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Abstract

Advances in neural modeling have achieved
state-of-the-art (SOTA) results on public nat-
ural language processing (NLP) benchmarks,
at times surpassing human performance. How-
ever, there is a gap between public benchmarks
and real-world applications where noise, such
as typographical or grammatical mistakes, is
abundant and can result in degraded perfor-
mance. Unfortunately, works which evaluate
the robustness of neural models on noisy data
and propose improvements, are limited to the
English language. Upon analyzing noise in dif-
ferent languages, we observe that noise types
vary greatly across languages. Thus, exist-
ing investigations do not generalize trivially
to multilingual settings. To benchmark the per-
formance of pretrained multilingual language
models, we construct noisy datasets covering
five languages and four NLP tasks and observe
a clear gap in the performance between clean
and noisy data in the zero-shot cross-lingual set-
ting. After investigating several ways to boost
the robustness of multilingual models in this
setting, we propose Robust Contrastive Pre-
training (RCP). RCP combines data augmenta-
tion with a contrastive loss term at the pretrain-
ing stage and achieves large improvements on
noisy (& original test data) across two sentence-
level (+3.2%) and two sequence-labeling (+10
F1-score) multilingual classification tasks.

1 Introduction

Recently, multilingual pre-trained language mod-
els like mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020) and various others (Chi
et al., 2021; Xue et al., 2021; Chi et al., 2022)
have improved multilingual language understand-
ing by pretraining large Transformer models on
web-scale corpora (such as Wikipedia, Common-
Crawl). These models achieve state-of-the-art per-
formance on cross-lingual transfer and many mul-
tilingual NLP tasks (Wu and Dredze, 2019; Pires
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et al., 2019). However, a real-world system will
encounter real-world noise, such as linguistic vari-
ations and common errors observed in textual data,
that are often absent from benchmark datasets.

While prior works focused on this issue of ro-
bustness in monolingual settings (Peng et al., 2021;
Sengupta et al., 2021; Tan et al., 2020), investiga-
tion has been scarce for multilingual settings. In
this paper, we study the effect of realistic noise
in multilingual settings and propose methods to
boost the robustness of multilingual language mod-
els across four NLP tasks: Intent Classification
(IC), Slot Labeling (SL), Named Entity Recogni-
tion (NER) and Natural Language Inference (NLI).

Due to the lack of multilingual noisy evaluation
data, we synthesize benchmarks by mining noise
from publicly available corpora and injecting them
into the test sets associated with each of the four
tasks. We conduct human validation to ensure that
this noised data is indeed realistic (see examples
from MultiATIS++ in Figure 1) and identify the
variety of noise-types seen across languages (in §3).
These analyses highlight the potential of our test-
set in evaluating (and motivating future research
on) multilingual robustness.

To benchmark the performance of multilingual
systems, we consider accuracy metrics on two
utterance-level tasks (IC% and NLI%) and F1-
scores on two token-level classification tasks (SL-
F1 and NER-F1). Specifically, we seek to evaluate
the model’s performance on the noised version of
the test datasets in a zero-shot cross-lingual setting.
In this scenario, we have training data for a task
available only in one language (in our case, En-
glish) and test-data in various languages (Liu et al.,
2019, 2020).

While training data augmentation increases
model robustness for monolingual (i.e. English)
settings, it is not immediately obvious if these ro-
bustness gains can transfer across languages, as
error types can often be language-specific. For ex-
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Unrealistic Examples (test-set)

Language Noise Realistic Realistic Examples (test-set)
Injection Utt. %
Ratio
Me montré les vols directs de Charlotte a Min-
French 0.1 95.49%, neapolis mardi matin .
(fr) Quelle compagnie aérienne fut YX
Zeige mir der Fliige zwischen Housten und Or-
German 0.2 94.5% lando
(de) Welche Fliige gibt es vom Tacoma nach San Jose
qué aerolineas vuelan de baltimore a san fran-
Spanish 0.1 96.9% cesc
(es) muéstrame vuelos entr toronto y san diego
q3r ST TSWT F A7 ¥ AT ST AT F
Hindi 0.05 95.4% it & AT Zar &t
(hi) 3 AR & ST I dd SS @l 57T &
KEVKBRZ AV FAY T AYY HTFTS
TY AT OFBITHS AEHEL T, BHY
Japanese 0.1 92.3% D774 MBIAKBEHDOZ 7 4 b
(jp) Uy bhy a2 NABOTRTDT
74 DOEFIZWLS
P 4 8 7E BREE ARSI
Chinese 0.1 86.2% IR ALHE
(zh) WY AL EL 3 AL T AL HAIE

Me montré des vols entre Détroit er St. Louis sur
Delta Northwest US Air est United Airlines .

Lister des vols de Las Vegas a Son Diego
Zeige mit alle Fliige vor Charlotte nach Minnea-
polis zum Dienstag morgen

Zeige mit Fliige an Milwaukee nach Washington
DC v. 12 Uhr

necesito informacién de un vuelo y la tarifa de
oakland a salt lake city para el jueves antes ¢ sus
8 am

de nuevo york alas vegas el domingo con la tarde
AT Y87 T A dfeed & fregat
Tfaam ET @t fAEe § waes

vrEa v bl o HEH e )5 1R
WET2US 2 7EO7 742 YALT
vy 7LT

KIEHO 7 ==y 7 ZFE vy +F*E
i &

IR R 1T 10 S BT /R IR B CAE T
LHEVN

PR T ZEEAT AR 5 B2 DR

Figure 1: MultiATIS++ test set injected with real-world noise mined from Wikipedia edits. The highest error
injection ratio found to be realistic by human experts is shown alongside the realistic utterance percentage. We do
not include the noisy test sets for Chinese and Japanese in our analysis owing to low (< 95%) realism.

ample, typos in Devanagari script can differ from
those seen in Latin scripts (e.g. TheT — h3IeT
in Devanagari showcases that a joined character
is incorrectly separated into two characters in the
word ‘school’).

Thus, to improve the robustness of pretrained
multilingual models across noise in all languages,
we propose Robust Constrastive Pretraining (RCP)
that couples multilingual noisy data-augmentation
with a contrastive learning loss term during pre-
training; this encourages the model to develop sim-
ilar representations for the original and the noised
version of a sentence.

