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Abstract

Semantic parsing plays a key role in digital
voice assistants such as Alexa, Siri, and Google
Assistant by mapping natural language to struc-
tured meaning representations. To extend the
capabilities of a voice assistant for a new do-
main, the underlying semantic parsing model
needs to be retrained using thousands of anno-
tated examples from the new domain, which is
time-consuming and expensive. In this work,
we present an architecture to perform such do-
main adaptation automatically, with only a
small amount of metadata about the new do-
main and without any new training data (zero-
shot) or with very few examples (few-shot).
We use a base seq2seq (sequence-to-sequence)
architecture and augment it with a concept en-
coder that encodes intent and slot tags from
the new domain. We also introduce a novel
decoder-focused approach to pretrain seq2seq
models to be concept aware using Wikidata.
This pretraining helps our model learn impor-
tant concepts and perform well in low-resource
settings. We report few-shot and zero-shot re-
sults for compositional semantic parsing on the
TOPv2 dataset and show that our model outper-
forms prior approaches in few-shot settings for
the TOPv2 and SNIPS datasets.

1 Introduction

Voice assistants such as Alexa, Siri, and Google
Assistant often rely on semantic parsing to under-
stand requests made by their users. The underly-
ing semantic parsing model converts natural lan-
guage user utterances into logical forms consisting
of actions requested by the user (play music, check
weather), called intents, and relevant entities in the
request (which song? which location?), called slots.
The model is built to process requests in a fixed set
of domains, such as music, weather, shopping, and
so on. With voice assistants increasingly pervading

* work done when SR was at UMass and MS and KA
were at Amazon; it does not relate to their current positions.

waelhamz@amazon. com

mccallum@iesl.cs.umass.edu

more aspects of daily life, systems need to be con-
tinuously updated to comprehend new intents and
slots across an ever-growing number of domains.

Current semantic parsing models are trained on
large amounts of annotated data from a predeter-
mined set of domains. Extending these models to
learn new intents or slots typically involves collect-
ing and annotating large amounts of new data. This
process is expensive and time-consuming. To com-
bat this problem, researchers have proposed seman-
tic parsing models that can be efficiently trained
with fewer examples (few-shot) from new domains
(Shrivastava et al., 2021; Mansimov and Zhang,
2021; Ghoshal et al., 2020; Shin et al., 2021; Desai
et al., 2021; Rongali et al., 2022; Shrivastava et al.,
2022). While these methods facilitate few-shot
learning, they have limitations. Some of them rely
on hand-crafted knowledge such as intermediate
grammars or logical form templates (Shrivastava
et al., 2022; Shin et al., 2021; Rongali et al., 2022).
Others rely on very large pretrained language mod-
els, such as GPT-3, to perform in-context learn-
ing by appending test examples with instructional
prompts (Shin et al., 2021).

In this work, we explore few-shot domain adap-
tation for semantic parsing without any additional
hand-crafted knowledge apart from the intent and
slot tag names, and with much smaller architectures
that can perform efficient inference in practical pro-
duction environments. We also explore zero-shot
domain adaptation, when we have no annotated
training data from a new domain.

To that end, we propose CONCEPT-SEQ2SEQ,
a novel architecture based on a state-of-the-art se-
mantic parsing model, SEQ2SEQ-PTR (Rongali
et al., 2020), which uses seq2seq models and a
pointer generator network to decode the target se-
mantic parse. We augment this model with a con-
cept encoder that encodes intents and slots from
the schema and uses those encodings to condition-
ally decode the semantic parse. Figure 1 shows
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Figure 1: The architecture of CONCEPT-SEQ2SEQ for low resource domain adaptation. The concept encoder
encodes descriptions of each of the concept tags into an embedding and incorporates them into the decoded parse.

the architecture of our proposed model. We train
this model on annotated data from the given do-
mains. During inference, we simply encode all
intents and slots from the schema, including new,
unseen ones, into the learned concept space, and de-
code the target parse. This model has the same time
complexity as the original SEQ2SEQ-PTR model
but comes with the added benefit of now being
able to effectively parse utterances from unseen
domains without any additional effort.

