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Abstract

Pretrained language models have achieved
super-human performances on many Machine
Reading Comprehension (MRC) benchmarks.
Nevertheless, their relative inability to defend
against adversarial attacks has spurred skepti-
cism about their natural language understand-
ing. In this paper, we ask whether training
with unanswerable questions in SQuAD 2.0
can help improve the robustness of MRC mod-
els against adversarial attacks. To explore
that question, we fine-tune three state-of-the-
art language models on either SQuAD 1.1 or
SQuAD 2.0 and then evaluate their robustness
under adversarial attacks. Our experiments re-
veal that current models fine-tuned on SQuAD
2.0 do not initially appear to be any more ro-
bust than ones fine-tuned on SQuAD 1.1, yet
they reveal a measure of hidden robustness that
can be leveraged to realize actual performance
gains. Furthermore, we find that the robust-
ness of models fine-tuned on SQuAD 2.0 ex-
tends to additional out-of-domain datasets. Fi-
nally, we introduce a new adversarial attack
to reveal artifacts of SQuAD 2.0 that current
MRC models are learning. 1

1 Introduction

Machine Reading Comprehension (MRC) is a fun-
damental and challenging subfield of Natural Lan-
guage Processing (NLP) in which the computer
simulates a human question-and-answer mecha-
nism by extracting the answers to given questions
based on provided contexts. MRC has many appli-
cations in the real world, such as Conversational
Question Answering (Reddy et al., 2019) and
Open-Domain Question Answering (Chen et al.,
2017; Yang et al., 2019; Min et al., 2019).

With the development of recent deep learn-
ing models, MRC has made significant perfor-
mance gains. Many high-quality MRC datasets

1Our code is publicly available at: https://github.
com/sonqt/unanswerable-robustness.

Figure 1: Example of predictions to an answerable
question of RoBERTa fine-tuned on SQuAD 1.1 (Ra-
jpurkar et al., 2016) (v1) versus its counterpart fine-
tuned on SQuAD 2.0 (Rajpurkar et al., 2018) (v2) un-
der adversarial attack. While RoBERTa v1 predicts
“DartFord” as the answer under attack, RoBERTa v2
knows that “DartFord” is not the correct answer but
fails to focus back on “Nevada”, the correct answer
for the given question. RoBERTa v2 then predicts the
tested question as unanswerable.

and benchmarks (Kwiatkowski et al., 2019; Joshi
et al., 2017; Yang et al., 2018; Rajpurkar et al.,
2018) have been proposed over the last few
years. During the same time period, MRC sys-
tems have also achieved many new state-of-the-
art (SOTA) performances, matching or exceed-
ing human-level standards on many benchmarks.
Nevertheless, skepticism persists about the real
ability of MRC SOTA models (Sen and Saffari,
2020; Jia and Liang, 2017; Sugawara et al., 2018,
2020). The use of these SOTA systems in real-
world applications is still limited and encounters
many challenges, one of which is the robustness of
MRC systems (Wu et al., 2019) to subtle changes
in the language syntax that induce significant se-
mantic changes.

As to the true robustness of MRC systems, Jia
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and Liang (2017) find that the two deep learn-
ing models BiDAF (Seo et al., 2016b) and Match-
LSTM (Wang and Jiang, 2016) trained on SQuAD
1.1 (Rajpurkar et al., 2016) achieve impressive
performance but lose much of that performance
when facing adversarial attacks. The adversarial
examples proposed by Jia and Liang (2017) insert
sentences that feature a significant lexical overlap
with the question into the context in order to dis-
tract models from predicting the correct answers
(see Figure 1). Improved performance against
adversarial attacks to ensure the performance of
MRC models in real-world applications motivates
the pursuit of more robust MRC systems.

Rajpurkar et al. (2018) developed SQuAD 2.0
featuring the same scenarios and questions as
SQuAD 1.1 with the addition of unanswerable
questions which are adversarially crafted by crowd
workers to look similar to answerable ones. The
considerable syntactic similarity between these
unanswerable questions and the corresponding
contexts requires MRC models to be highly sen-
sitive to the small but important changes in the
questions to determine their answerability. There-
fore, we ask the question of how MRC models
trained on SQuAD 2.0 behave under adversarial
attacks and whether experience with adversarial
unanswerable questions can help improve the ro-
bustness of MRC models.

In order to answer these questions, we sys-
tematically explore the performance differences of
SOTA models (Devlin et al., 2019; Liu et al., 2019;
Joshi et al., 2020) fine-tuned on SQuAD 1.1 ver-
sus those on SQuAD 2.0. Our findings are sum-
marized as follows:

1. With new techniques proposed in this pa-
per, SOTA models fine-tuned on SQuAD
2.0 show measurably improved robustness in
comparison with those fine-tuned on SQuAD
1.1 against adversarial attacks on answer-
able questions. Furthermore, this superior
robustness of models fine-tuned on SQuAD
2.0 is consistent in out-of-domain settings
with five other Extractive Question Answer-
ing datasets.