On the noisy test sets, our method improves the
multilingual model performance across all metrics
and multilingual tasks— IC% by 4.9% on Multi-
ATIS++, 4.1% on MultiSNIPS; SL-F1 by 18.4 on
MultiATIS++, 8.6 on MultiSNIPS; NER-F1 by 2.9
on WikiANN; NLI% by 0.7% on XNLI. In sum-
mary, our primary contributions are:

1. We construct multilingual test data to evaluate
the robustness of NLP models to noise (§3).

2. We show that the performance of existing mul-
tilingual language models deteriorates on four
tasks when tested on the noisy test data (§5.1).

3. We introduce Robust Contrastive Pretraining
(RCP) to boost the robustness of existing mul-
tilingual language models (§5.2).

Our code and data is available on Github (repo:
amazon-science/multilingual-robust-contrastive-
pretraining) .

2 Related Work

Many prior works demonstrate the brittleness
of neural models on different noise phenomena
such as misspellings (Belinkov and Bisk, 2017;
Karpukhin et al., 2019; Moradi et al., 2021), cas-
ing variation (van Miltenburg et al., 2020), para-
phrases (Einolghozati et al., 2019), morphologi-
cal variance (Tan et al., 2020), synonyms (Sen-
gupta et al., 2021), and dialectical variance (Sarkar
et al., 2022). A popular approach to improve the
robustness to noise is fine-tuning models with data
augmentation (Feng et al., 2021) at either the pre-
training (Tan et al., 2020; Sarkar et al., 2022) or the
task-training stage (Peng et al., 2021). These works
consider monolingual pre-trained models and pri-
marily focus on English. While recent works on
token-free models motivate robustness in multilin-
gual settings (Clark et al., 2021; Xue et al., 2022;
Tay et al., 2021), examining the robustness of SOTA
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multilingual pre-trained models (and improving
them) remains unexplored. Hence, we investigate—
(1) are multilingual models robust to noise seen in
different languages (that may be dissimilar to noise
types seen in English)? (2) can we get and leverage
multi-lingual noise data to improve multilingual
models? and (3) do automatic data-augmentation
methods designed for English improve robustness
to multilingual noise?

To boost the robustness of multilingual models
to diverse multilingual noise, we leverage multilin-
gual data augmentation at the pretraining stage and
use contrastive learning. Our effort complements
work in computer vision that showcases contrastive
learning with adversarial learning at task-training
(Fan et al., 2021; Ghosh and Lan, 2021) and pre-
training time (Jiang et al., 2020; Kim et al., 2020)
can improve model robustness. NLP has also seen
a plethora of work that leverages contrastive learn-
ing, but seldom to alleviate robustness concerns
(Jaiswal et al., 2020). Similar concepts, such as Ad-
versarial Logit Pairing (Einolghozati et al., 2019),
used at task-training time have proven to be less
effective than data augmentation approaches (Sen-
gupta et al., 2021) in boosting robustness.

All the aforementioned works lack in at least
one of the two novel aspects of this paper— ro-
bustness to real-world (as opposed to adversarial)
noise, and/or multilinguality. Lastly, the aspect
of cross-lingual knowledge transfer has been stud-
ied in the context of different NLP tasks; typically,
from a high-resource language to a low-resource
one, as exemplified by the XTREME benchmark
(Hu et al., 2020). In this paper, we investigate the
cross-lingual transferability of robustness to real-
world noise.

3 Constructing Noisy Test Data

As no existing benchmarks exist to evaluate the ro-
bustness of multilingual models, we construct noisy
test sets in multiple languages for four tasks. First,
we construct a word-level error-and—correction dic-
tionary by leveraging the Wikipedia edit corpora.
Then, we sample replacements from this dictio-
nary and inject them into the test data for the var-
ious multilingual tasks, focusing on replacements
that only affect individual words but do not change
word order. Finally, we conduct human evalua-
tion to filter out test sets that are not deemed to be
realistic by language experts.

3.1 Wiki-edit Mining

Wikipedia® is a public encyclopedia available in
multiple languages. Wikipedia editors create and
iteratively edit its contents. We leverage these ed-
its to construct error-correction word dictionaries
(later used to create noisy test data). Our approach
to mining edits is similar to Tanaka et al. (2020),
but we consider multiple languages (as opposed to
only Japanese), and additionally create dictionaries
of word-level edits.

To isolate likely useful edits, we first consider
each revision page of an article and split it into a list
of sentences using NLTK (Bird et al., 2009). Sec-
ond, we filter out sentence pairs from two consecu-
tive edit versions ensuring both sentences have (1)
2-120 tokens, (2) a difference if < 5 tokens, and (3)
a relative edit-distance within 30% of the shorter
sentence. Third, we leverage language-specific
tokenizes diff1ib’ to extract exact token-level
deltas between the sentence pair. At last, we en-
sure word pairs (in these deltas) that have at least
one character-level Levenshtein edit-distance from
each other* and none of words are only numbers or
punctuation tokens. Note that edits to Wikipedia in-
volve changes to factual information, such as dates,
rather than incorrect spelling or grammar; thus, the
last step is necessary.

We can finally create a noise dictionary of
correct-to-incorrect words that has frequency
information about the different errors.  For
example, an element of the dictionary (in Spanish)

looks like {de: [ (del, 0.52), (se,
0.32), (do, 0.1), (d&, 0.04),
(en, 0.02)1}1}.

3.2 Injecting Noise into Test sets

We use the noise dictionaries to create a noised
version of the original test data for the four
tasks— MultiATIS++ (Xu et al., 2020), MultiSNIPS,
WikiANN (Pan et al., 2017) and XNLI (Conneau
et al., 2018). After tokenization, we sample tokens
randomly without replacement. In each sampling
step, we sample based on a uniform probability dis-
tribution over the individual tokens and then check
if the token exists in the noise dictionary. If so,
we replace it with a noised version from the dic-

https://meta.wikimedia.orqg/wiki/List_
of_Wikipedias

*https://docs.python.org/3/library/
difflib.html

*For Chinese characters, including Kanji, even a single
character distance could imply a different word.
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tionary; the noised version is sampled based on its
probability in the noise dictionary (that is propor-
tional to the frequency of its occurrence in the noisy
corpora). This procedure continues till we noise
a particular number of tokens, precisely between
1 and min(4, pL) where p a controllable fraction
(chosen as a hyperparameter at first, and finalized
based on human evaluation described in §3.3), and
L is the number of words in the sentence.