There have been a few zero-shot semantic pars-
ing approaches proposed in the past but they either
covered only simple slot-filling style utterances
(Bapna et al., 2017; Lee and Jha, 2019) or com-
positional utterances that also came with carefully
crafted intermediate representations and context-
free grammars (Herzig and Berant, 2018; Wu et al.,
2021). Our model is capable of performing zero-
shot domain adaptation for compositional semantic
parsing, producing meaning representations with
nested intents and slots, but also doesn’t require any
grammars, whose construction effort often exceeds
the effort required to annotate a few examples.

In few-shot scenarios, we fine-tune our zero-shot
model checkpoints further on the small number of
available examples. Due to the presence of the
concept encoder in our architecture, we expect to
receive better knowledge-transfer advantages by
encoding intent and slot tags from new domains
as opposed to initializing them as new tags. To
further improve performance, we propose a novel
decoder-focused pretraining scheme for CONCEPT-
SEQ2SEQ using an entity-centric processed version

of Wikidata (Vrandeci¢ and Krotzsch, 2014) called
WikiWiki (Li et al., 2022), to help it better encode
unseen concepts and parse effectively.

We report the first zero-shot performance num-
bers for semantic parsing on the compositional
TOPv2 dataset (Chen et al., 2020) and show that
CONCEPT-SEQ2SEQ achieves commendable zero-
shot performance on the flat-entity SNIPS dataset
(Coucke et al., 2018). We also evaluate in few-shot
settings and show that we match or outperform
previous state-of-the-art models while still being
production-viable.

In summary, our contributions are as follows.

* We propose CONCEPT-SEQ2SEQ, a bi-tower
architecture with a seq2seq model and a con-
cept encoder, that can perform few-shot and
zero-shot domain adaptation for composi-
tional semantic parsing without additional
handcrafted knowledge.

* We propose a novel decoder-focused pretrain-
ing scheme for CONCEPT-SEQ2SEQ using
Wikidata that helps it better encode unseen
concepts and parse effectively.

* We report few-shot and zero-shot semantic
parsing results on the TOPv2 and SNIPS
datasets and show that our model outperforms
or matches previously proposed approaches
on a variety of few-shot settings.

2 Methodology

In this section, we describe our proposed model,
CONCEPT-SEQ2SEQ, for low resource (few-shot
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and zero-shot) domain adaptation for semantic pars-
ing. It is based on the SEQ2SEQ-PTR model from
Rongali et al. (2020), consisting of a sequence-to-
sequence encoder-decoder component, augmented
with a pointer generator network to constrain the
target decoding vocabulary. Since our task at hand
is to perform potential zero-shot semantic pars-
ing with just descriptive metadata about the new
domain, we modify the architecture of SEQ2SEQ-
PTR to incorporate information about new intents
and slots from new domains by adding a concept
encoder. Section 2.2 describes this architecture
in detail. To help our model learn to parse utter-
ances from unseen domains better, we also propose
a novel pretraining scheme to incorporate general
concept parsing knowledge into it. Section 2.3 de-
scribes this concept pretraining scheme. Finally,
we describe CONCEPT-SEQ2SEQ model specifics
for few-shot and zero-shot settings in Section 2.4.
Before we get to these sections, we first describe
the source and target sequence formulation for the
semantic parsing task below.

2.1 Task Formulation

Our model solves semantic parsing as a sequence-
to-sequence task, where the source sequence is the
utterance and the target sequence is a linearized rep-
resentation of the semantic parse. Following Ron-
gali et al. (2020), we modify the target sequence to
only contain intent/slot tags or pointers to utterance
tokens. An example source and target sequence

from the TOPv2 dataset are given below.

Source: How far is the coffee shop

Target: [IN:GET_DISTANCE Qptro Qptri Q@ptro
[SL:DESTINATION [IN:GET_RESTAURANT_LOCATION
Q@ptrs [SL:TYPE_FOOD @ptry SL:TYPE_FOOD]
@ptrs IN:GET_RESTAURANT_LOCATION]
SL:DESTINATION] IN:GET_DISTANCE]

Each @ptr; token here points to the it" token in
the source sequence. So @Qptr, corresponds to the
word coffee.