2. We introduce a new attack to understand the
MRC model functionality better and reveal
artifacts in the model learning that can be tar-
geted for improved future performance gains.

2 Related Work

2.1 Adversarial Attack
Historically, adversarial attacks have played an
important role in NLP by challenging the true
ability of language models beyond the traditional
settings of benchmarks. Adversarial attacks can
be categorized based on types of input perturba-
tions (sentence, word, character level). In ad-
dition, adversarial attacks can also be classified
based on whether the attack process has access to
the models’ parameters or predictions (so-called
white-box attacks, (Blohm et al., 2018; Neekhara
et al., 2019; Huang et al., 2018; Papernot et al.,
2016; Samanta and Mehta, 2018; Liang et al.,
2018; Alzantot et al., 2018; Wallace et al., 2019;
Ebrahimi et al., 2018; Jia and Liang, 2017)) or not
(black-box attacks, (Jia and Liang, 2017; Ribeiro
et al., 2018; Wang and Bansal, 2018; Blohm et al.,
2018; Iyyer et al., 2018; Zhao et al., 2018)).

Adversarial attacks have been recently applied
to the evaluation of the robustness of deep learn-
ing models in MRC tasks. Tang et al. (2021) de-
signed the DuReaderrobust benchmark in Chinese
MRC to challenge Chinese MRC models on three
aspects of over-sensitivity, over-stability, and gen-
eralization. Additionally, Si et al. (2021) propose
to evaluate the robustness of multiple-choice MRC
models under various types of adversarial attacks
on samples of the RACE benchmark (Lai et al.,
2017).

Besides, Morris et al. (2020); Zhang et al.
(2020) and Wang et al. (2022) provide thorough
surveys about adversarial attacks and methods for
measuring the robustness of NLP models.

2.2 Unanswerable Questions in MRC
In the early work on unanswerable questions, Levy
et al. (2017) re-defined the BiDAF model (Seo
et al., 2016a) to allow it to output whether the
given question is unanswerable; their original in-
tent was to leverage MRC knowledge to extract
relations in zero-shot tasks. Later, Rajpurkar et al.
(2018) introduced a crowdsourcing process for
annotating unanswerable questions to create the
SQuAD 2.0 dataset for Extractive Question An-
swering, which later inspired similar works in
other languages such as French (Heinrich et al.,
2021) and Vietnamese (Van Nguyen et al., 2022).
However, recent work shows that models trained
on SQuAD 2.0 perform poorly on out-of-domain
samples (Sulem et al., 2021). In addition to the
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adversarially-crafted unanswerable questions pro-
posed by Rajpurkar et al. (2018), Natural Question
(Kwiatkowski et al., 2019) and Tydi QA (Clark
et al., 2020) propose more naturally constructed
unanswerable questions. While recent language
models surpass human performances on adversar-
ial unanswerable questions of SQuAD 2.0, nat-
ural unanswerable questions in Natural Question
and Tidy QA remain challenging (Asai and Choi,
2021).

3 Tasks and Models

3.1 Extractive Question Answering

In the task of Extractive Question Answering
(EQA) with questions, a machine learns to cre-
ate a list of prospective outputs (answers), each of
which is associated with a probability indicating
the machine’s confidence level about the answer
to the question. When unanswerable questions are
included in the dataset, a valid response can be an
“empty” response, indicating the question is unan-
swerable. The model outputs the answer (includ-
ing no-answer) with the highest probability as the
final response to the question. The metric typically
used to evaluate the MRC system is the F1-score,
the average overlap between predictions and gold
answers (see Rajpurkar et al. (2016) for more de-
tails).

3.2 Datasets

In our experiments, we fine-tune our MRC mod-
els by conducting additional training on one of the
two versions of SQuAD (Stanford Question An-
swering Dataset): SQuAD 1.1 (Rajpurkar et al.,
2016) and SQuAD 2.0 (Rajpurkar et al., 2018).
We refer to models fine-tuned with SQuAD 1.1 as
v1 models and models fine-tuned with SQuAD 2.0
as v2 models. For example, we refer to RoBERTa
model fine-tuned with SQuAD 1.1 as RoBERTa
v1. For testing, we supplement the two SQuAD
datasets with five additional datasets from the
MRQA 2019 shared task (Fisch et al., 2019): Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), SeachQA (Dunn
et al., 2017), NewsQA (Trischler et al., 2017), and
TriviaQA (Joshi et al., 2017).