3.3 Human Verification of Noised Test-sets

During human evaluation, we analyse the noisy
data created for the MultiATIS++ dataset. We
asked the language expert to assume that a user
who may not be a native speaker, or in a hurry,
or sloppy, was trying to find out flight informa-
tion via text chat, and evaluate realism with this in
mind. Note that analysis of noise types for Multi-
ATIS++ generalizes well to other datasets as we use
the same error-correction dictionaries for injecting
noise into all the test-sets.

Our language experts have graduate/doctoral de-
grees in linguistics, computational linguistics, or
natural language processing and are fluent/native
speakers of the respective languages. We employed
the human experts and compensated them fairly to
conduct this study (see §7 for details). The experts
are given 45 examples without being told that 15
examples have 5%, 15 have 10%, and 15 have 20%
noised tokens and asked three questions about each
example. (1) Is the noised sentence realistic, mod-
erately realistic, or unrealistic? (2) What type of
noise is present in the sentence (we supply an ini-
tial list and let them add more)? and (3) Are the
intent and slot labels unchanged? Based on their
initial feedback, we choose the most realistic noise
fraction (i.e. 5, 10 or 20%) and provide them with
60 more examples from that set. We considered 15
utterances enough to determine the noise fraction,
but used the ratings on 75 utterances for evaluating
realism (see realistic utterance % in Figure 1).

In Figure 1, we summarize the results of the hu-
man evaluation. Column two shows the error injec-
tion ratio that was deemed to have more than 95%
realistic utterances. We set a high cut-off of 95%
to ensure we can make confident statements about
the robustness of multilingual models to realistic
alterations exhibited in our benchmarks. Hence,
Chinese and Japanese (with a realism of 86.2%
and 92.3% resp.) are omitted in our benchmarks.
The last two columns highlight examples deemed

fr de es r zh P hi

& 26.7% 9.5% 17.8% 50
Py

{00% 185% 0.0% 0.0% 0.0% 0.0% 0.0%
1 0.0% 16.9% 20.0% 0.0% 0.0% 0.0% 0.0%
g
& 0
{00% 12.3% 0.0% 0.0% 0.0% 0.0% 0.0%
o 10.0% 6.2% 0.0% 35% 0.0% 0.0% 0.0%
& & 10.0% 46% 6.7% 151% 0.0% 0.0% 17.9%
é\\“‘ 30
{00% 00% 11.1% 15.1% 0.0% 0.0% 25.6%
{00% 00% 6.7% 00% 0.0% 0.0% 7.7%

&
& > 0.0% 00% 0.0% 21.4% 0.0% 7.7% L 20
& &

O

& 183% 0.0% 0.0% 23.3% 0.0%

0.0%

o 100% 0.0% 0.0% 0.0% 0.0% 0.0%

r1o

(,OQ ¢ 100% 00% 00% 0.0% 0.0% 0.0%

‘(p@ {‘(\—0.0% 0.0% 8.9% 0.0% 0.0% 0.0%

» 10.0% 0.0% 00% 16.3% 0.0% 0.0% 0.0%

Figure 2: The column-wise color density (which adds
up to one) shows the percentage of a different noise
types observed for a particular language. The row-wise
values show that some noise types (eg. homophononic)
is only present for a single language (eg. zh).

as realistic and unrealistic by human experts with
the noised tokens highlighted in orange.

Given the sentence length and similarity in task
types, we use the error injection percentage deter-
mined to be the most realistic for MultiATIS++ as
the error injection percentage for MultiSNIPS and
Wiki-ann. For XNLI, experts deemed higher noise
injection ratios (of > 0.05) to be unrealistic (15%
for 0.1, 27% for 0.2) because (1) the premise, usu-
ally much longer than sentences in MultiATIS++,
had (impractically high) number of noise tokens,
and (2) the classification label (implies/neutral/-
contradicts) sometimes changed with large noise
additions. Thus, for XNLI, we choose 0.05 to be
the default noise injection ratio. Finally, one expert
noted the Turkish data for MultiATIS++ lacked
many diacritic characters, muddling the distinction
between noise injected by our procedure and exist-
ing misspellings; hence, it was ignored.

In Figure 2, we list the noise-types identified
by our experts in different languages. While cer-
tain noise-types, such as typographical errors, mis-
spellings are common across multiple languages,
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Lyrv—original +  LMLM—noisy +

®D (9)
e0...0 ®...0
T
T
[CLS] s, [CLS] s,

Figure 3: Loss function for fine-tuning a Pretrained
Language Model (PLM) using Robust Contrastive Pre-
training (RCP).

there are various language-specific noise-types,
such as homophonic errors (for zh), Kanji con-
version errors (for ja), anglicization (for tr) (we
showcase some examples in Appendix A). Given
disjoint noise types across languages, we expect
that augmentation with errors seen in English (us-
ing approaches proposed by prior works) will gen-
eralize better to languages that share error types.

4 Robust Contrastive Pre-training (RCP)

Motivation and Approach While rask-time data
augmentation (aka adversarial training) has been
effective to boost the robustness of pre-trained mod-
els for English, we face two major challenges— (1)
lack of supervised multilingual training data in our
zero-shot setting, and (2) lack of approaches to
synthetically generate noise data for non-English
languages. We overcome these with a multilingual
data-augmentation approach at pre-training time
that uses the multilingual Wikipedia edit corpus
to expose our models to human errors during pre-
training. Here, the need of ex-situ injection of noise
(for test-data creation §3) is unnecessary as our edit
corpus contains pairs of similar sentences, i.e. a
version of the sentence before and after revision
by a Wikipedia contributor (§3.1). To encourage
the model to align the representations of these two
sentences in the encoder’s output space, we use a
contrastive loss term (see Figure 3). Building on
previous work on contrastive learning (Giorgi et al.,
2021), Robust Contrastive Pre-training (RCP) con-
siders the original and edited version of a sentence
as positive examples and other unrelated sentences
as the negative examples.

