partially
motivates our development of kSAL.

Kernel Debiasing All three kernels achieve high
gender prediction accuracy when no information is
removed (k = 0), with accuracy of 100%, 99.9%

https://github.com/shauli-ravfogel/nullspace_projection
https://github.com/shauli-ravfogel/nullspace_projection


and 95.7% for the linear, polynomial, and RBF
kernel, respectively. While the performance of the
linear and polynomial kernels is not affected by
removing one principal direction (k = 1), the RBF
kernel accuracy drops to 86.3%. With k = 2, per-
formance drops to 50.2%, 44.5% and 50.2% for the
linear, polynomial, and RBF kernel, respectively,
under nonlinear kernel removal. Compared to Fig-
ure 2 with SAL, we see kSAL effectively removes
nonlinear information.

Deviations of Reduced Kernel from Original
Kernel To quantitatively test whether the embed-
dings retain their geometric form when removing
gender information, we compare the standard devia-
tion (ρ) of the values in Kϕ to the average deviation
(γ) of values of Kϕ from the corresponding val-
ues in K̂ϕ (Eq. 5). When removing two principal
directions, the largest approximation difference is
seen in the linear kernel, with γ/ρ = 0.64. For the
polynomial kernel, we observe γ/ρ = 0.52. For
RBF, we have γ/ρ = 0.16.

5.2 Fair Classification

To further evaluate our method on downstream
tasks, we follow fair classification tests of social
media text and other texts.

5.2.1 Fair Sentiment Analysis
Task and Data The first task is sentiment anal-
ysis for social network users’ posts. We use the
TwitterAAE dataset (Blodgett et al., 2016), which
contains users’ tweets (x), coupled with the users’
ethnic affiliations (z), and a binary label for the sen-
timent the tweet conveys (y). The dataset splits the
users into two groups, African American English
(AAE) speakers and Standard American English
(SAE) speakers. As users’ privacy makes it hard
to obtain ground truth labels for ethnic affiliation,
the dataset uses the demographics of the neighbor-
hoods the users live in as a proxy. Following Ravfo-
gel et al. (2020), we use the encoder of Felbo et al.
(2017), DeepMoji, to obtain the tweets representa-
tion. DeepMoji is suitable for our goal, as it has
been shown to encode demographic information
and, therefore, might lead to unfair classification
(Elazar and Goldberg, 2018).

We experiment with four different setups. The
dataset consists of an equal amount of positive and
negative sentiment examples for all of them. The
datasets differ with respect to the guarded attribute
ratio. For example, a ratio of 0.8 means that 0.8

of the positive and negative sentiment class exam-
ples are composed of AAE speakers, and 0.2 is
composed of SAE speakers. We experiment with
ratios of 0.5, 0.6, 0.7 and 0.8. The larger the ratio,
the higher the classifier’s tendency to make use of
protected attributes to make its prediction.

Evaluation Measures We report the accuracy of
the methods on the sentiment analysis task. To
measure fairness, we use the difference in true pos-
itive rate (TPR-gap) between individuals belonging
to different guarded attributes groups (Hardt et al.,
2016; Ravfogel et al., 2020). The rationale behind
the TPR gap is that for an equal opportunity, a pos-
itive outcome must be independent of the guarded
attribute (z), conditional on (y) being an actual
positive. See Hardt et al. (2016) for more details.

Results Table 2 presents our results for the fair
sentiment classification. For the first three ra-
tios, 0.5, 0.6, and 0.7, we can see that both SAL
(k = 1, 2) and INLP maintain most of the main-
task performance. In debiasing (TPR-Gap), SAL
with k = 2 significantly outperforms INLP. As ex-
pected, removing two directions results in better
debiasing than removing one, but it does not lead to
a performance drop on the main task. While for the
last ratio, 0.8, INLP achieves the highest TPR-gap
result, it comes at the cost of a sharp performance
drop on the main task, resulting in a nearly ran-
dom classifier. SAL (k = 1, 2) maintains most
of the main-task performance, and for k = 2, the
TPR-gap is halved.