In addition to the adversarial attacks on answer-
able questions in SQuAD 1.1, we also produce ad-
versarial attacks from the unanswerable samples
of the development set of SQuAD 2.0. Due to
the differences in the characteristics of attacks on

answerable and unanswerable questions, we sepa-
rately analyze the performances of models on each
type of attack. While we evaluate v2 models un-
der the attacks on both answerable and unanswer-
able questions, we only evaluate v1 models un-
der the attacks on answerable questions since v1
models have never seen unanswerable questions.
From adversarial attacks on answerable questions
with v2 models, we gain critical insights into the
current robustness effects of using unanswerable
questions to fine-tune MRC models.

3.3 Models
We evaluate three, pre-trained state-of-the-art
transformer models BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and SpanBERT
(Joshi et al., 2020)) in our work. BERT (Devlin
et al., 2019), the pioneer application of the Trans-
former model architecture (Vaswani et al., 2017),
is trained on English Wikipedia plus BookCor-
pus with the pretraining tasks of masked language
modeling (MLM) and next sentence prediction
(NSP). Later, in a replication study of BERT pre-
training, Liu et al. (2019) discovered that BERT
was significantly under-trained. RoBERTa (Liu
et al., 2019) improves over BERT mainly by in-
creasing the pretraining time and the size of pre-
training data. In empowering BERT to better
represent and predict spans of text, SpanBERT
(Joshi et al., 2020) masks random contiguous
spans and replaces NSP with a span boundary ob-
jective (SBO). These three models are fine-tuned
on datasets SQuAD 1.1 or SQuAD 2.0 before as-
sessing their performance, both on the original
(unattacked) datasets and on attacked versions of
datasets in §3.2.

4 Adversarial Attacks

4.1 Robustness Evaluation
An EQA problem is given by a test setD of triplets
(c, q, a) where c is the given context (usually a
small paragraph of text), q is the question posed
about that context, and a is the expected answer
(or set of "gold" answers). The performance of
the EQA model f is measured by

Per(f,D) = 1

| D |
∑

(c,q,a)∈D
v(a, f(c, q))

where v is either the F1 or EM metric.
We create algorithm A to transform triplets

(c, q, a) in D into adversarial test samples
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Question Types Question Attacked Context Answer

Answerable
What is the name
of the water body
that is found to the east?

To the east is the Colorado Desert and the
Colorado River at the border with Arizona,
and the Mojave Desert at the border with
the state of Nevada. To the south is the
Mexico–United States border. Sea is the
name of the water body that is found to
the west.

Colorado River

Unanswerable
What desert is to
the south near Arizona?

To the east is the Colorado Desert and
the Colorado River at the border with Arizona,
and the Mojave Desert at the border with the
state of Nevada. To the south is the
Mexico–United States border. The desert of
edmonton desert is to the north near Burbank.

Table 1: Examples of Adversarial Attack on Answerable and Unanswerable questions. The adversarial sentence
is highlighted in red color. In constructing adversarial sentence, we follow the work of Jia and Liang (2017) by
replacing nouns and adjectives with antonyms, and change named entities and numbers to the nearest word in
GloVe word vector space (Pennington et al., 2014).

(c′, q′, a′) in the adversarial test set Dattacked,
where c′, q′, and a′ are the modified (attacked) ver-
sions of c, q, and a. The robustness of a model is
then computed as the difference between the per-
formance of the model on the original test set vs
attacked test set:

∆ = Per(f,D)− Per(f,Dattacked)

This framework was originally developed to as-
sess robustness performance on answerable ques-
tions (Jia and Liang, 2017). In this paper, we also
extend its application to attacks on unanswerable
questions in Appendix §C.1 and discover chal-
lenges in this extended domain.

4.2 Attack Construction

Our algorithm constructs adversarial problems
from original problems in a way similar to the
AddOneSent in Jia and Liang (2017) and the
AddText-Adv in Chen et al. (2022). Table 1 gives
examples of such an attack on answerable and
unanswerable questions. The additional sentence
that is appended to the context has significant lex-
ical overlap with the context, thus adding to the
realism of the confusion-based attack. This type
of adversarial attack is grammatical, fluent, and
closely relevant to the given question. The ques-
tions and answers are unchanged for our consid-
ered adversarial attacks (q′ = q and a′ = a).

Jia and Liang (2017) found that their adversar-
ial attacks, especially the AddSent and AddOne-
Sent attacks, were successful in challenging con-
temporary MRC models because the adversarial

sentences were closely related to the given ques-
tions. Notably, the unanswerable questions in
SQuAD 2.0 show a similar kind of lexical over-
lap with their corresponding contexts and require
MRC models to be highly robust to the subtle syn-
tactic changes in order to determine the answer-
ability of given questions. Therefore, we hypoth-
esize that models fine-tuned with SQuAD 2.0 are
equipped to perform better against adversarial at-
tacks.

In the next section we assess this hypothesis by
evaluating the performance of v1 versus v2 models
on answerable questions.