Similar to Giorgi et al. (2021) and Reimers and
Gurevych (2019)), we map variable length sen-

tences to fixed-length embeddings with a pooler
ei = g(f(s;)), where f(-) is a transformer encoder,
and g(-) is the mean of the token-level embeddings.
Given a batch of N (noisy, clean) sentence tuples,
we set our original sentence s, as the anchor and
the noisy version s,, as the corresponding positive
pair. > Other sentences in the batch (i.e. % Sp)
are deemed to be negative examples. We consider
the InfoNCE/NT-Xent loss (Sohn, 2016) for our
per-example contrastive loss:

exp(sim(ei, ej))
i+ €xp(sim(e;, ) /7)

£(i,j) = —log D ey

where sim(u,v) = ulv/||ul|2||v||2 denotes the
cosine similarity of two vectors u and v and 7 > 0
denotes the temperature hyper-parameter. Thus,
our final contrastive loss function is

N
Lcontrastive = Z E(C, n) + E(TL, C)
=1

We additionally use the standard MLM loss at pre-
training time, masking 15% of the input tokens of
every sentence (i.e. both noisy and clean) indepen-
dently. Therefore, our final loss function is

L= Lcontrastive + LMLM-noisy + LMLM—original

LviM-original 18 the MLLM loss on original sentences,
and ensures the model does not ‘forget’ its original
pre-training task. LyiM-noisy 1S the MLM loss on
noisy sentences, and can be thought of as data-
augmentation at pre-training time.

Pre-training Details Following the Domain
Adaptive Pre-Training (DAPT) approach (Guru-
rangan et al., 2020), we start with an existing mul-
tilingual pre-trained model and fine tune it with
our RCP objective. Unlike DAPT, we are not inter-
ested in specializing in a particular domain, but in
increasing robustness to errors. As mentioned be-
fore, we use (unfiltered) pairs of correct/incorrect
sentences from the multilingual Wikipedia archive
and include sentences from the Lang8 corpus.® The
Lang8 corpora consists of a smaller number of
sentences compared to the Wikipedia corpus, but
proves to be apt for our purpose; it consists of pairs
of sentences— one written by a non-native speaker
who is learning the language (eg. “As the winter

>One obvious choice would be for clean sentence with
index 24, the noisy sentence has index 27 — 1.

®https://sites.google.com/site/
naistlang8corpora/
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Dataset Task  Size (training) Languages Epochs Learning Rate Seeds
MultiATIS++ (Xu et al., 2020)  IC/SL 5k de,en,es,fr,hi 80 1E-04 5

+ training data aug. 18k de,en,es,fr,hi 20 1E-04 5
MultiSNIPS IC/SL 13k en,es,fr,hi 40 1E-04 5

+ training data aug. 72k en,es,fr,hi 10 1E-04 5
WikiANN (Pan et al., 2017) NER 20k de,en,es,fr,hi,tr 3 2E-05 5
XNLI (Conneau et al., 2018) NLI 392k de,es.fr,hitr 5 2E-05 5

Table 1: Data-set characteristics and hyper-parameters for our experiments.

Model Original/ Noisy =~ MultiATIS++ MultiSNIPS Wiki-ann ~ XNLI
IC% SL-F1I 1IC% SL-F1 NER-FI NLI%

XLM-Rpase Original 90.68 71.45 9293 68.01 74.14 76.69
Noisy 89.65 62.3 9046 61.63 69.48 74.38

mBERT Original 86.29 6495 78.65 59.05 7392 70.82
Noisy 8542 55.17 7535 5371  69.38 68.44

Table 2: Performance of pre-trained multilingual models on the four multilingual datasets averaged across languages
and 5 seeds. XLM-Ry,s. outperforms mBERT on Original and Noisy test data across all metrics.

is coming, I’m getting to feel better.”) and a re-
write of this sentence by a native speaker (eg. “as
the winter is coming, I’m starting to feel better.”).
More details about the individual corpora can be
found in Appendix C.

We note that the pre-training corpus is not ex-
actly the same set of sentences used to construct
our noise dictionaries in §3.1. In this case, the
only criteria for inclusion is a length difference of
< 5 tokens, and a relative edit-distance of 30% of
the shorter sentence (see appendix C for more de-
tails). Hence, we incorporate training data from the
corpora that exhibit changes beyond simple typos
(such as paraphrasing, sentence-level morphologi-
cal variance) in the pre-training stage.’

Similar to Gururangan et al. (2020), we fine
tune for 25k steps with a batch size of 2048
sentences to create two pretrained models— one
with Econtrastive + EMLM—noisy + EMLM—Clean (referred
to as Robust Contrastive Pre-training or RCP)
and an ablation without the contrastive term, i.e.
LMLM-noisy + LMLM-clean- The latter setting rep-
resents a pure (pre-training time) data augmenta-
tion approach such as Tan et al. (2020) (termed
p(aug) in Table 3). See Appendix D for more hyper-
parameters and settings.

5 Experiments and Results

We divide this section into three parts. In §5.1,
we analyze the robustness of popular multilingual
language models in the zero-shot cross-lingual set-

"Unfortunately, the benefit of including sentence-level
noise in the pre-training phase is not directly examined by
our benchmarks, which focus more on word-level noise.

ting. In §5.2, we show that Robust Contrastive Pre-
training (RCP) improves the robustness of existing
baselines on noisy test-data for all tasks— joint in-
tent classification and slot labeling (IC-SL), Slot-
Labeling (SL) Named Entity Recognition (NER)
and Natural Language Inference (NLI)- and (not
only maintains but) improves performance on the
original test data. Finally, in §5.3, we conduct fail-
ure mode analysis for MultiATIS++ and discover
that the model trained with RCP makes more ex-
plicable sequence-labeling errors (for slot-value
prediction) in comparison to existing baselines.

Setup We consider four datasets (shown in Ta-
ble 1) and four metrics for evaluation. Two of these
metrics consider sentence classification accuracy—
Intent classification Accuracy (IC%) for the goal-
oriented dialog text datasets MultiATIS++ and Mul-
tiSNIPS, and classification accuracy (NLI%) for
XNLI. We also consider F-score for sequence-
labeling tasks— Slot Labelling (SL-F1) for Mul-
tiATIS++ and Multi-SNIPS++ and Named En-
tity Recognition (NER-F1) for Wiki-ann. Table 1
shows the languages present in the noisy test data
and the size of the English training data used in
our zero-shot cross-lingual setting. Note that for
task-time data augmentation, we follow the strat-
egy of aggregate noise augmentation proposed in
(Sengupta et al., 2021) for English, which involves
augmenting training data with a variety of synthetic
noise types such as typos, making words ALL-
CAPS, abbreviations etc. As this augmentation
procedure increases the size of the training data-set
~ 3.5 times for MultiATIS++ and ~ 5.5 times for
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Task Metric XLMR XLMR XLMR XLMR XLMR Gain
+p(aug) +t(En-aug) +RCP +RCP+t
(Ours) (Ours)
MultiATIS++ IC% 89.65 93.10 91.26 93.80 94.57 +4.92
SL-F1 62.30 67.47 74.62 67.45 80.68 +18.38
MultiSNIPS 1IC% 90.46 93.98 91.60 93.79 94.53 +4.07
SL-F1 61.63 66.67 66.44 67.69 70.20 +8.57
Wiki-ann NER-F1  69.48 72.32 - 72.37 - +2.89
XNLI NLI% 74.38 74.83 - 75.06 - +0.68