2.2 Model Architecture

CONCEPT-SEQ2SEQ consists of three main com-
ponents: an encoder, a decoder, and a concept en-
coder. Just like in traditional sequence-to-sequence
models, the encoder encodes the source sequence,
and the decoder autoregressively decodes the tar-
get sequence. However, to effectively understand
new intent and slot tags in target sequences that the
model hasn’t seen during training, our model needs
to be able to incorporate new intents and slots, or
concepts, and decode the target sequence accord-
ingly. The concept encoder helps us do this by

encoding descriptive metadata about new concepts
and creating vector representations that we can use
while decoding the target sequence.

Specifically, for an input sequence [z ... xzy],
we first encode it using the encoder into a sequence
of hidden states e; . .. e,. Then, having generated
the first ¢ — 1 tokens, the decoder generates the to-
ken at step ¢ as follows. It first produces the decoder
hidden state at time ¢, d; by building a multi-layer,
multi-head self-attention on the encoder hidden
states and the decoder states so far. This step is
based on the transformer decoder from Vaswani
et al. (2017). In a traditional sequence-to-sequence
generation task, d; is then fed into a dense layer to
produce scores over the target vocabulary.

Our target vocabulary consists of pointer tokens
and the concept tags. Since we do not have access
to all concept tags at the time of training, we train
our model to incorporate descriptive information
about concepts instead of using a fixed-size dense
layer. To do this, we encode intent and slot con-
cepts using a concept encoder. The descriptions
we use in this work are simply rule-based natural-
ized versions of the intent and slot names in the
dataset. For example, the description for the intent
tag token [IN:GET_DISTANCE is set as “begin get
distance intent”. Similarly, for SL:DESTINATION],
it is set to “end destination slot”. We purposely
use just this information and no additional hand-
crafted knowledge to remove any additional user
input and to compare to previous approaches in the
same setting.

Given m concept tokens (both begin and end)
and their descriptions, the concept encoder encodes
each of them to produce concept vector represen-
tations [c; . .. ¢,]. We then use the computed de-
coder hidden state at ¢, d;, as the query and com-
pute unnormalized attention scores [sj . .. sp,] with
[c1...¢m), and [a; ...ay,] with [e;...e,]. Con-
catenating all these scores, we obtain an unnor-
malized distribution over m + n tokens, the first
m of which are the intent and slot tagging tokens
from the concepts, and the last n of which are the
@ptr;(0 < i < n) tokens pointing to the source
sequence. We feed this through a softmax layer to
obtain the final probability distribution. This proba-
bility distribution is used in the loss function during
training and to choose the next token to generate
during inference. For the target token embeddings
in the decoder, we use a set of special embeddings
to represent the @Qptr; tokens and [c; . . . ¢;,] to rep-
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context:
He is a member of
The Soul Seekers —»

The Soul Seekers
Musical group

entity ——»
entity type ——»

Figure 2: An example sentence from the Wikiwiki
dataset with the associated mention, entity, and type
fields. The full hyperlinked sub-span is extracted as the
mention and the entity and type are extracted from the
target page.

resent the concept embeddings.

Figure 1 shows this process in action on a toy ex-
ample. The model is decoding the next token after
SL:genre at step 5. To do this, the model computes
the pointer attention scores [a; . .. a,] (blue, left)
and the concept token attention scores [sg . .. Sy]
(green, right). The highest overall score is for the
token @ptro, corresponding to the word country in
the source sequence, so the next predicted token is
country.

2.3 Concept Pretraining

CONCEPT-SEQ2SEQ has the ability to incorporate
new, unseen concepts while parsing using the con-
cept encoder and transfer knowledge on similar
concepts. In order to produce these unseen con-
cepts or types, and have our model be robust in
low-data settings, it is important for our decoder
to be type aware. Conventional seq2seq pretrain-
ing schemes such as Lewis et al. (2020); Raffel
et al. (2020); Soltan et al. (2022) pretrain the de-
coder using language modeling criterion. Li et al.
(2022) extend the language modeling task to induce
entity-type information by treating it as a question
answering task. We pretrain the seq2seq model on
the semantic parsing task using the WikiWiki (Li
et al., 2022) dataset. We explain how to achieve
this by keeping an open-domain, extensible output
space for the semantic parse.