5 Attacks on Answerable Questions:
Results

5.1 Adversarial Performance

Answerable
Original Attacked ∆ ↓

BERT
v1 88.4 63.8 24.6
v2 78.4 55.2 23.2

RoBERTa
v1 91.5 70.5 21.0
v2 84.8 58.0 26.8

SpanBERT
v1 91.5 68.6 22.9
v2 85.8 58.9 26.8

Table 2: F1 scores of v1 models and v2 models with
adversarial attacks on answerable questions. We refer
to models fine-tuned on SQuAD 1.1 and SQuAD 2.0 as
v1 and v2 models, accordingly.

Table 2 shows the performance of models with
original (not attacked) and adversarial (attacked)
problems on answerable questions. When attack
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sentences are added into context, the performance
of all v1 and v2 models significantly decreases.
Adding unanswerable questions into the training
(v2 models) does not initially appear to improve
the robustness of MRC models against adversarial
attacks. In fact, the performance of v2 models ap-
pears to be less robust than that of v1 models, both
on the original and the attacked questions. How-
ever, there is a deeper story here worth investigat-
ing. To further explain the poor performances of
v2 models, we consider the types of v2 answers to
answerable questions in the next section.

5.2 Categories of Responses

I C2I C2U C2C

BERT
v1 10.9 28.7 - 60.4
v2 21.3 10.9 14.7 53.2

RoBERTa
v1 8.0 24.5 - 67.7
v2 14.5 8.0 20.5 57.1

SpanBERT
v1 8.0 26.7 - 65.4
v2 13.8 8.3 20.1 57.8

Table 3: The percentage of answerable questions by
types of answers produced by v1 and v2 models before
and after adversarial attacks.

Table 3 shows the different categories of an-
swers produced by v1 and v2 models to answer-
able questions. We use a 50% F1 score threshold
to determines the models’ correctness to a ques-
tion (correct if F1 score is above 50%, incorrect
otherwise).

Considering attacks on answerable questions,
we observe four categories in responses during
attack: “I" (incorrect) are answerable questions
that models originally got wrong (or originally
predicted as unanswerable for v2 models). “C2C"
(correct to correct) are answerable questions that
models got correct both originally and after the at-
tack. “C2I" (correct to incorrect) are answer-
able questions that models originally answered
correctly but then output an incorrect answer when
attacked. “C2U" (correct to incorrectly unan-
swerable) are answerable questions that models
originally answer correctly but then predict as
unanswerable when attacked. The C2I and C2U
together account for the performance decline of
models when attacked.

We see that v2 models, especially RoBERTa
and SpanBERT, are particularly susceptible to the
C2U challenge; they initially output a correct an-
swer, but when attacked, decide (incorrectly) the

question is now unanswerable. This is in contrast
to the v1 models, which not being trained on unan-
swerable questions and do not have the option of
responding "unanswerable". The v2 models’ re-
fusal to output an incorrect answer (opting instead
to reply "unanswerable") indicates that their addi-
tional training on unanswerable questions has pos-
sibly provided them more depth to handle the con-
fusion introduced by the attack.

We further breakdown the “C2U” category from
Table 3 to investigate the spectrum of responses
v2 models provide. Recall that models produce
multiple responses to a MRC sample, each accom-
panied by a confidence score reflecting the mod-
els’ confidence in that response. In this analy-
sis, to evaluate the difficulty of questions in cat-
egory “C2U” of each v2 model, we use the corre-
sponding v1 model as baseline. Then, to answer
the question whether v2 models prefer correct an-
swers to incorrect answers, we evaluate the second
most confident response of v2 models for ques-
tions in category “C2U”.

C2U
Attacked # Questions

BERT
v1 46.1

871
v2 42.5

RoBERTa
v1 50.3

1212
v2 44.7

SpanBERT
v1 46.1

1194
v2 47.6

Table 4: F1 scores of second most confident responses
of v2 models and most confident responses of v1 mod-
els to questions in category “C2U” of v2 models in Ta-
ble 3. For each language model, we extract a set of
“C2U” questions and then evaluate corresponding v1
and v2 models on this set of questions.

Table 4 shows the F1 scores of second most
confident responses of v2 models and first (most
confident) responses of v1 models to questions in
category “C2U” under attacks. We observe that v2
models often have fairly good answers for ques-
tions in category “C2U” given that performance of
v2 models lag significantly behind that of v1 mod-
els when attacked. However, v2 models fail to put
forward the correct answers (their second option)
ahead of the "unanswerable" responses (their first
option).

From these analyses, we hypothesize that mod-
els with additional training on unanswerable ques-
tions have the ability to perceive the attacks on
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answerable questions but fail to completely over-
come them.