Table 3: Average performance across languages and five seeds. We abbreviate the baselines, multi-lingual pre-
training time augmentation as p(aug), and English task-time (aggregate) data augmentation as t(En-aug). ‘RCP’
stands for ‘Robust Contrastive Pre-training’, and ‘RCP + t" means combining RCP with task-time data augmentation.
‘Gain’ refers to the increase in performance of the best method vs. XLM-Ryqge.

MultiSNIPS, we find that training for fewer epochs
yields the best results.

5.1 Robustness of Multilingual Models

We compare the robustness of two popular pre-
trained language models— XLM-Rp,se and multi-
lingual BERT in the zero-shot cross-lingual set-
ting.® In this setup, we fine-tune the pretrained
language models on the task-training data in En-
glish and test (zero-shot) on multilingual test sets.
The results reported in Table 2 are averaged across
multiple languages for brevity (and provide a de-
tailed breakdown in Appendix E). A secondary
goal of this experiment was to decide which pre-
trained model to use for further experiments and
we base our judgements on twelve metrics across
four datasets.

Noise always leads to a decrease in performance.
On average, the accuracy of both models decreases
by &~ 2% for sentence-level tasks (IC%, NLI%),
and by =~ 6.6 F1-points on sequence-labeling tasks
(SL, NER), on noisy data compared to clean data.
This can perhaps be explained by the ability to
ignore a particular token for sentence-level tasks,
whereas every token, including noisy ones, need to
be assigned a label for sequence-labeling tasks.

We observe that XLM-Ry, outperforms
mBERT on all the twelve metrics. For sentence-
level tasks (i.e. IC%, NLI%), XLM-Ry,s outper-
forms mBERT by 8.43% on average on the noisy
test-sets and for sequence-tagging tasks (i.e. SL,
NER), XLM-Ryse outperforms mBERT by 5.1 F1-
points. In general, XLM-Rp, also seems to be a
model better suited for these tasks in the zero-shot
cross-lingual setting, as we also see similar gains
when using XLLM-Ry, on the clean data.

8We also considered Canine-c (Clark et al., 2021), a token-
free baseline, but observed poor performance compared to
XLM-Rpase and BERT on IC-SL tasks (see Table 10).

Task Metric XLMR  Ours Gain
MultiATIS++ IC% 90.68 9532 +4.64
SL-F1 71.45 84.07 +12.62
MultiSNIPS IC% 92.93 95.66 +2.73
SL-F1 68.01 74.39  +6.38
Wiki-ann NER-F1 74.14 76.34 +2.2
XNLI NLI% 76.69 76.75  +0.06

Table 4: Comparison of our RCP method with the base-
line XLM-Ry,s model on the original (clean) test data.

Breaking the results down by language (see Ap-
pendix E for detailed results), XLM-Rp, outper-
forms mBERT on average across all languages.
Specifically XLM-Rp,se outperforms mBERT on
German (in 6/8 metrics), on Spanish (10/10), on
French (8/12), on Hindi (12/12), and on Turkish
(4/4). As German is missing in MultiATIS++ and
Turkish is only present in WikiANN and XNLI
among the four datasets, the overall number of met-
rics is less than 12 for these two languages. Given
these results, we consider XLM-Rp.se as the base-
line multilingual language model in the rest of our
experiments.

5.2 Robust Contrastive Pre-training Results

To showcase the efficacy of our RCP approach,
we compare our approach to a popular multilin-
gual model XLM-Rp,se, Which performed best in
the previous section, and two augmentation solu-
tions that were proposed earlier and shown to im-
prove robustness of English language models to
real-world noise. First, we consider a pre-training
time data augmentation approach, similar to Tan
et al. (2020), by continuing to pre-train XLM-Rpase
on noisy multilingual data; see section 4. Next, we
consider augmenting task-time data with a combi-
nation of various noise types, following Sengupta
et al. (2021) that shows using this aggregate data
augmentation during task-time finetuning improved
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Error Type Utterance

Slot-lables

Hallucination
uber Los Angeles fliegt
Contextual
Miami

Ichs brauche einen Flug von Memphis nach Tacoma, der

Zeige mit der Erste-Klasse und Coach-Fliige vom JFK nach

+ O (iiber)

! airline_code

« fromloc.airport_code
! toloc.airport_code

Table 5: Examples of slot labeling errors in German— errors are in ifalics; misclassified tokens are bold.

performance on both noisy and clean data for IC-SL
tasks like ATIS and SNIPS. For the latter, we treat it
as a baseline for zero-shot cross-lingual transfer for
the dialog-datasets—MultiATIS++ and MultiSNIPS—
and also combine it with our pre-training time ap-
proaches.

As shown in Table 3, our approach can improve
the performance of current multilingual models
across all 4 tasks and datasets. For the multilin-
gual goal-oriented dialog datasets, our approach
coupled with task-time augmentation outperforms
all the other methods. We observe that the gain for
SL tasks is higher than that obtained for IC tasks.
Although we analyze the SL results further in §5.3,
we highlight that IC accuracy is less affected by
noise than SL F1; this provides more headroom
for improving SL metrics. The highest gains are
observed for Hindi where the XLM-Rp,s. model
has the worst SL performance on noisy data (42.86
for MultiATIS++, 36.93 for MultiSNIPS). Like-
wise, we also observe improvement on XNLI%
and NER-F1; the largest improvement is again seen
on the noisy data for Hindi. Overall, the gain on
sequence-labelling tasks is larger than the gain on
sentence-level classification tasks.

