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Abstract

Supervised machine learning has become the
cornerstone of today’s data-driven society, in-
creasing the need for labeled data. However,
the process of acquiring labels is often expen-
sive and tedious. One possible remedy is to
use active learning (AL) – a special family of
machine learning algorithms designed to re-
duce labeling costs. Although AL has been
successful in practice, a number of practical
challenges hinder its effectiveness and are of-
ten overlooked in existing AL annotation tools.
To address these challenges, we developed
ALANNO, an open-source annotation system
for NLP tasks equipped with features to make
AL effective in real-world annotation projects.
ALANNO facilitates annotation management in
a multi-annotator setup and supports a variety
of AL methods and underlying models, which
are easily configurable and extensible.

1 Introduction

We are witnessing an ever-growing demand for
data along with the rapid development of machine
learning and deep learning algorithms. In partic-
ular, we need an abundance of labeled data to de-
velop well-performing models, which is not easy
to obtain. For many natural language processing
(NLP) tasks, the labeling process, i.e., annotation,
is often the most expensive and time-consuming
part of developing machine learning models. The
cognitive exertion of human annotators can affect
their judgment, which further affects label validity.
Consequently, this manifests in poor agreement – a
proxy for label reliability, which is a prerequisite
for validity (Artstein and Poesio, 2008; Paun et al.,
2022). Poor label reliability and validity negatively
affect the machine learning algorithm, as it is only
as good as the data it consumes.

Designed to alleviate labeling issues and reduce
annotation cost, active learning (AL; Settles, 2009)
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is a special family of machine learning algorithms.
In contrast to the standard random selection of in-
stances for labeling, a typical AL method itera-
tively queries the most informative instances for
the underlying model to achieve the best possible
performance with the fewest possible labels. AL
has been shown to reduce annotation effort across
machine learning applications, e.g., (Beluch et al.,
2018; Zhang and Chen, 2002), especially in NLP,
e.g., (Chen et al., 2012; Settles and Craven, 2008;
Ein-Dor et al., 2020).

Despite the demonstrated successes of AL, many
challenges are involved in deploying AL in real-
world scenarios (Lowell et al., 2019; Attenberg and
Provost, 2011). Unfortunately, these challenges are
often overlooked in both research and practice. In
particular, annotation tools that support AL rarely
address the problems of unbiased evaluation of
AL, imbalanced data, and stopping criteria for AL.
The lack of concrete solutions for these problems
hinders the effectiveness of AL. Aside from the
practical challenges in AL, managing annotation
campaigns is often very cumbersome, especially
in multi-annotator setups (when multiple annota-
tors are assigned to a single instance). Specifically,
assigning instances to multiple annotators can be
painstaking, particularly if one aims to achieve bal-
anced combinations of annotators across instances.
While there are many serviceable frameworks for
simulating AL in idealized scenarios, e.g., (Danka
and Horvath, 2018; Tang et al., 2019; Schröder
et al., 2021), there are only a few tools for running
real-world AL annotation campaigns with multiple
annotators, none of them explicitly addressing the
practical AL challenges.

To facilitate the creation of high-quality NLP
datasets at reduced annotation costs, we developed
ALANNO (Active Learning Annotation), an open-
source annotation system with AL strategies for
data sampling. ALANNO’s is specifically designed
to address the practical challenges of AL and fa-
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cilitate the management of multi-annotator anno-
tation projects. In particular, ALANNO guides to-
ward more quality labels with a novel method for
the balanced assignment of unlabeled instances
to annotators in a multi-annotator setup. We sup-
port building gold labels by monitoring the inter-
annotator agreement with task-specific metrics and
agreement-aware weighted aggregation of labels.
Equally important, ALANNO incorporates many
features to address the major challenges of using
AL in practice. Namely, we support guided learn-
ing (Attenberg and Provost, 2010) for mitigating
data imbalance, and we ensure trustworthy eval-
uation of the underlying model on an unbiased
test set and a stopping criterion to maximize the
effectiveness of AL. As an essential practical solu-
tion, we enable a project-specific stopping criterion
with a novel performance forecasting method based
on Bayesian regression. By estimating the perfor-
mance of the underlying model with hypothetically
enlarged labeled sets, we enable practitioners to de-
termine on the spot whether further annotation will
only have diminishing returns. Lastly, ALANNO

supports a wide range of state-of-the-art AL meth-
ods from the literature, allowing seamless inclusion
of new models or methods.