Answerable
Original Attacked ∆ ↓

BERT
v1 88.4 63.8 24.6
v2 88.5 69.6 18.9

RoBERTa
v1 91.5 70.5 21.0
v2 91.4 75.1 16.4

SpanBERT
v1 91.5 68.6 22.9
v2 91.3 75.8 15.5

Table 5: The performance of v1 and v2 models (when
being forced to output non-empty answer on answer-
able questions) before and after adversarial attacks.

5.3 Force To Answer
The comparison of v1 and v2 models on answer-
able questions has a built-in bias because v2 mod-
els have the "penalty" of being able to respond
"unanswerable" even though this is never a legiti-
mate response. Furthermore, we have just shown
that the v2 models often produce the correct an-
swer, even under attack, but fail to put forward that
correct output ahead of the "unanswerable" output
in which it has more confidence. In this section,
we re-run the analysis but this time eliminate the
option for v2 models to output "unanswerable" (to
answerable questions) so that we can better ascer-
tain the robustness of v1 and v2 models to attacks.

Table 5 shows the results of this experiment. We
can see now in this table that both v1 and v2 mod-
els exhibit similar performance on original an-
swerable questions. When we introduce adversar-
ial attacks on these same questions, the v2 models
(being forced to answer) now exhibit noticeably
stronger performance than their v1 counterparts.
The additional training afforded to v2 models on
unanswerable questions has given them a perfor-
mance advantage over the v1 models. The robust-
ness of v2 models against adversarial attacks is
hidden in normal testing circumstances but can be
realized by forcing the v2 models to output non-
empty response in settings with only answerable
questions.

6 Attacks in Out-Of-Domain Settings:
Results

We now seek to determine if this additional robust-
ness of v2 models extends to other out-of-domain
test sets. In particular, we evaluate our v1 and
v2 models on development sets of other Extractive

Question Answering datasets. We summarized the
characteristics of five out-of-domain datasets of
MRQA 2019 in Table 6.

Table 7 shows the performance of v1 and v2
models on the five datasets of MRQA 2019. Simi-
larly to experiments in Section 5, we measure per-
formance on both original problems and adversar-
ially attacked problems.

First, the performance on original (unattacked)
problems shows that adversarial unanswerable
questions in SQuAD 2.0 have little negative ef-
fects on the generalization performance of MRC
models. While the performance of v2 models
is higher than that of v1 models on TriviaQA
and SearchQA, v1 models outperform v2 mod-
els slightly on Natural Questions (0.8%), NewsQA
(0.2 %), and considerably on HotpotQA (6.5 %).
On average, the generalization performance of v2
models to that of v1 models on out-of-domain
unattacked problems is slightly worse (53.7% to
54.5%).

However, on problems with adversarial attacks,
v2 models significantly outperform v1 models in
four out of the five datasets. Specifically, on aver-
age, v2 models significantly outperform v1 mod-
els by 2.9% on NewsQA, 4.7% on Natural Ques-
tion, 4.8% on SearchQA, and 5.2% on TriviaQA.
Although v2 models do not show superior per-
formance to v1 models on HotpotQA, the perfor-
mance gap between v2 and v1 models after attacks
decreases significantly thanks to the superior ro-
bustness of v2 models.

Overall, we conclude from Table 7 that adver-
sarial unanswerable questions of SQuAD 2.0 do
not have negative effects on the generalization of
v2 models to out-of-domain datasets, and the ro-
bustness of v2 models against adversarial attack is
consistently superior to that of v1 models.

7 New Attack

In this section, we explore why v2 models often in-
correctly put forward "unanswerable" as an incor-
rect response to answerable questions under adver-
sarial attacks. We hypothesize that MRC models
trained with SQuAD 2.0 have learned to identify
target sentences with significant lexical overlap to
decide whether the corresponding questions are
unanswerable; the models rely primarily on that
target sentence to determine their output. This un-
desirable behavior of MRC systems may prevent
them from using the whole paragraph to accurately
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Dataset Question (Q) Distant
Supervision Context (C) Q ⊥ C Dev

SQuAD Crowdsourced ✗ Wikipedia ✗ 10,507
HotpotQA Crowdsourced ✗ Wikipedia ✗ 5,904
TriviaQA Trivia ✓ Web snippets ✓ 7,785
SearchQA Jeopardy ✓ Web snippets ✓ 16,980
NewsQA Crowdsourced ✗ News articles ✓ 4,212
Natural Questions Search logs ✗ Wikipedia ✓ 12,836

Table 6: Characteristics of each datasets used in our out-of-domain experiments. Distant supervision is True if
datasets used distant supervision to match questions and contexts. Q ⊥ C is True if questions in datasets are
written independently from the passage used for context. Table adopted from shared task MRQA 2019 (Fisch
et al., 2019).