The Wikiwiki dataset curates mentions, entities,
and entity types from 10M Wikipedia documents
using hyperlink information linking sub-spans of
text in sentences to other Wikipedia pages. The
hyperlink is considered as the mention, and the
entity and the type information are extracted from
the new page. For further details on this processing,
please refer to Li et al. (2022). This dataset contains

around 2m entities and 40K entity types.

Each example in the Wikiwiki dataset consists
of a context, which is a paragraph from a wiki
page, mentions, which are sub-spans of text that
link to another page, entities, which correspond to
each mention, and entity types, which describe the
type of the entity. We extract individual sentences
from this dataset and use them to train CONCEPT-
SEQ2SEQ to learn to encode a wide variety of con-
cepts using the entity type fields as descriptions
and tag the relevant mentions in the sentence. Fig-
ure 2 shows an example sentence from this dataset
and the different fields. The source and target se-
quences for pretraining, and the descriptions of the
concept tags for this example are given below.

Source: He is a member of The Soul Seekers
Target: Qptro Qptr; Qptre Qptrs Qptry

[Q215380 Qptrs Qptrg Qptry Q215380]
Concept descriptions:

[Q215380: begin musical group

Q215380]: end musical group

During training, we collect all the concept to-
kens within a training batch and use them to create
in-batch negatives (denominator of the softmax cal-
culation) for the decoding task. We do this since
it is extremely inefficient to encode all 40K x 2
concept token descriptions (begin and end) from
Wikiwiki in every step.

2.4 Few-shot and Zero-shot Specifics

CONCEPT-SEQ2SEQ is primarily designed to per-
form low resource domain adaptation for semantic
parsing by effectively encoding the output space
via a concept encoder.

In the zero-shot setting, we deploy the following
procedure to build our models. We first perform
concept pretraining on CONCEPT-SEQ2SEQ using
Wikiwiki example sequences. We take this check-
point and train on a set of known domains to then
obtain the zero-shot model. During inference, we
encode all the intent and slot tags from the new
unknown domain using the concept encoder of the
obtained zero-shot model and set the appropriate
decoder parameters to reduce the architecture to a
simple encoder-decoder setting.

In few-shot settings, we further fine-tune the
zero-shot checkpoint on the available handful of
training examples. Since we explore extremely
low-resource settings (1, 5, 25 samples per intent/s-
lot), we run the risk of over-fitting and instability
during training. To account for these risks and
smooth training, we augment the finetuning loss at
every step with the loss from a randomly sampled
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Alarm Event Timer Weather Alarm Event Timer Weather
F1 score EM Accuracy
CONCEPT-SEQ2SEQ w/o pretraining  62.53  30.25 55.68 51.23 45.94 0.00 0.51 8.62
CONCEPT-SEQ2SEQ 71.00 7047 5848 66.29 53.64 20.21 3.86 26.63

Table 1: Zero-shot performance of CONCEPT-SEQ2SEQ on domains in TOPv2. We observe notable scores in the
alarm and weather domains and improvements across all the domains after the concept pretraining step.

batch of training data from the known domains.
We scale the loss from the random known domain
batch down using a multiplier before adding to the
loss. This scheme is akin to rehearsal (Ratcliff,
1990), a popular technique in domain adaptation.

3 Experimental Setup

We evaluate CONCEPT-SEQ2SEQ on few-shot and
zero-shot domain adaptation using two popular
English task-oriented semantic parsing datasets -
TOPv2 (Chen et al., 2020) and SNIPS (Coucke
etal., 2018). Both datasets have utterances grouped
into multiple domains; TOPv2 has eight domains
and SNIPS has seven intents from seven different
areas, which we consider domains. TOPvV2 is a
large dataset consisting of 10k-20k training and 3k-
7k test examples per domain. It is also comprised
of compositional examples with nested intents and
slots. We exclude the unsupported utterances from
the training and test sets in TOPv2 for the zero-
shot experiments (we use the full sets in few-shot).
Unsupported utterances consist of utterances that
belong to a domain but are not supported, which is
impossible to learn in zero-shot. SNIPS is a smaller
and simpler dataset with flat, disjoint slots. It has
2k training and 100 test examples per domain.