5.2.2 Fair Profession Classification
Task and Data The second task is profession
classification. De-Arteaga et al. (2019) attempt
to quantify the bias in automatic hiring systems
and show that even for a simple task, predicting
a candidate’s profession based on a self-provided
short biography, significant gaps result from the
writer’s gender. This might influence the open po-
sitions an automatic system will recommend to a
candidate, thus favoring candidates from one gen-
der over the other. We hence follow the setup of
De-Arteaga et al. (2019), who experiment with pro-
fessions classification (y), from short biographies
(x), and gender as a guarded attribute (z). We use
a multiclass classifier to predict the profession, as
there are 28 profession classes. We experiment
with two types of text representations, FastText
(Joulin et al., 2016), based on bag of word em-
beddings (BWE) and BERT (Devlin et al., 2018)



Sentiment TPR-Gap
Rt Orig. INLP SAL, k = 1 SAL, k = 2 Orig. INLP SAL, k = 1 SAL, k = 2
0.5 0.76 0.76 0.76 0.76 0.14 ↓0.02 0.12 0.14 ↓0.03 0.11
0.6 0.75 0.75 0.75 0.75 0.22 ↓0.03 0.19 0.22 ↓0.13 0.09
0.7 0.74 0.74 0.74 0.74 0.31 ↓0.05 0.26 0.31 ↓0.15 0.11
0.8 0.72 ↓0.2 0.52 0.72 0.72 0.40 ↓0.39 0.01 ↓0.04 0.36 ↓0.22 0.18

Table 2: The sentiment analysis scores (we use accuracy, as the dataset is balanced) and TPR differences (lower
is better) as a function of the ratio of tweets (Rt) written by black individuals and conveying positive sentiment.
Arrows with numbers indicate absolute increase/decrease from the baseline, and their background color indicates a
difference with positive implications (green) or negative ones (red).

Accuracy (profession) TPR-Gap (RMS)
Encoder Orig. INLP SAL, k = 1 SAL, k = 2 Orig. INLP SAL, k = 1 SAL, k = 2
FastText 0.75 ↓0.05 0.71 ↑0.01 0.76 ↑0.01 0.76 0.20 ↓0.11 0.09 ↓0.02 0.18 ↓0.08 0.12
BERT 0.8 ↓0.11 0.69 ↓0.02 0.78 ↓0.02 0.78 0.21 ↓0.15 0.06 ↓0.04 0.17 ↓0.12 0.09

Table 3: The profession classification on the biographies dataset results. We report accuracy and TPR-RMS. The
number of classes is 28.

encodings.

Evaluation Measures We report accuracy for
the profession classification. For bias level mea-
surement, we use a generalization of TPR-gap for
multi-class, suggested by De-Arteaga et al. (2019),
calculating the root mean square (RMS) of the TPR
with respect to all classes.

De-Arteaga et al. (2019) also provided evidence
for a strong correlation between TPR-gap and exist-
ing gender imbalances in occupations, which may
lead to unfair classification.

Results Table 3 presents the profession classifi-
cation results. Similar to the sentiment analysis
task, SAL (k = 1, 2) maintains most of the main-
task performance, and for k = 2, the two-direction
removal, the TPR-gap is lower. When comparing
SAL (k = 2) to INLP, we observe a clear trade-off
between maintaining the main task performance
(SAL, k = 2) and low TPR-gap scores (INLP).

5.3 Scarce Protected Attribute Labels

For many real-world applications, obtaining large
amounts of labeled data for protected attributes can
be costly, labor-intensive, and in some cases, infea-
sible due to an ever-increasing number of privacy
regulations. In this analysis, we stress-test our al-
gorithm by simulating a scenario in which only a
limited amount of samples from the main task are
coupled with the desired protected attribute labels.
For this purpose, we replicate the fair sentiment
classification experiments, but this time, feeding
only a fraction of the annotated data to our debias-
ing method. The experiment is identical in terms of

the main task, i.e., we use 100K samples for train-
ing the sentiment classifier. We experiment with
different fractions of the debiasing data, i.e., 5%, of
the sentiment training data containing labels about
the protected attribute. We hence feed 5,000 sam-
ples for debiasing. The subsets for debiasing are
chosen randomly. We repeat each experiment 10
times with different subsets. Table 4 presents our
results. Using a small fraction of the data for debi-
asing did not significantly affect SAL’s (k = 1, 2)
main-task performance. INLP, on the other hand,
suffers from a sharp performance decrease, result-
ing in a near-random sentiment classifier. SAL’s
(k = 1, 2) ability to debias the data is slightly worse
than in the complete dataset setting but the result-
ing representations are still significantly less biased
than the original ones. INLP achieves low TPR
gaps, but it is hard to determine if this is due to an
accurate bias removal or a result of corrupting the
representations.