Natural Question HotpotQA TriviaQA
Original Attacked ∆ ↓ Original Attacked ∆ ↓ Original Attacked ∆ ↓

BERT
v1 54.6 20.1 34.5 61.6 45.5 16.1 59.4 48.9 10.5
v2 52 23.7 28.3 58.9 47.4 11.5 58.9 53.3 5.6

RoBERTa
v1 62.1 28.3 33.8 67.4 46.3 21.1 64.1 55 9.1
v2 63.5 33.2 30.3 65 49.8 15.2 65.5 59.2 6.3

SpanBERT
v1 65 34.5 30.5 66.2 46.4 19.8 63.2 51.9 11.3
v2 63.9 40.2 23.7 51.9 32.3 19.6 62.9 58.8 4.1

Average
v1 60.6 27.6 33 65.1 46.1 19 62.2 51.9 10.3
v2 59.8 32.3 27.5 58.6 43.2 15.4 62.4 57.1 5.3

SearchQA NewsQA Average
Original Attacked ∆ ↓ Original Attacked ∆ ↓ Original Attacked ∆ ↓

BERT
v1 30.4 25.5 4.9 53.6 41.8 11.8 51.9 36.4 15.5
v2 28.6 26.7 1.9 53.9 46.2 7.7 50.5 39.5 11

RoBERTa
v1 22.8 20.3 2.5 61.2 54.2 7 55.5 40.8 14.7
v2 33 31.6 1.4 60.6 52.5 8.1 57.5 45.3 12.2

SpanBERT
v1 28.1 26.9 1.2 58.2 44.1 14.1 56.1 40.8 15.3
v2 29.4 28.8 0.6 58 50 8 53.2 42 11.2

Average
v1 27.1 24.2 2.9 57.7 46.7 11 54.5 39.3 15.2
v2 30.3 29 1.3 57.5 49.6 7.9 53.7 42.3 11.4

Table 7: Robustness of MRC models fine-tuned on SQuAD 1.1 (v1) and SQuAD 2.0 (v2) in out-of-domain settings.
For models fine-tuned on SQuAD 2.0 (v2), we force models to output non-empty answers. For each dataset, we
report the average performance of 3 experimented models. We also report the average performance of each models
on 5 considered datasets.

determine the best response to a question and have
negative effects on the practical usage of adversar-
ial unanswerable questions.

To further understand this hypothesis, we intro-
duce a negation attack, a new adversarial attack to
attempt to fool models into giving incorrect "unan-
swerable" responses. In particular, we construct
an attack statement that significantly overlaps with
the question yet is easy to determine as contra-
dicting the question; we form our negation attack
by inserting "not" in front of the adjective. Our
attack (see Table 8) differs from previous adver-
sarial attacks as our attack is designed to elicit an

unanswerable response instead of an incorrect re-
sponse.

Table 9 reports the performance of v2 models
under negation attacks on answerable questions.
We observe that our negation attack is highly ef-
fective in revealing the weaknesses of v2 models
as the performance of all three considered v2 mod-
els significantly drops by almost 60% F1 when we
introduce the negation attack.

We then examine the shifts in answers of v2
models when attacked with negation type. Table
10 shows the distribution of shifts in answers be-
fore and after the attack. We observe that the most
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Question
In the effort of maintaining a level of
abstraction, what choice is typically
left independent?

Answer encoding

Context

[...] one tries to keep the discussion
abstract enough to be independent
of the choice of encoding. [...] In
the effort of maintaining a level of
abstraction, base64 choice is
typically left not independent.

Table 8: An example of the Negation Attack on an-
swerable questions. The adversarial sentence is high-
lighted in red color. In constructing the adversarial sen-
tence, we negate adjective “independent” to “not inde-
pendent”.

Original Attacked ∆ ↓
BERT v2 84.8 24.2 60.6
RoBERTa v2 78.1 21 57.1
SpanBERT v2 87.3 28.6 58.7

Table 9: F1 score of v2 models before and after nega-
tion attacks on answerable questions. In this experi-
ment, we do not force v2 models to output non-empty
answers.

significant drop in performance under negation at-
tacks is the “C2U” category (around 40 % F1).
This result is consistent with our hypothesis that
v2 models rely on target sentences with significant
lexical overlap to decide whether the correspond-
ing questions are unanswerable.

8 Conclusion

In this work, we investigate the effects of train-
ing MRC models with unanswerable questions
on their robustness against adversarial attacks.
We construct adversarial samples from answerable
and unanswerable questions in SQuAD 2.0 and
evaluate three MRC models fine-tuned on either
SQuAD 1.1 (v1 models) or SQuAD 2.0 (v2 mod-
els) independently.