For zero-shot, we use a leave-one-out approach
where given n domains, we train models on an-
notated data from n — 1 of them and evaluate on
utterances from the left-out domain. For few-shot
settings, where the model has access to a few an-
notated examples from the left-out domain, we
further fine-tune using 1, 5, and 25 samples-per-
intent/slot (SPIs), which we randomly sample from
the training data of the left-out domain. We fine-
tune CONCEPT-SEQ2SEQ on three different ran-
domly sampled training sets per domain per SPI
setting and report the average performance score
of the three runs.

We use a transformer encoder, initialized from a
roberta-base checkpoint, for CONCEPT-SEQ2SEQ.
The decoder is a transformer decoder initialized
from scratch and it contains 6 layers, 8 heads, and

a hidden state size of 768. The concept encoder
is also a transformer encoder and it is initialized
from a bert-base-uncased checkpoint. We choose
a BERT-based model here since it is pretrained to
compute a vector for the whole sequence using the
CLS token, which is what we need for encoding
a concept consisting of a multi-word description.
We also choose all base-size components to keep
the overall model size small and expect the relative
improvements shown by our model to generalize.

We train our zero-shot models using sequence
cross entropy loss. We use the Adam optimizer
with learning rate 2¢7° and € = 1le~8, warm-up
proportion 0.1, weight decay 0.01, and batch-size
128. The number of epochs is set to 100 and we
evaluate after every epoch and early stop with a
patience of 5. For the Wikiwiki pretraining step,
we use the same hyper-parameters but stop the
model training after 2 epochs on the entire Wiki-
wiki dataset. We did not perform explicit hyper-
parameter tuning.

For the few-shot experiments, we take the zero-
shot model trained by excluding the given few-shot
domain and fine-tune it on small set of annotated
examples for 1000 epochs, evaluating after every
25 epochs. All other parameters are set to the same
values as in the initial zero-shot training. We use a
multiplier of 0.1 for the augmented loss from the
random known-domain data batch. To speed up
evaluation during training, we use teacher-forced
sequence accuracy as our validation metric, which
doesn’t require us to perform any beam search.
During inference, we use beam search decoding
with a beam size of 4.

We report exact match (EM) accuracy for the
few-shot experiments, meaning the entire predicted
parse has to match exactly with the gold parse. For
zero-shot, we report both EM and F1 score since
the task is more difficult and the performance is
generally lower. At these lower numbers, F1 score,
which awards partial credit to correctly tagged
spans provides a better picture for improvements
than EM accuracy, which requires the entire pre-
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Music Book Creative Weather Restaurant Playlist Screening
F1 score
Slot-filling (Lee and Jha, 2019; Bapna et al., 2017) 31.20 34.13  86.21 65.64 51.40 59.96 44.50
CONCEPT-SEQ2SEQ 50.00 30.26  88.75 74.58 57.78 57.11 45.78
EM Accuracy
Slot-filling (Lee and Jha, 2019; Bapna et al., 2017)  11.00 1.00 69.00 37.00 12.00 21.00 24.00
CONCEPT-SEQ2SEQ 20.00 2.00 69.00 42.00 13.00 19.00 26.00

Table 2: Zero-shot performance of CONCEPT-SEQ2SEQ on domains in SNIPS. Our model matches or outperforms

the slot-filling style baseline on most domains.

dicted parse to be correct for credit. For compari-
son wherever applicable, we use prior state-of-the-
art models as baselines. In addition, we also report
the performance of a vanilla SEQ2SEQ-PTR model
without concept pretraining.

4 Results and Discussion

In this section, we report and discuss the perfor-
mance of CONCEPT-SEQ2SEQ on zero-shot and
few-shot domain adaptation for semantic parsing.
We first briefly describe our findings in zero-shot
setting and then describe findings in a variety of
few-shot scenarios.

4.1 Zero-shot Domain Adaptation

We report the first zero-shot performance numbers
for domain adaptation on the TOPv2 dataset. Ta-
ble 1 contains these numbers. We observed that
our model produced decent predictions on four of
the eight domains in the dataset, which we docu-
ment in the table. For the other domains, the scores
were very low. CONCEPT-SEQ2SEQ achieves good
F1 and EM Accuracy scores on the alarm domain
(71.00% F1 and 53.64% EM). On the weather
and event domains, the concept pretraining step
helps it achieve decent EM scores around 20%. On
the timer domain, CONCEPT-SEQ2SEQ achieves
a fairly high F1 score (58.48%) but a very low
EM score (3.86%). Upon manual examination,
we found that this was because our model always
skipped a certain tag. In the timer domain, there
is a slot tag called SL:METHOD_TIMER which tags
the kind of timer such as timer or stopwatch. Our
model never learns to tag these words with that slot.
We believe this is probably due to the description
being inadequate for performing the requisite task.