5.4 Kernel Experiments
Despite their flexibility in modeling rich feature
functions, kernels have been documented to be
computationally intensive. Lack of computational
resources prevented us from using the full senti-
ment and bios datasets for our kernel experiments,
and instead, we use 15, 000 training examples and
7, 998 test set examples (the full test set) for the
sentiment dataset and 15, 000 training examples
and 5, 000 examples for the profession dataset. For
training on the acquired 15, 000 training examples,
we used one Intel Xeon E5-2407 CPU, running at
2.2 GHz, for approximately five hours (for a time
complexity analysis, see §4.3).



Sentiment TPR-Gap
Ratio Orig. INLP SAL, k = 1 SAL, k = 2 Orig. INLP SAL, k = 1 SAL, k = 2
0.5 0.76 ↓0.19 0.57 0.76 0.76 0.14 ↓0.12 0.02 ↑0.27 0.41 ↓0.03 0.11
0.6 0.75 ↓0.16 0.59 0.75 0.75 0.22 ↓0.19 0.03 ↑0.01 0.23 ↓0.13 0.09
0.7 0.74 ↓0.17 0.57 ↓0.01 0.73 ↓0.01 0.73 0.31 ↓0.26 0.05 0.31 ↓0.19 0.12
0.8 0.72 ↓0.15 0.57 ↓0.01 0.71 ↓0.01 0.71 0.40 ↓0.32 0.08 ↓0.08 0.34 ↓0.27 0.17

Table 4: The sentiment analysis experiments, 100K samples are use to train the sentiment classifier, but only 5K
examples are used for learning to remove bias. The test set is identical to the one used in §5

Sentiment Analysis (DeepMoji)
Main TPR-Gap

k poly2 rbf poly2 rbf
0 0.75 0.76 0.14 0.15
1 0.75 0.76 0.14 0.15
2 0.75 0.76 ↓0.01 0.13 ↓0.03 0.12

Profession Classification (BERT)
Main TPR-Gap (RMS)

k poly2 rbf poly2 rbf
0 0.77 0.61 0.33 0.23
1 0.77 ↑0.07 0.68 ↓0.05 0.28 ↑0.11 0.34
2 0.77 ↑0.07 0.68 ↓0.08 0.25 ↑0.08 0.31

Table 5: Kernel results with kSAL for sentiment (for a
ratio of 0.5) and profession classification.

Table 5 shows that using only a small subset
of the data, kSAL-poly2 reduces the TPR gaps
while maintaining almost identical performance to
the original model on both the sentiment analysis
and profession classification tasks. For the senti-
ment analysis task, kSAL-RBF slightly improves
the main task results while reducing the TPR-gap
(RMS). For the RBF profession classification task,
the results are unexpected, with main task perfor-
mance increasing as we remove principal direc-
tions. This could be due to the pruning of the rich,
infinite feature space RBF kernel represents (we
also observe significant overfitting with RBF).6

5.5 Perturbed Inputs

While the transformation through UU
⊤ maps x

back into the original vector space (as a projection),
it often turns out that it removes information in such
a way that the original classifier (trained on data
without removal) can no longer be used with the
inputs after removal. This issue exists not only with
our algorithm, but also with INLP, and indeed, like
us, Ravfogel et al. (2020) re-trained their classifier
after they created the cleaned projected inputs.

6With INLP, RBF-kernel SVM also obtains low-accuracy
results.

Figure 3: Gender and profession classifications as a
function of the interpolation coefficient λ.