In summary, our main contribution is ALANNO,
an open-source AL annotation system for NLP
tasks, which features (1) practical strategies for
applying AL to real-world problems with a range
of AL methods and (2) annotation management
facilitation in a multi-annotator setup with qual-
ity control. ALANNO enables non-experts in AL
to reap its benefits by accounting for key practi-
cal issues in annotation management and AL. In
two case studies, we demonstrate ALANNO’s two
key features – balanced data assignment and AL
performance forecasting. We also provide a short
video1 demonstration and release the code2 under
the Apache 2.0 license. While ALANNO has been
born out of several years of experience with NLP
annotations for various tasks and has evolved with
each new project, it remains highly configurable,
allowing easy customization and extension.

2 System Overview

We briefly describe the key aspects of ALANNO,
which include projects, data assignment, label man-

1https://www.youtube.com/watch?v=
hPcHPM8ttvE

2https://github.com/josipjukic/alanno
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Figure 1: Organization of an ALANNO project. The lines
between the icons indicate different lines of interaction,
with the numbers denoting the temporal order. In brief,
the project manager recruits annotators 1 , creates la-
bels 2 , and imports the unlabeled data 3 , which are
then appointed to annotators via an assignment algo-
rithm 4 , 5 . The annotators use the created labels 6
to annotate the data 7 .

agement, and annotation.

Projects. In ALANNO, the entire annotation pro-
cess is encapsulated into a project, which handles
the interactions between different parts of an an-
notation project, as depicted in Figure 1. A typ-
ical NLP annotation project is long-lasting and
dynamic: annotators may be temporarily unavail-
able, new annotators may join an already-running
project, and others may leave. ALANNO supports
the managing of such a workforce dynamic. To sep-
arate the concerns and responsibilities, ALANNO

defines two user roles: project managers, who are
in charge of the annotation campaign, and annota-
tors, whose task is to apply labels to the unlabeled
data. At the moment, project managers can create
three main types of projects: single- and multi-
label classification, as well as sequence labeling
tasks (e.g., named entity recognition).

Data assignment. Due to the dynamic nature of
real-world annotation campaigns, it is convenient to
separate the annotation process into smaller chunks.
Moreover, annotation is an incremental process
that often requires calibration in the initial phases.
To meet these needs, the workload in ALANNO

is divided into rounds, where each round can be
configured independently. The project manager
can specify the number of unlabeled instances to
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Figure 2: Data assignment interface

Figure 3: Annotation interface

be assigned, select annotators for the round, and
the number of annotators per instance (Figure 2).

Annotation. The annotation interface (Figure 3)
depends on the project type. For classification
tasks, we support a single-label setup, where only
one of the labels can be applied, and a multi-label
setup with the possibility of applying multiple la-
bels. In addition, we cover a large variety of se-
quence labeling tasks, where it is only necessary
to define labels to fit the context of a specific use
case. For example, one can define organization,
person name, and location as labels for named en-
tity recognition. Annotators can then select spans
of text that fall into one of the defined categories.

Data management. The end product of an
ALANNO project is the annotated dataset, which
consists of labels gathered from annotators.
ALANNO offers the user a choice between export-
ing an aggregated dataset, in which each instance
appears precisely once with a single label obtained
by aggregating the labels of different annotators,
or a complete dataset, where each instance appears
as many times as it has been annotated. The latter
option is in line with recent recommendations to
publish annotated datasets with the original labels
rather than adjudicated labels (Kenyon-Dean et al.,

2020), allowing for disagreement analysis, train-
ing of models that predict soft labels, e.g., (Pavlick
and Kwiatkowski, 2019), or application of statisti-
cal label aggregation techniques, e.g., (Qing et al.,
2014; Hovy and Yang, 2021; Gordon et al., 2021).
Furthermore, to make it possible to follow up on
earlier annotation projects, ALANNO supports par-
tially annotated datasets where the annotations are
specified as user-label pairs.