Does this improvement on noisy data come at
the cost of worse performance on clean data? In
Table 4, we show that the best performing mod-
els shown in Table 3 (XLMR+RCP+t for Multi-
ATIS++ and MultiSNIPS, and XLMR+RCT for
WikiANN and XNLI) also improve the perfor-
mance on clean test data. Further, the magnitude
of growth seen on clean data is like the ones seen
on the noisy test data. For slot-labeling errors, we
observe a particular kind error which occurs on
both clean and noisy data that our model mitigates;
we provide more details on this in the next section.
For IC and XNLI, we found no specific error pat-
tern that distinguishes between XLM-Rp,se and our
model. Thus, we believe that our approach mostly
improves the overall quality of the model’s repre-
sentation rather than just its downstream robustness.
In the future, one can consider if an upper bound
on model quality exists beyond which the tension

| Baseline (XLMR) is better

30 40 50

0 10 20 60 70

Number of slot labels —

Figure 4: Comparing the number of slot labels for which
our model vs. the baseline performs better.

between accuracy on clean data and robustness to
real-world noise emerges (Tsipras et al., 2018).

Finally, we note that beyond improving perfor-
mance on clean and noisy data, our approach re-
duces the disparity in performance between the
clean and noisy test sets. For MultiATIS++, the
disparity reduces by 0.3% for IC% and 5.76 for
SL-F1; for MultiSNIPS, it reduces by 1.34% for
IC% and 2.19 for SL-F1; for WikiANN, it reduces
by 0.68 for NER-F1; and for XNLI, it reduces by
0.9% for NLI1%.

5.3 Result Analysis

Given the large improvement seen on sequence
labeling tasks, we zoom in on the SL metrics for
MultiATIS++. In Figure 4, we show the number of
slot labels on which our method outperforms (has
fewer misclassifications than) the baseline, vice
versa, and where they perform equally. Our method
clearly out-performs the baseline on at least twice
the number of slot-labels— 2x better on German,
/2 2.6 times on Spanish and on Hindi, and ~ 4x
on French. Across all languages, our model always
outperforms XLM-Ryp,se 0On eight slot-labels. These
slots correspond to relative times (‘leaves in the
evening’), relative dates (‘traveling the day after
tomorrow’), relative costs (‘cheap flights’), meal
names (‘flights that offer breakfast’), and carrier
tokens/non-slot values (‘that offer breakfast’). We
postulate these slot values are more common in the
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N/O Model de es fr hi

Noisy XLMR 315 358 413 671
XLMR+RCP+t 21 123 33 204

Original XLMR 208 262 334 460

XLMR+RCP+t 19 106 22 180

Table 6: Reduction in hallucination error (i.e. model
identifies irrelevant tokens as a slot value) counts.

Languages de es fr hi

(r1) Top-confusion changes 7 8§ 6 17
to no-label (w/ RCP)

(r2) Confusions becomes 8 3 3 4
more explicable (w/ RCP)

Table 7: Number of slot-labels that our model misclassi-
fied to (r1) a no-slot or (r2) a more explicable slot-label.

pre-training data compared to proper nouns such as
airline, airport or city names and thus, understood
in noisy contexts. In turn, variations of these words
are mapped closer in the embedding space and the
classifier is more robust to such errors.

Upon further analysis, we observe two distinct
patterns— (1) reduction in hallucination errors, i.e.
errors where an irrelevant carrier phrase token is la-
beled to be a slot value, and (2) errors become more
contextual— misclassification is to related classes
(see examples in Table 5).

In Table 6, we highlight the distribution of hallu-
cination errors and observe that the number of car-
rier phrase tokens that the baseline XLLM-Rp,se mis-
classifies as a slot-value reduces (by > 10x for
German and French, and ~2-3x for Hindi and
Spanish) with our approach on both the original
and the noisy test data. This observation aligns
with our initial reasoning that the contrastive loss
term at pre-training time helps the model develop
a better understanding of non-slot words as the
model learns to identify such words (and their noisy
forms) in both linguistically correct and noisy con-
texts. Note that the latter signal is missing for the
XLM-Rpase baseline.

For a subset of the slot labels, the class to
which it was misclassified (with the highest fre-
quency) differed between the XLLM-Rp,s. baseline
and our model. In Table 7, we highlight two
scenarios where the most-confused label changed
from (r1) an incorrect slot label (eg. meal_code
— airline_code) to no-label (i.e. meal_code
— 0O), and (12) from an inexplicable slot label
(state_code — transport_type) to a more explica-
ble one (state_code — state_name) when the RCP

method is used (we use the explicable/inexplicable
terminology of Olmo et al. (2020)). Thus, our ap-
proach inadvertently improves the explicability of
the failures made during slot-labeling.

6 Conclusion

In this paper, we investigate the robustness of pre-
trained multilingual models in the zero-shot cross-
lingual setting on four tasks— intent classification,
slot labeling, named entity recognition, and natural
language inference. Given the dearth of existing
datasets to benchmark the robustness of existing
multilingual models, we develop noisy test data
by injecting errors mined from an edit corpus (and
conduct expert evaluation for quality assurance).
Our identification of noise types across various lan-
guages motivates the necessity of language specific
investigation in the future. Finally, demonstrate
existing baselines perform poorly in the presence
of noise in the test data and propose Robust Con-
trastive Pretraining to boost the robustness of these
multilingual models.

7 Ethical Considerations

For the human annotation tasks of (1) identify-
ing language-specific noise types, and (2) rank-
ing their realism, we leveraged the effort of full-
time employees at Amazon. The annotators had
advanced degrees in linguistics or natural language
processing, and were fluent/native in the languages
they annotated. Amazon compensated them un-
der a competitive industry rate, which is above the
minimum hourly pay rate, for their particular job
role (which included Applied/Research Scientists,
Software/Language Engineers, Linguists, and Lan-
guage Consultants).

Acknowledgements A special thanks to Saab,
Batool Haider and M. Saiful Bari for sharing with
us the MultiSNIPS dataset. In addition, we want
to express our gratitude to members of the AWS
Al Lab for their valuable comments, suggestions,
and participation in our pilot and human label-
ing studies (in no particular order)— Sebastien
Jean, Volha Belash, Arshit Gupta, Berk Sarioz,
Maansi Shandilya, Raphael Shu, Abhilash Pani-
grahi, Lorenzo Lambertino, and Yi Zhang. Finally,
we are grateful to the anonymous reviewers who
have helped us improve this paper.