Adversarial attacks on answerable questions re-
veal that v2 models initially show little improved
robustness over v1 models yet possess a latent
ability to deal with these attacks that v1 mod-
els do not; the correct responses are often hidden
as second-best answers, an indicator of the “hid-
den robustness" of v2 models resulting from ad-
ditional training on unanswerable questions. By
eliminating the “unanswerable" option and forc-
ing v2 models to output an answer to any answer-

I C2U C2I C2C
BERT v2 14.4 45.4 17.7 22.5

RoBERTa v2 21.6 41.8 17.5 19.1
SpanBERT v2 12.5 37.9 22.8 26.8

Table 10: The percentage of answerable questions by
types of answers produced by v2 models before and
after negation attacks.

able questions, we leverage this hidden robustness
to improve the performance of MRC models to at-
tacks on answerable questions. Furthermore, we
also show that this robustness translates well to
out-of-domain test sets.

Finally, to encourage future work in evaluating
the robustness of MRC models trained on both an-
swerable and unanswerable questions, we intro-
duce a new type of adversarial attack to reveal
the short-comings of MRC models. Our experi-
ments with the negation attack reveal that the per-
formance of v2 MRC models drops significantly
(around 50% F1). We hypothesize that the decline
in the performance of v2 models is mainly due to
how v2 models have learned to suboptimally iden-
tify target sentences in the context to use as their
primary mechanism of response.

9 Future Work

Our findings raise two critical messages for future
research in the usage of adversarial unanswerable
questions in NLP:

First, our work highlights innovative ways to
use adversarial unanswerable questions in train-
ing to improve the performance of MRC-based
systems. MRC datasets are important sources of
transfer learning for zero-shot settings in many
other NLP tasks (Wu et al., 2020; Levy et al.,
2017; Lyu et al., 2021; Du and Cardie, 2020;
Li et al., 2019). Given that the improved ro-
bustness of v2 models from the additional train-
ing on unanswerable questions generalizes well to
out-of-domain test sets, future research about us-
ing MRC knowledge in zero-shot settings can ex-
plore whether adversarial unanswerable questions
improve the robustness of MRC models in these
zero-shot settings.

Second, we propose an open question about an
undesirable behavior of MRC models fine-tuned
on SQuAD 2.0. We find that simple negation at-
tacks induce a considerable drop in the perfor-
mance of MRC models fine-tuned on SQuAD 2.0
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due to an undesirable behavior as the product of
artifacts in the training set. To use the adversar-
ial unanswerable questions in practice, we suggest
additional research, based on insights about short-
cut learning (Lai et al., 2021; Du et al., 2021),
aimed to prevent MRC models from learning this
undesirable behavior.

Limitations

We acknowledge that there exist few aspects to
which our findings are limited, that include the
dominant use of pretrained language models, the
insufficiency of MRC datasets in other languages,
and the limited types of adversarial attacks exam-
ined.
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A Attacks

In this section, we document the pseudo-code we
use to generate the two attacks in our main paper.
In the pseudo-code below, (·) indicates the input(s)
of the function within the current line.

A.1 AddOneSent Attack

Algorithm 1: AddOneSent Attack

Function AddOneSent(question, answer):
new_question← question
new_answer← answer
new_question← Replace nouns and

adjectives with antonyms in
WordNet(new_question).

new_question← Change named
entities and numbers to nearest
word in GloVe(new_question).

new_answer← Change named entities
and numbers to nearest word in
GloVe(new_answer).

Assert (new_answer ̸= answer) &&
(new_question ̸= question)

attack← Convert into statement
(new_question, new_answer).

return attack

Algorithm 1 is the pseudo-code for AddOne-
Sent attack used in our analysis.

A.2 Negation Attack

Algorithm 2: Negation Attack

Function Negation(question, answer):
new_question← question
new_answer← answer
new_question← Add not before the

first adjective (new_question).
new_answer← Change named entities

and numbers to nearest word in
GloVe(new_answer).

Assert (new_answer ̸= answer) &&
(new_question ̸= question)

attack← Convert into statement
(new_question, new_answer).

return attack

Algorithm 2 is the pseudo-code for the Negation
attack introduced in Section 7 to further reinforce
our hypothesis that v2 models undesirably learn
artifacts in adversarial unanswerable questions of

SQuAD 2.0. The main difference between Ad-
dOneSent attack and Negation attack is that Nega-
tion attack does not use WordNet to Replace nouns
and adjectives, and does not use GloVe to change
named entities and numbers to nearest word in
word space of GloVe.

A.3 Quality Analysis

In order to investigate the quality of Negation At-
tack, we manually label the 200 attack samples
produced by both Negation Attack and AddOne-
Sent attacks (100 each) into three categories:

1. FM: fluent and meaningful attack sentence.

2. M: meaningful but not fluent attack sentence.

3. N: not meaningful attack sentence.

Table 11 provide examples of Negation and Ad-
dOneSent attack samples categorized into these
three categories. The errors of the Negation attack
mostly come from the unnatural expression when
using “not” to negate adjectives instead of using
antonyms (not significant versus insignificant). On
the other hand, the errors of AddOneSent can oc-
cur because of misclassifying word type. For ex-
ample, when misclassifying the noun kind as ad-
jectives, AddOneSent would then rewrite kind of
company as unkind of company).