Overall, we believe the task at hand here is diffi-
cult due to the combination of the zero-shot setting
and the presence of specific nesting/parsing rules
in a compositional semantic parsing task. While a

good amount of information can be gleaned from
the intent and slot names, our model has no access
to any new kinds of tagging rules since it has no
annotated data or any descriptions of those rules
within the concept descriptions. The descriptions
themselves are sometimes inadequate as described
with the timer domain above. We simply use the
descriptions from the dataset and they weren’t re-
ally designed to be used to describe the entity being
tagged. We leave exploration into better descrip-
tions and incorporating parsing rules without ex-
plicit annotations for future work.

We also evaluated our model on the SNIPS
dataset to compare CONCEPT-SEQ2SEQ to prior
zero-shot approaches for flat slot-filling style
datasets. We created a strong baseline using recent
NLP advancements such as pretrained transformers
and attention mechanisms on the slot-filling style
zero-shot model proposed by Bapna et al. (2017)
and Lee and Jha (2019). Table 2 compares the per-
formance of CONCEPT-SEQ2SEQ to this baseline.
We observe that our model matches or outperforms
the slot-filling baseline on most domains while also
being adaptable to compositional datasets.

4.2 Few-shot Domain Adaptation

We evaluated CONCEPT-SEQ2SEQ in few-shot set-
tings of 1, 5, and 25 samples per intent/slot. Ta-
ble 3 reports the EM accuracy scores of CONCEPT-
SEQ2SEQ and other recent baselines on TOPv2.
We also report the performance of a fully trained
CONCEPT-SEQ2SEQ model on all the training data
for reference and to show that the architecture
of CONCEPT-SEQ2SEQ is competitive with other
state-of-the-art methods in the full-resource setting.

We evaluated with a range of SPIs to allow for
comparison with a wide range of models focused
on both extremely low-resource (1, 5 SPIs) and
medium low-resource (25 SPIs) settings. We re-
port numbers for the baselines from their original
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Alarm Event Messaging Music Navigation Reminder Timer Weather
Few-shot 1 SPIs
SEQ2SEQ-PTR 20.41  31.85 38.12 25.58 19.96 23.66 16.62 47.24
Inventory (Desai et al., 2021) 62.13  46.57 46.54 23.00 21.16 28.58 28.92 54.53
RAF (Shrivastava et al., 2022) 62.71 - 35.47 - - 55.06 61.05
CONCEPT-SEQ2SEQ w/o pretraining  61.72  44.28 34.24 20.66 20.82 35.39 44.75 52.24
CONCEPT-SEQ2SEQ 64.71 54.42 46.13 36.30 30.00 36.93 53.44 54.68
Few-shot 5 SPIs
SEQ2SEQ-PTR 4550 38.31 52.79 48.75 43.38 36.37 54.79 49.94
Inventory (Desai et al., 2021) 71.81 58.87 63.72 53.59 42.59 48.88 55.54 65.09
CONCEPT-SEQ2SEQ w/o pretraining  71.32  53.73 51.52 45.96 50.71 50.83 58.89 66.65
CONCEPT-SEQ2SEQ 7417 61.72 61.20 51.24 56.76 54.36 63.13 68.54
Few-shot 25 SPIs
SEQ2SEQ-PTR - - - - 55.7 - 71.6
RINE (Mansimov and Zhang, 2021) - - - - 68.71 - 74.53
CONCEPT-SEQ2SEQ w/o pretraining  78.16  68.21 75.28 65.54 67.67 67.92 70.72 74.30
CONCEPT-SEQ2SEQ 79.87 72.96 80.45 67.91 70.94 67.76 72.41 76.44
Reference - Fully trained
CONCEPT-SEQ2SEQ 88.07 83.23 93.11 79.47 81.63 79.57 77.33 90.73

Table 3: EM Accuracy scores of various models in few-shot settings on TOPv2. We see that our model outperforms
prior approaches on many domains and settings, most notably in the 1 SPIs setting.

papers, so they are missing for some domains.