3 Features

Motivated by our experience in annotation projects
and the practical challenges that emerge when de-
ploying AL, we designed practical solutions that
enable efficient labeling in real-world scenarios.
We identified several key challenges, which, if not
adequately addressed, may impair label quality and
AL efficiency. Specifically, we focused on (1) label
reliability, (2) unbiased evaluation of active learn-
ing models, (3) the stopping criterion for active
learning, i.e., knowing when to terminate the active
learning process, and (4) working with imbalanced
data.

3.1 Annotation management
Annotation management in ALANNO is centered
around the first critical challenge – label reliabil-
ity. We support agreement-aware label aggregation
and advanced data assignment to simultaneously
promote label quality and make the management
of annotation campaigns as seamless as possible.

Balanced assignment. Assigning unlabeled in-
stances to annotators is an important aspect of the
annotation process, in which combinations of an-
notators assigned to particular data points should
be balanced to achieve more reliable labels. We
have found that using uniform sampling based
on pseudo-random numbers results in unbalanced
combinations of annotators, with varying frequen-
cies of different annotator tuples. To mitigate this
and help improve label reliability, we developed
a Quasi-Monte Carlo assignment method based
on quasi-random numbers. In particular, we used
Sobol sequences (Burhenne et al., 2011) to produce
balanced combinations. In a scenario with n an-
notators and k annotators per data point, we draw
n dimensional vectors generated from the Sobol
sequence, where each element is in the [0, 1] in-
terval. We round the values to the nearest integer
(0 or 1). If a particular vector has exactly k ele-
ments with value 1, we distribute the data point

230



to the annotators at the corresponding indices of
the vector. Otherwise, we discard the vector and
draw a new one. The process is guaranteed to con-
verge since all possible combinations are covered in
the first 2n vectors from the sequence. This proce-
dure produces balanced combinations with uniform
frequencies of annotator pairs, triplets, and up to
k-tuples. We demonstrate its effects in a case study
in Section 4.

Monitoring agreement. In a multi-annotator
setup, annotator agreement is a strong indicator
of label quality. ALANNO computes the inter-
annotator agreement using metrics appropriate for
the particular NLP task. Specifically, we use Co-
hen’s κ coefficient (Cohen, 1960) to evaluate pair-
wise agreement for binary and multi-class annota-
tion. For the joint measure that considers all annota-
tors simultaneously, we use Fleiss’ κ (Fleiss, 1971).
On the other hand, for the multi-label setup, we use
Krippendorff’s α coefficient (Krippendorff, 2018)
paired with MASI distance (Passonneau, 2006) for
both pairwise and joint agreement.

Gold labels. Aggregating labels from multiple
annotators is a critical component of creating high-
quality datasets. In practice, different annotators
often have different reliability levels due to dif-
ferences in expertise. Such differences are excep-
tionally prominent with large groups of annota-
tors. Therefore, ALANNO generates gold labels
that consider an estimate of annotators’ reliability.
In particular, we aggregate the labels by assigning
each annotator a weight proportional to how many
times they assigned the majority label to a data
point (Qing et al., 2014). For tasks with multiple
labels, we chose to use the majority principle. The
weighted aggregation leaves room for future im-
provement by incorporating systems such as Multi-
Annotator Competence Estimation (MACE; Hovy
et al., 2013).

3.2 AL acquisition models and functions
ALANNO supports AL as one of the key features.
We incorporate practical solutions to mitigate the
problems of deploying AL in real-world scenarios.
We first describe what the system offers in terms
of acquisition models, i.e., the underlying models
used for AL, and acquisition functions, i.e., AL
methods.

ALANNO offers a rich palette of acquisition mod-
els for AL. We include various approaches to pre-
processing tailored for a specific language for the

NLP task at hand, including TF-IDF, customizable
n-gram models, and word embeddings, using En-
glish as the default language. Besides English, we
currently also support Croatian. ALANNO provides
many traditional models, including logistic regres-
sion, SVM, and random forest classifier. We also
support deep models such as recurrent networks
and Transformers (Vaswani et al., 2017).