1383



8 Limitations

8.1 The Umbrella of Realistic Noise

‘Realistic noise’ is too abstract a category. We
mostly concern ourselves with real-world errors
and their corrections appearing in existing corpora
(with criteria like a small character-level edit dis-
tance). But this could include things like better
paraphrasing, use of more appropriate synonyms
or morphology that can be viewed as language vari-
ation rather than noise; this could be one reason
we notice improvements on the original (i.e. un-
noised) test data. Yet, to distinguish ourselves from
the terminology of synthetic or adversarial noise,
we choose this (imperfect) terminology of real-
world/realistic noise as in Sengupta et al. (2021) to
bracket all our noise types under a single class.

8.2 Language Choice and Diversity

This work considers (relatively) high-resource lan-
guages. This makes it easier for us to find publicly
available corpora from where we can mine error/-
correction data and use it to improve the model’s
understanding of errors and, in turn, boost their
robustness to real-world noise. But this is only
the first step towards developing an understanding
of noise phenomena in languages beyond English,
bench-marking multi-lingual model performance
in such settings, and improving their robustness.
Further, we do notice that Hindi (and, to some ex-
tent, Turkish) are relatively low resource languages
when it comes to pre-training data (see Table 8 in
Appendix). We hope future work builds on this and
explores a greater variety of languages.

8.3 Zooming-in on Individual Tasks

Many of our human studies are based on a subset
of datasets (eg. MultiATIS, XNLI). It is possi-
ble individual tasks and further, individual datasets
need more fine-grained human attention. Given
language expertise for several datasets and several
languages is difficult/costly, we made the choice
to concentrate on a smaller number of datasets in
order to provide a more rigorous analysis. We
hope future work can expand the number of tasks
and datasets covered so we have a more compre-
hensive analysis of how multilingual noise affects
pre-trained models.
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A Examples of Noise/Errors in the test set

In this section, we highlight an example of some of the unique noise types observed for certain languages

shown in Figure 5.

fr de es tr zh Jis} hi
o 26.7% 9.5% 17.8% 50
&
10.0% 18.5% 0.0% 0.0% 0.0% 0.0% 0.0%
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& a0
«139 @ 100% 12.3% 00% 0.0% 0.0% 00% 0.0%
&Q
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<
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’Od\\&
<&
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&
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Figure 5: Noise types seen across various languages.

A.1 Typographic Errors (Typos)

Two examples follow for Hindi and Chinese, where experts evaluated based on the Indic Script and the
Pinyin keyboards (which is what they use regularly) respectively.

Language Examples
Hindi (hi)  &9EW & a9 & [Fi6] Featar a I
Chinese (zh) %1 36 FElfift 25 i) = B 2R IR B QAR ST 220 T BE Do i | i e1s] S TS il = A0

R GRS SR HE

A.2 Preposition Errors

We noticed language experts tagged preposition errors for French and German. Examples follow:

Language

French (fr)

Examples

Je veux un vol aller-retour [de | 2] Memphis a Seattle .

German (de) Wie sieht es [am | im] Mittwoch morgen mit Fliigen von DC nach Oakland aus
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A.3 Diacritic Errors

Some languages use diacritic characters; although even these diacritics may greatly differ depending on
script. Examples from Hindi and Spanish follow.

Language Examples

Spanish (es) ;puedo tomar el vuelo [mds | mas] corto de milwaukee a orlando ?

Hindi (hi)  d9s fer [ae | ave) & faamr &

A.4 Conversion Errors

Kanji conversion error. This error was unique to the Japanese language. Examples follow.

Language Examples
Japanese ja) 7 MT7 v F oy MV A AETOKIEHFE 2 K30 4> [PART | KK D 7
7 4 b

A.5 Homophonic Errors

This error was unique to Chinese. Words with the same pronunciation (potentially with different tones),
but different spelling. Examples follow.

Language Examples

Chinese (zh) E5HAM BEAZHL | IEA2HL] ISR BT

A.6 Synonym

Experts marked these as use of a different synonym in Spanish and Chinese only. Note that such variations
may not be erroneous but is still considered a noise given they are not used in the original training/testing
data in the given context as much. Examples follow.

Language Examples

Spanish (es) el préximo miércoles , me gustaria salir de kansas city en [un | el] viaje a chicago que
llegue a chicago alrededor de las 7 p m.

Chinese (zh)  {5H M ewr [F] | FL 2] LT A9 Hb R AZ 1

A.7 Anglicized

We observed this errors only for Turkish and noticed that experts marked scenarios where an alphabet in
the native script was replaced with a particular one in the latin script. Examples follow (note that Turkish
examples are drawn from the XNLI dataset, while the others were drawn from MultiATIS++).

Language Examples

Turkish (tr) Sonrasinda, ilk ziyareti yapmis olan aym temsilci, sorulari cevaplamak ve sikayet
orneginde not edilen sorunlari tartismak [icin | icin] yeni saglayiciy1 yeniden ziyaret eder.

Konfederasyonun hukuk felsefesi, hem maddi hem de iislupla [kars1 | karsi] karsiya geldi.
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B Chinese and Japanese Edit Mining

Our two character edit distance criteria for obtaining word-level correct-noisy pairs of words does not
work well for Chinese characters, including Kanji for Japanese. This is because words are made up of only
a small number of characters (relative to e.g. latin scripts). So we can completely change the semantics
with only a small character-level edit distance. We therefore used different noise types: Homophonic
and Synonym errors for Chinese and Kanji Conversion errors for Japanese, with brief descriptions and
examples in Appendix A. In order to collect homophonic errors we converted words to pinyin® (without
tone markers) and checked if they were the same in pinyin but different in Chinese characters. To collect
synonym noise we labelled words with part-of-speech (POS) tags '°, and kept words that weren’t labeled
as nouns, verbs, adverbs, keeping e.g. prepositions and conjunctions, with the hope that these would be
less likely to involve the kind of big semantic changes you might get with changes to e.g. proper nouns
like place names.

However this process was largely driven by trial and error and more work is needed to create a principled
pipeline that creates a realistic noise dictionary for these languages.

Finally for Kanji we re-use the criteria of Tanaka et al. (2020) as we re-use their dataset of sentence
pairs: checking if the two sentences (containing Kanji) have the same reading.