Ideally, we would want to remove information
without necessarily having to retrain a classifier
for the main task, as this is costly and perhaps
unattainable. To test the effect of such an approach,
we interpolated UU

⊤ with the identity matrix, to
eventually project x using λUU

⊤
+ (1− λ)I for

λ ∈ {0, 0.1, . . . , 1.0}. This approach weakens the
impact of the removal projection and retains some
of the information in x. While an adversary can
attack this approach,7 it can mitigate the effects of
privacy violations in cases where the service or soft-
ware used with the modified representations cannot
be retrained, especially if the service providers have
no malicious intent.

Figure 3 describes an ablation experiment, rang-
ing λ as above on the bios dataset. We see that as
we increase the intensity of the use of the SAL pro-
jection (increasing λ), the accuracy of both gender
prediction and profession prediction decrease when
training the original classifier on the non-projected
inputs. While the behavior is similar for the gender
accuracy for both INLP and our method, the de-
crease for the profession prediction is much sharper
for λ > 0.4 with INLP.

7Consider that the matrix λUU
⊤
+ (1 − λ)I could be

invertible for λ < 1.



Task WED FSC FPCF FPCB
SAL 0.03 sec 0.37 sec 0.16 sec 0.35 sec
INLP 50 sec 100 min 7 min 35 min

Table 6: A run-time comparison between SAL and INLP.
We used 2.20GHz Intel Xeon E5-2407 CPU for all of
the experiments. WED, FSC, FSCF, and FPCB stand for
word embedding debiasing, fair sentiment classification,
and fair profession classification (with both FastText
and BERT based representations).

5.6 Runtime of SAL

We measure the time it takes both methods to learn
a projection matrix for a given training set. Once
we have a projection matrix, debiasing the data is
done by multiplying the data representation matrix
by the learned projection matrix. Since matrix mul-
tiplication is a common practice for many research
disciplines, and both methods use it, we do not
benchmark it as well. Table 6 presents the run-time
differences between SAL and INLP. For all of the
experiments, SAL runtime is smaller by at least
three orders of magnitude than INLP runtime.

6 Related Work

In their influential work, Bolukbasi et al. (2016)
revealed that word embeddings for many gender-
neutral terms show a gender bias. Zhao et al. (2018)
presented a customized training scheme for word
embeddings, which minimizes the negative dis-
tances between words in the two groups, e.g., male
and female related words, for gender debiasing.
Gonen and Goldberg (2019) demonstrated that bias
remains deeply intertwined in word embeddings
even after using the above methods. For example,
they showed several methods that can accurately
predict the gender associated with gender-neutral
words, even after applying the methods mentioned
above. Similar to Ethayarajh et al. (2019), they
concluded that removing a small number of intu-
itively selected gender directions cannot guarantee
the elimination of bias. Motivated by this conclu-
sion, Ravfogel et al. (2020) presented iterative null
space projection (INLP). This debiasing algorithm
iteratively projects features into a space where a
linear classifier cannot predict the guarded attribute.
The debiased representations are linearly guarded,
i.e., they cannot guarantee bias removal beyond the
linear level. Indeed, they show a simple nonlinear
classifier can achieve high accuracy when predict-
ing the guarded attribute. Their approach is also
related to that of Xu et al. (2017). Previous work

uses adversarial methods (Ganin et al., 2016) for in-
formation removal (Edwards and Storkey, 2015; Li
et al., 2018; Coavoux et al., 2018; Elazar and Gold-
berg, 2018; Barrett et al., 2019; Han et al., 2021)
with the one by Ravfogel et al. (2022) being related
to ours through the use of the mini-max theorem
with the squared-error loss on the reconstruction
of a matrix similar to our covariance matrix. In
addition, methods based on similarity measures be-
tween neural representations (Colombo et al., 2022)
were developed. To support the increasing interest
in fair classification, Han et al. (2022) presented
an open-source framework for standardizing the
evaluation of debiasing methods. Finally, most rel-
evant to this paper is an extension of SAL to the
unaligned case, where protected attributes are not
paired with input examples (Shao et al., 2023).

7 Conclusions

We presented a method for removing information
from learned representations. We extended our
method by using kernels, showing we can provide
an effective nonlinear guarding. We also exper-
imented with real-world low-resource situations,
in which only a small guarded attribute dataset is
provided for information removal.