ALANNO supports a wide range of active acquisi-
tion functions for both traditional and deep learning
models. Starting from uncertainty sampling (Set-
tles, 2009), a simple but powerful family of AL
methods, ALANNO covers the least confident, mar-
gin, and entropy methods. All uncertainty-based
methods are available for single- and multi-label
problems. We have also incorporated acquisition
functions that focus more on data diversity, such
as the informative density method, which lever-
ages information about the instances in the input
space and gives higher weights to instances in high-
density parts of the input space. From the family of
AL methods specialized for deep neural networks,
ALANNO provides the core-set method (Sener and
Savarese, 2017) and BADGE (Ash et al., 2019).

3.3 AL challenges and solutions
We describe the aforementioned practical chal-
lenges in AL (unbiased evaluation, stopping cri-
terion, and class imbalance) and our solutions that
aim to preserve AL effectiveness.

Unbiased evaluation. Before starting the anno-
tation process, ALANNO reserves a random sample
of the imported data to be used later as a test set.
In each round, managers can select how many test
instances drawn from the reserved pool should be
labeled out of the entire batch. In this way, one can
adequately evaluate the model, as the reserved pool
is not affected by the sampling bias (Prabhu et al.,
2019). Since the acquisition functions often rely
on the acquisition model’s output, it is important
to decouple evaluation and AL selection. A bi-
ased test set can lead to overestimating the model’s
performance, establishing a vicious cycle of unin-
formative queries in the early stages of acquisition.
This often leads to redundant labels and, conse-
quently, poorly performing models (Attenberg and
Provost, 2011).

Stopping criterion. Although several stopping
criteria for active learning have been proposed (Vla-
chos, 2008; Zhu et al., 2010; Laws and Schütze,
2008; Bloodgood and Vijay-Shanker, 2014), they
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Figure 4: AL evaluation and performance forecasting.
After each round, ALANNO re-trains the underlying AL
model and plots the corresponding performance on the
train set (the plot on the left-hand side). The perfor-
mance is calculated on an unbiased test set reserved
beforehand. We use F1 score for the classification tasks,
with confidence intervals approximated by bootstrap-
ping. The plot on the right-hand side shows test per-
formances on the data labeled so far (in green) and the
forecast of performance increase with additional anno-
tation effort (in gray).

are rarely employed in practice. We can save valu-
able resources by using a stopping criterion to iden-
tify when our model performs sufficiently well.
Even more helpful would be the ability to fore-
cast how much more data needs to be annotated
to reach the desired model performance. To this
end, we integrated a forecasting feature based on
Bayesian regression, which we have implemented
in Pyro (Bingham et al., 2019). The forecasting
functionality is a practical solution for the stopping
criterion, allowing annotation managers to gauge
the trade-off between the expected boost in per-
formance versus the additional annotation effort.
Figure 4 shows an example of evaluating an active
learning model and performance forecasting.

Class balancing through guided learning. AL
often struggles with imbalanced data. Moreover,
class balance is crucial for active learning strate-
gies, especially in the early phases of the annotation
process, as the model may have difficulty learn-
ing classes with low frequency. To address this,
ALANNO supports guided learning, also known as
active search (Attenberg and Provost, 2010). The
main idea of guided learning in NLP is to use key-
words to search for data points in the minority class.
This way, users can annotate the retrieved data to
make the class frequency distribution more uni-
form. We use BM25 (Robertson et al., 2009) as the
retrieval algorithm for guided learning.

k = 2 k = 3 k = 4 k = 5

UNIFORM 132.66 52.14 18.09 3.38
QMC 0.75 0.42 0.15 .03

Table 1: The average variance of k-tuple frequencies.
UNIFORM denotes the standard uniform sampling of an-
notators, while QMC stands for our Quasi-Monte Carlo
assignment method. We simulated the assignment of
1,000 unlabeled instances with ten annotators in total
and five annotators per instance. We report the average
variance of frequencies across 1,000 runs.

4 Case Studies

In the following case studies, we highlight the two
essential features of ALANNO, namely balanced
data assignment and AL performance forecasting.