C Data Details

Table 8 shows the number of Wikipedia and

) o Language Lang8 Wikipedia Total
Lang8 sentences (in Millions) we used for fine-

. - . .. en 2.5 3.8 6.3
tuning the multilingual models in the pre-training de 02 13 132
stage (§4). As stated earlier, the proportion es 0.2 7.6 7.8

: : fr 0.2 10.7 10.9

of data .ot.)taln.ed from the Lang8 corpus is less hi 0.001 o1 0.101
than Wikipedia for most languages except En- ja 42 1 52
glish (where it is comparable) and Japanese tr 0.02 0.4 0.42
zh 0.6 1.9 2.5

(where Lang8 has ~ 4z the data compared to
the Wikipedia corpus). In general, Hindi (and
Turkish) stand out as a relatively low-resource
language in our investigation with less than 0.5
Million sentences.

Table 8: Number of sentences (in millions) used for pre-
training.

Table 9 lists the number of correct/incorrect pairs (in
Millions) used for noise dictionaries to create the test-sets
for the various languages (§3). Here too, we can observe

Language # Pairs (in Millions)

en 0.13

de 0.33 that the number of corrections are relatively less for Hindi.
es 0.21 Interestingly, the number of errors for Chinese are the least
fr 0.27 . N

hi 0.04 although it representation is significantly more compared to
ja 0.05 Hindi. This low number of errors is inline with our human
t; 83? studies where even the 5% error injection was deemed to
z .

be unrealistic; futher, such low pairs of errors also reduced
the diversity of our test set, which would eventually results
in a lower-quality test-set. Hence, we drop it from our
evaluation benchmarks.

Table 9: Number of Error pairs by language.

D Pre-training Settings

For our experiments with Robust Contrasting Pretraining (§4) and variants we use the following hyperpa-
rameters and setup. We train on 4 Nvidea V100 GPUs, with a per-gpu batch size of 8 sentences with a
maximum sequence length of 128 tokens, and 64 gradient accumulation steps, for an overall batch size
of 64 x 8 x 4 = 2048 sentences. We use a masked language modeling mask probability of 15% and a

9Using the pinyin Python package https://pypi.org/project/pinyin/
1With the jieba Python package https://pypi.org/project/jieba/.
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learning rate of le-4 with the Adam optimizer (Kingma and Ba, 2015), and used 16-bit floating point
operations. See below for the arguments of the Huggingface transformers (Wolf et al., 2020) masked
language modelling script which we modified'

python -m torch.distributed.launch --nproc_per_node 4 run_mlm.py \
—--model_name_or_path xlm-roberta-base \
——gradient_accumulation_steps 64 \
—--validation_split_percentage 1 \
——per_gpu_train_batch_size 8 \
—-—dataloader_num_workers 32 \
--model_type xlm-roberta \
—-mlm-probability 0.15 \
——-learning_rate le-4 \
—-num_train_epochs 5 \
--max_seq_length 128 \
—-—line_by_line \
—-—do_train \
——do_eval \
—-seed 42 \
-—-fplé6

E Per-language Results

Table 10 shows the performance of multilingual models like m-BERT and XL.M-Ry, on individual
languages. We note that the reduction in performance for high-resource language (e.g. German, French,
English) is higher than low-resource languages for several settings. To explain this seemingly surprising
result, first notice that the metrics on low-resource languages are already bad, even on clean data. Second,
the variety of noise seen for low resource languages is less (see Table 9) compared to high-resource
settings. Hence, the effect of less diverse noise in low-resource languages doesn’t have as large an adverse
effect on already poorly performing models.'?

Another hypothesis, pending future investigation, is that multi-lingual models trained on more high-
resource language data overfit to clean test-sets for these languages and fail to generalize better when
faced with noise. For low resource languages, the performance on clean data is already poor because of a
lack of sufficient language understanding that prevents over-fitting.

11https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_mlm.py

12We are told a saying goes (coincidentally) in Hindi, mare hue ko kya maroge, saheb?. It implies you cannot do much (by
adding noise) to kill the (model that is already) dead.
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Dataset Model Metric C/N  de en es fr hi tr Avg.

MultiATIS++  XLMR 1C% C 924 987 920 906 796 - 90.7
N 909 97.6 91.8 895 784 - 89.6
SLFI C 744 960 73.6 704 429 - 71.5
N 673 822 682 656 382 - 62.3
mBERT
1C% C 833 983 84.7 888 763 - 86.3
N 812 976 843 879 761 - 85.4
SLF1 C 59.9  96.0 65.1 698 339 - 65.0
N 516 785 602 643 313 - 55.2
(XLMR vs mBERT) 4,0 1,3 40 40 40
Canine-c 1C% C 6632 9651 7841 7606 71.55 - 77.77
N 6513 9590  78.08 7506 71.15 - 77.06
SL-FI  C 3156 92.19 1952 23.67 2281 - 37.95
N 3242 7851 2025 2441 2245 - 35.61
MultiSNIPS++  XLMR IC% C - 98.8 940 913 876 - 92.9
N - 98.4 924 870 841 - 90.5
SL-FI C - 96.9 720 662 369 - 68.0
N - 92.7 633 577 328 - 61.6
mBERT
IC% C - 98.9 88.0 885 393 - 78.6
N - 98.2 84.1 829 362 - 75.4
SL.F1 C - 96.5 654 599 145 - 59.1
N - 91.3 58.1 524 130 - 53.7
(XLMR vs mBERT) 3,1 40 22 40
Canine-c 1C% C - 6939  32.88 3639 2328 - 40.48
N - 69.30 3257 3499 2368 - 40.13
SL.F1 C - 0.89.31 24.09 2306 693 - 35.85
N - 87.86 223 2149 7.02 - 34.67
WikiANN XLMR NER-FI C 749 - 752 772 615 759 741
N 716 - 700 711 651 695 69.1
mBERT
NER-FI C 786 - 721 795 662 731 739
N 754 - 67.1 742 630 673 694
(XLMR vs mBERT) 0,2 20 02 20 20
XNLI XLMR NLI% C 764 846 788 779 697 729 767
N 726 807 764 757 703  70.6 744
mBERT
NLI% C 711 820 749 742 605 622 708
N 675 779 731 718 615 591 684
(XLMR vs mBERT) 2,0 2,0 2,0 20 20 20

Table 10: Per-language results of cross-lingual transfer from English data (average of 5 random seeds) across 4
datasets analyzed in §5.1 to compare between existing pre-trained multilingual models.
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