As shown in the table, CONCEPT-SEQ2SEQ out-
performs a vanilla SEQ2SEQ-PTR, Inventory (De-
sai et al., 2021), and Retrieve-and-Fill (RAF) (Shri-
vastava et al., 2022) models on most domains in the
1 SPIs setting. RAF scores are very close and the
approach outperforms our model on two domains
but it uses additional hand-crafted information such
as handmade descriptions and examples for intents
and slots, as well as an intermediate scenario-bank
to retrieve templates from. CONCEPT-SEQ2SEQ
simply works off of the existing information in
the dataset. In the 5 SPIs setting, it again outper-
forms the vanilla SEQ2SEQ-PTR and Inventory
models on most domains and on average. Inven-
tory is a similar model to ours where the lexical
information from intents and slots is used to help
better transfer knowledge in the low-resource set-
ting. However, this information is prepended to
the input sequence and this might cause input size
issues for large inventories. In the slightly higher
resource setting of 25 SPIs, CONCEPT-SEQ2SEQ
beats a vanilla SEQ2SEQ-PTR model and matches
the performance of RINE (Mansimov and Zhang,
2021), reported on two domains.

Across all the SPIs settings, we see that there
is a noticeable drop in performance of CONCEPT-
SEQ2SEQ without the Wikiwiki concept pretrain-
ing. This shows the effectiveness of the pretraining

step in helping the model generalize to unseen con-
cepts and domains better.

To wrap up our evaluation, we also report the
performance of CONCEPT-SEQ2SEQ on SNIPS
in the few-shot settings described above. Table 4
shows these numbers. We can see that we almost
catch up to a fully trained model by training with
just 25 SPIs in this dataset on most domains except
music. We believe the music domain probably
requires a lot of samples to effectively identify the
diverse set of entities in the domain.

Overall, we find CONCEPT-SEQ2SEQ to be a
very promising approach which achieves high per-
formance scores in low resource domain adaptation.
It is capable of doing this in both compositional
and flat semantic parsing settings, without any ad-
ditional hand-crafted information apart from the
little documentation in the dataset, and with the
memory and inference latency footprint of a vanilla
SEQ2SEQ-PTR model.

5 Related Work

Zero-shot domain adaptation for task-oriented se-
mantic parsing has been previously explored for
simple flat queries with single intents and disjoint,
non-overlapping slots. Bapna et al. (2017) and Lee
and Jha (2019) encode the lexical tag features and
create a token-tagging schema to create the final se-
mantic parses. Yu et al. (2021) solve the task using
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Music Book Creative Weather Restaurant Playlist Screening

F1 EM Fl1 EM F1 EM F1 EM Fl1 EM F1 EM Fl1 EM
1 SPIs 67.10 39.00 86.74 61.67 9239 8033 88.14 71.00 89.64 72.00 7831 47.00 79.19 61.00
5 SPIs 8433 68.00 96.83 8933 9258 8433 9464 8633 9327 8133 87.74 6833 9416 87.67
25 SPIs 8590 72.67 9932 9733 98.10 9533 9827 9467 9638 8933 91.73 80.67 95.02 89.33
Fully-trained 90.78 83.00 99.18 97.00 100.00 100.00 98.55 96.00 96.89 90.00 94.53 87.00 98.35 97.00

Table 4: Few-shot performance of CONCEPT-SEQ2SEQ on domains in SNIPS. Our 25 SPIs model almost catches
up to a fully trained model. Numbers are an average of three runs with different random samples of SPIs.

a retrieve-and-fill mechanism. Our baseline model
for simple queries is based on these approaches.

For complex utterances with nested structures,
zero-shot semantic parsing has been explored us-
ing intermediate, concept-agnostic logical forms
(Herzig and Berant, 2018; Dong and Lapata, 2018;
Reddy et al., 2017) or natural language canonical
forms (Wu et al., 2021). These approaches apply to
semantic parsing datasets which have context free
grammars and specified rules, such as database
or knowledge graph queries. The effort to craft
these grammars for task-oriented semantic parsing
in a voice assistant setting could quite possibly be
greater than annotating utterances.