Case study 1: Balanced assignment. To com-
pare our Quasi-Monte Carlo assignment method
with uniform annotators combinations, we ran sim-
ulations of distributing unlabeled instances to an-
notators. As Table 1 shows, our method achieves
more balanced combinations compared to the stan-
dard uniform sampling, ranging from pairs and up
to k-tuples, where k is the number of annotators
per data point.

Case study 2: AL performance forecasting. To
demonstrate the forecasting feature in ALANNO, we
conducted a case study on the Stanford Sentiment
Treebank (SST; Socher et al., 2013) and subjectiv-
ity (SUBJ; Pang and Lee, 2004) datasets. We used
a simple logistic regression model with TF-IDF
vectors and least confident sampling method for
SST and BERT with BADGE sampling method for
SUBJ. We then compared random sampling to AL
and used our forecasting technique to predict the
performance of AL. In each step, we sampled 200
data points for SST and 50 data points for SUBJ

from the pool of unlabeled data, simulating the an-
notation process. We re-trained the models in each
AL step and evaluated them on the test set. Fig-
ure 5 demonstrates the usefulness of performance
forecasting, which provides a possibility to decide
on the trade-off between the additional annotation
cost and the expected increase in performance.

5 Related Work

As the popularity of machine learning and deep
learning grows, so does the need for annotated
data. Since high-quality data is imperative for high-
quality machine learning models, data annotation
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Figure 5: AL performance forecasting. The subfigures show the predictions of F1 score gain with a hypothetical
increase in the number of labeled data. The green line pertains to the random selection baseline, the blue one is the
corresponding AL selection, and the dashed orange line is the forecast of F1 score for AL selection. The dashed red
line represents the boundary between the steps the forecast model was trained on (left of the line) and the steps
whose values the forecast model was predicting (right of the line). The left subfigure shows the results for SST with
logistic regression using uncertainty sampling as the AL method, while the right subfigure corresponds to SUBJ with
BERT using BADGE for AL sampling.

has become a lucrative industry, and new tools
are constantly emerging. There are commercial
tools such as Prodigy,3 V7,4 and Hasty.5 However,
these tools hide their full functionality behind a
paywall. In contrast to the mentioned commercial
system, several open-source annotation tools have
appeared recently, such as Label Sleuth (Shnarch
et al., 2022), Label Studio,6, INCEpTION (Klie
et al., 2018), MATILDA (Cucurnia et al., 2021),
and Paladin (Nghiem et al., 2021).

Label Sleuth is an elegant annotation system
designed to make NLP accessible for non-experts.
The system enables AL selection for labeling. How-
ever, it only supports simple binary classification
with a single annotator per project.

Label Studio is offered as an open-source sys-
tem and a paid enterprise version. While the paid
version supports active learning, the free version is
limited to random selection. The system supports
multiple annotators but with minimal functionali-
ties in managing the annotations.

INCEpTION is a highly configurable tool that
supports AL and multi-annotator setups. However,
the system is hard to use, as it requires external
libraries to integrate a model for AL purposes.

MATILDA is a platform for dialogue annotation
in a multi-annotator setup with support for multiple
languages.

3https://prodi.gy/
4https://www.v7labs.com/
5https://hasty.ai/
6https://labelstud.io/

Paladin integrates active learning and supports
multi-label classification.

To the best of our knowledge, ALANNO is the
only AL annotation tool that explicitly addresses
practical challenges in AL. ALANNO also dif-
fers from the above-mentioned systems in imple-
menting practical solutions for managing multi-
annotator annotation projects.

6 Conclusion

ALANNO is an open-source annotation system for
natural language processing tasks powered by ac-
tive learning. The system addresses the critical
practical challenges of active learning in real-world
annotation projects that have previously been over-
looked. ALANNO enables non-experts in active
learning to conduct effective annotation campaigns
by supporting solutions for unbiased evaluation,
stopping criterion for active learning, and class
balancing. Additionally, the system facilitates an-
notation management in a multi-annotator setup,
emphasizing label quality through agreement mon-
itoring, agreement-aware label aggregation, and a
novel method for the balanced assignment of unla-
beled instances to annotators.
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