Limitations

There are two main technical limitations to our
work: (a) while the kernel removal is nonlinear, it
still depends on a feature representation that cap-
tures a specific type of nonlinearities; (b) like other
kernel methods, the kernel removal method is sig-
nificantly slower than direct SVD removal in cases
where the feature representations can be written
out without the need of an implicit kernel. Future
work may apply random projections to the kernel
matrices to decompose them more efficiently.

A general limitation of current information re-
moval methods is that they can only remove in-
formation with respect to a specific class of clas-
sifiers. It could always be the case that complex
correlations between the inputs and the guarded
attributes exist, and that an adversary can try to
exploit them to predict the guarded attribute if this
class of classifiers is not too complex. Our use of
kernels alleviates some of this issue, though not
completely.

Finally, experimentally, we focus on text only in
English. It is not clear to what extent our method
generalizes to other languages in a useful manner,



especially when morphology is rich, and the neural
representations encode important information for
the task at hand, but that information would be
removed by our method.

Ethical Considerations

Public trust plays a significant role in the broad
applicability of NLP in real-world scenarios, espe-
cially in critical situations that may directly impact
people’s lives. NLP research of the kind presented
in this paper helps this issue take the spotlight it
deserves. However, we discourage NLP practition-
ers from using our method (and similar methods)
as an out-of-the-shelf solution in deployed systems.
We recommend investing a significant amount of
time and effort in understanding the applicability
and universality of our method to the debiasing of
representations. Issues such as expected type of
adversariality or tolerance level for drop in system
performance need to be considered.
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A Eigenvectors of Λ

We turn to the following Lemma used in §4.2.

Lemma 1. Let w be an eigenvector associated
with eigenvalue λ ∈ R for Γ = KϕKψ. Then Φw
is an eigenvector of ΩΩ⊤.

Proof. Since w is an eigenvector of Γ, it holds that
Γw = λw. Therefore:

Ψ⊤ΨΦ⊤Φw = λw,(
ΦΨ⊤ΨΦ⊤

)
Φw = λΦw,

and therefore Φw is an eigenvalue of

ΩΩ⊤ = ΦΨ⊤ΨΦ⊤.

B Nearest Neighbors Test for Word
Embedding Debiasing

We give in Table 7 the ten nearest neighbor words
for ten random words from the data, before and
after using SAL. The neighboring words are deter-
mined through cosine similarity of the correspond-
ing embeddings with respect to the pivot word em-
bedding. We observe little to no difference in these
two lists (before and after the removal).



Words Nearest neighbors (before) Nearest neighbors (after)
lobbying lobbyists, lobbyist, campaigning lobbyists, lobbyist, campaigning
once again, then, when again, then, when
parliament parliamentary, mps, elections parliamentary, mps, elections
dashboard dashboards, smf, powered dashboards, smf, powered
cumulative gpa, accumulative, aggregate gpa, accumulative, aggregate
foam rubber, mattress, polyurethane rubber, mattress, polyurethane
rh lh, bl, r lh, bl, graphite
genetically gmo, gmos, genetic gmo, gmos, genetic
inner outer, inside, innermost outer, inside, innermost
harvest harvesting, harvests, harvested harvesting, harvests, harvested
secretary deputy, minister, treasurer deputy, minister, secretaries
ruth helen, esther, margaret helen, esther margaret
charlotte raleigh, nc, atlanta raleigh, nc, atlanta
abigail hannah, lydia, eliza hannah, lydia, samuel
sophie julia, marie, lucy julia, lucy, claire
nichole nicole, kimberly, kayla nicole, kimberly, mya
emma emily, lucy, sarah emily, watson, sarah
david stephen, richard, michael alan, stephen, richard
richard robert, william, david robert, william, david
joseph francis, charles, thomas mary, francis, charles
thomas james, william, john james, william, henry
james john, william, thomas william, john, thomas

Table 7: Nearest neighbor test on GloVe word embeddings before and after debiasing on gender. The upper block
includes a random set of words, while the middle and bottom block include female and male names.