A more relevant class of approaches for this
work are ones that solve task-oriented semantic
parsing for complex utterances in a few-shot set-
ting using lexical tag features. Shrivastava et al.
(2021) and Mansimov and Zhang (2021) modify
the seq2seq architecture from Rongali et al. (2020)
to perform non-autoregressive style decoding and
show that their models perform better in a few-shot
setting. Ghoshal et al. (2020) use adaptive label
smoothing, a model-agnostic technique. Shin et al.
(2021) proposed a prompting-style approach where
custom instructional prompts filled with handful of
annotated examples and an unsolved utterance are
fed as input to GPT-3 to directly produce a semantic
parse. Their approach is extremely slow and cannot
be easily adapted into a zero-shot framework. Shri-
vastava et al. (2022) explore a retrieve-and-fill style
approach where they retrieve the best scenario, an
intermediate logical form consisting of the seman-
tic frame and abstracted out tags, from a scenario
bank of all supported semantic parses. Their ap-
proach is contingent on the availability of this sce-
nario bank which could possibly entail more effort
than annotating utterances. Mueller et al. (2022)
and Desai et al. (2021) use lexical features from in-
tent and slot names to create an inventory and use it
as input to train semantic parsers for new domains.
Mueller et al. (2022) also pretrain their model to

improve generalizability but only evaluate it on an
intent classification task. Desai et al. (2021) eval-
uate their model for full sequences and our model
is similar to theirs. However, we use our inventory
to create custom decoder embeddings in a seq2seq
model, which removes any input size issues that
their model will encounter with large inventories.
We also pretrain our model with Wikidata and eval-
uate it in a completely zero-shot setting, in addition
to few-shot. Zhao et al. (2022) is another recent
question-answering-based approach that uses lexi-
cal features from the intent and slot tags by using
them as context and posing questions but it has a
similar input size issue with large inventories.

6 Conclusion

We propose a model called CONCEPT-SEQ2SEQ to
perform low-resource domain adaptation for com-
positional semantic parsing. Our model is built on
the SEQ2SEQ-PTR framework and is augmented
with a concept encoder to transfer knowledge and
encode unseen intents and slots from new domains
through their text definitions. We also propose
a novel concept pretraining scheme to incorporate
general concept knowledge into our model using an
entity-centric Wikipedia dataset called Wikiwiki.
We evaluate our model in zero-shot and multiple
few-shot settings on Facebook TOPv2 and SNIPS
datasets. We show that our model is capable of per-
forming zero-shot domain adaptation on some do-
mains of the TOPv2 dataset and beats a strong slot-
filling baseline on the SNIPS dataset. In few-shot,
over multiple dataset sizes of 1, 5, and 25 SPIs,
we show that our model outperforms many strong
prior models on TOPv2. Using the SNIPS dataset,
we also demonstrate how our model catches up to
a fully-trained semantic parsing model using just
25 SPIs on most domains. Our model is capable of
low-resource domain adaptation in both composi-
tional and flat parsing settings, without additional
hand-crafted information, and with the inference
behavior of a vanilla SEQ2SEQ-PTR model.
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Limitations

Our models were trained on GPUs that had at least
20GB on-board memory since in addition to the
traditional encoder and decoder components in a
seq2seq model, we also train a concept encoder,
which is around the same size as the encoder. This
eliminates the use of popular GPUs such as 1080-
ti and 2080-ti, unless parameter freezing or other
tricks are employed during training. During in-
ference however, once the concepts are trained,
we can simply encode the target tags and this re-
duces to the size and performance of a traditional
SEQ2SEQ-PTR model.

We also report all results on models (ours and
baselines) with base-size components such as
roberta-base. We do this since these models are
more likely to be used in production than the much
bigger large-size models. Results and comparison
with large-sized models is missing from this work
(we expect the trends shown to generalize) and we
leave this to future work.

Finally, to simulate our low-resource experi-
ments, we randomly sample a few examples from
the existing training datasets. While this is useful
for experimentation, it doesn’t truly mimic a real
low-resource workflow where these few examples
could be carefully crafted by developers to ensure
better semantic coverage in terms of the language
of the utterances. This work doesn’t include any
analysis on the influence of the content of the few
selected examples; it just focuses on their number.
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