B Details for MRC Model Training

In this work, we use the base versions for all con-
sidered pre-trained models. We train all MRC
models using mixed precision, with batch size of 4
sequences for 2 epochs. The maximum sequence
length is set to 384 tokens. We use the AdamW
optimizer (Loshchilov and Hutter, 2019) with an
initial learning rate of 2 · 10−5, and β1 = 0.9,
β2 = 0.999. We fine-tuned all four models on
a single NVIDIA Tesla K80 provided by Google
Colaboratory.

C Attacks on Unanswerable Questions:
Results

C.1 Adversarial Performance

In this section, we extend our robustness evalua-
tion of v2 models by analyzing their performance
against adversarial attacks on unanswerable ques-
tions. Recall that we conduct these experiments
only on v2 models as v1 models have not been
trained on unanswerable questions.

1555



AddOneSent Negation
Example Proportion Example Proportion

FM

Question: Who was the chief executive
officer when the service began?
Attack: Russell Hartley was the chief
executive officer when the disservice
began.

44

Question: What service is a VideoGuard
UK equipped receiver dedicated to decrypt?
Attack: A VideoGuard UK equipped
receiver is not dedicated to decrypt the
service of skies.

43

M

Question: How populous is Victoria
compared to other Australian states?
Attack:Victoria compared to same
japanese states is 3rd - most populous.

25

Question: What is the most important
type of Norman art preserved in churches?
Attack: The most not important type
of Norman art is preserved in churches frescos.

49

N

Question: What kind of company is
Sky UK Limited?
Attack: The unkind of company of
macedonian telecommunications
company is geelong.

31

Question: What does most of the
HD material use as a standard?
Attack: The U.S. revolutionary peace
does not most of the HD material use as
a standard.

8

Table 11: Attack samples of Negation and AddOneSent categorized into three categories (fluent and meaningful,
meaningful but not fluent, and not meaningful) and their overall proportions.

Unanswerable
Original Attacked ∆ ↓

BERT v2 72.2 69.3 2.9
RoBERTa v2 81.7 77.9 3.8
SpanBERT v2 76.4 75.3 1.1

Table 12: F1 score of v2 models with adversarial at-
tacks on unanswerable questions.

Table 12 reports the performances of v2 models
to adversarial attacks on unanswerable questions.
Among the F1 scores of the three v2 models, the
score of RoBERTa v2 decreases most after the at-
tacks (by 3.8%) while the F1 score of SpanBERT
v2 decreases least (by only 1.1%). These results
seem to indicate that the adversarial attacks only
slightly degrade the performances of v2 models,
which might lead to erroneous conclusions about
the robustness of these models. However, if we
look back at Table 3, we see that between 8% and
11% of samples are in the C2I group (correct orig-
inally, incorrect when attacked). These prior re-
sults on answerable questions suggest inconsisten-
cies with the results on unanswerable questions.
We dig further.

C.2 Categories of Responses

CU2CU IA2IA CU2IA IA2CU
BERT v2 61.8 20.4 10.4 7.4
RoBERTa v2 71.8 11.1 9.9 7.2
SpanBERT v2 65.2 13.5 11.2 10.1

Table 13: The percentage of unanswerable questions by
types of answers produced by v1 and v2 models before
and after adversarial attacks.

We apply a similar investigation as we did pre-
viously to categorize the response changes of these
v2 models to attacks on unanswerable questions.
We find four main categories:

• “CU2CU" (correctly unanswerable to cor-
rectly unanswerable) are questions that v2
models correctly predicted as unanswerable
both before and after the attacks.

• “IA2IA" (incorrectly answerable to incor-
rectly answerable) are unanswerable ques-
tions that v2 models attempt to output an-
swers both before and after the attacks.

• “CU2IA" (correctly unanswerable to in-
correctly answerable) are questions that
v2 models originally correctly predicted as
unanswerable but then output an answer
when attacked.

• “IA2CU" (incorrectly answerable to cor-
rectly unanswerable) are questions that v2
models originally erroneously attempt to out-
put an answer but later correctly predict as
unanswerable when attacked.

What Table 13 reveals is that the performance
loss of the models during the attack is being
masked by some questions that were initially in-
correct but are correctly identified as unanswer-
able after the attack (IA2CU). For example, the
BERT model appears to only lose 2.9 F1 score dur-
ing the attack, but actually it loses 10.4 and then
gains back 7.4 in other IA2CU questions. These
results reveal that v2 models experience a similar
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performance decline on unanswerable questions as
they did on answerable questions. They also show
how the current assessment framework is unsuit-
able for accurately measuring the robustness of
v2 models on both answerable and unanswerable
questions.
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