
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 11–17

May 2-4, 2023 ©2023 Association for Computational Linguistics

CodeAnno: Extending WebAnno with Hierarchical Document Level
Annotation and Automation

Florian Schneider†, Seid Muhie Yimam†, Fynn Petersen-Frey†

Gerret von Nordheim‡, Katharina Kleinen-von Königslöw‡, Chris Biemann†
† Language Technology Group, Department of Informatics, Universität Hamburg, Germany

‡ Institute of Journalism and Communication Studies, Universität Hamburg, Germany
{florian.schneider-1, seid.muhie.yimam, fynn.petersen-frey,

gerret.vonnordheim, katharina.kleinen, chris.biemann}@uni-hamburg.de

Abstract

WebAnno is one of the most popular annota-
tion tools that supports generic annotation types
and distributive annotation with multiple user
roles. However, WebAnno focuses on annotat-
ing span-level mentions and relations among
them, making document-level annotation com-
plicated. When it comes to the annotation and
analysis of social science materials, it usually
involves the creation of codes to categorize a
given document. The codes, which are known
as codebooks, are typically hierarchical, which
enables to code the document either with a
general category or more fine-grained subcat-
egories. CodeAnno is forked from WebAnno
and designed to solve the coding problems
faced by many social science researchers with
the following main functionalities. 1) Creation
of hierarchical codebooks, with functionality to
move and sort categories in the hierarchy 2) an
interactive UI for codebook annotation 3) im-
port and export of annotations in CSV format,
hence being compatible with existing annota-
tions conducted using spreadsheet applications
4) integration of an external automation compo-
nent to facilitate coding using machine learning
5) project templating that allows duplicating
a project structure without copying the actual
documents. We present different use-cases to
demonstrate the capability of CodeAnno.

1 Introduction

When WebAnno was initiated, the main purpose
was to address the missing functionalities from the
annotation tools, particularly adding the distribu-
tive, web-based, generic, and customizable annota-
tion layers behaviors (Yimam et al., 2013). Since
then, WebAnno has been improved a lot, includ-
ing the support for semantic annotation (Eckart de
Castilho et al., 2016), support for automation func-
tionality (Yimam et al., 2014), and adapted to the
integrating knowledge-supported search ’INCEp-
TION’ platform (Boullosa et al., 2018). The Span
annotation type, which allows annotating tokens,

sub-tokens, and phrases as well as the Relation
type that connects two-span annotation types with
relation value in WebAnno covers most of the
linguistic and machine learning annotation tasks.
The Document level annotation type is one of the
most sought annotation types needed in WebAnno,
which is also missed functionality from several an-
notation tools (Neves and Ševa, 2019). One of
the workarounds in WebAnno was the Zero-width
spans, which is not attached to any span but only
to a specific sentence in a document. However,
this still could not fully support document-level
annotation, where the task is to label or classify
a document based on a predefined category. The
document-level annotation is particularly impor-
tant for annotations in social science and digital
humanities research. A typical example is docu-
ment coding, where a researcher in communication
science prepares a list of codes or tags known as
codebooks. Journalists and media analysts prepare
the codes for a given codebook but the annotation
of content involves a lot of distraction, such as 1)
preparing the code in a spreadsheet, 2) coding or
annotating an article or media which is not linked
with the codebook in the spreadsheet, 3) analyzing
and interpreting the results from the coding.

CodeAnno is a fork and an extension to We-
bAnno, which enables coding based on hierarchical
and fully customizable document-level annotations
within WebAnno. CodeAnno facilitates the cre-
ation of codebooks and coding using the existing
functionality from WebAnno such as curation, cod-
ing agreement, distributed annotation (annotating a
single document by multiple coders or users), web-
based annotation, and so on. As CodeAnno sup-
ports all existing functionalities of WebAnno, for
example, span and relation annotation, one can eas-
ily connect the coding with the built-in WebAnno
annotation support that can help to draw some con-
clusions.

The following are the main contributions of this

11



work: 1) Support codebook creation and annota-
tion (hierarchical and document-level annotation),
2) Importing and exporting annotations in comma-
separated format, hence compatible with existing
annotations conducted using spreadsheet applica-
tions, 3) Integration of an external automation com-
ponent to facilitate media coding using machine
learning models, 4) Project templating that allows
duplicating a project structure without copying the
actual documents.

In the remainder of this paper, we will first dis-
cuss the related works of document-level annota-
tion in Section 2. In Section 3 and 4, the main
components of CodeAnno and the automation func-
tionalities are presented. Some use-cases showing
the codebook annotation and automation compo-
nents are presented in Section 5 while Section 6
highlighted the main contribution of this work.

2 Related Work
Most of the annotation tools support linguistic an-
notations such as POS tagging, dependency rela-
tion, named entity recognition and so on (Yimam
et al., 2013; Neves and Ševa, 2019). Brat (Stene-
torp et al., 2012), WebAnno (Yimam et al., 2013),
Docanno (Nakayama et al., 2018), and LightTag
(Perry, 2021) are some popular annotation tools.
The survey by Neves and Ševa (2019) indicated
that only 5 annotation tools out 78 have some
kind of document level annotation supports. Ac-
tiveAnno (Wiechmann et al., 2021) is one of the
latest annotation tools that support annotation and
automation for document-level annotation tasks.
ActiveAnno focuses on five central design goals,
namely, efficiently creating annotations of high
quality, supporting a broad range of use cases, re-
sponsive web application, open-source and APIs
integration. While ActiveAnno has great support
for document-level annotation, it does not natively
support hierarchical annotation using codebooks. It
also lacks the extensive generic annotation support
from WebAnno, which can be used to link the doc-
ument level annotation to span level annotations.

INCEpTION is another annotation platform,
which integrates all the functionalities of We-
bAnno and focuses on corpus creation, annota-
tion, and knowledge management. While INCEp-
TION extends the functionality of WebAnno to
more advanced functionality, including the exter-
nal recommender system and knowledge supported
search, CodeAnno particularly focuses on the cre-
ation of document-level annotation with the hi-

erarchical codebooks. Furthermore, CodeAnno
uniquely supports importing/exporting documents
in a spreadsheet format, which is the de facto an-
notation format in social science document coding.
Project templating, external automation service,
and document-level codebook agreements are addi-
tional specific functionalities in CodeAnno.

In social science, coding refers to the process of
assigning descriptive or inferential labels to docu-
ments or parts of the document, that could help in
developing a new concept or theory (Chen et al.,
2018). Researchers usually take a sample of the
data and apply manual coding. As the size of data
increases, manually coding the entire dataset in de-
tail is not feasible for social science researchers.
Building a representative machine learning model
is also becoming challenging (Chen et al., 2018).
To address this issue, we have integrated an exter-
nal automation component that could provide an
initial suggestion of codes. The process is iterative
and adaptive, where small portions of the document
are labeled to train the external predictive model.

3 CodeAnno Features

CodeAnno extends WebAnno by introducing new
functionalities in WebAnno. In WebAnno, “layers”
are used for span, chain, or relation annotations on
token, sentence, or paragraph level. CodeAnno
introduces document-level annotations, referred
to as Codebooks. The new functionality is seam-
lessly integrated into WebAnno, i.e., the backend
is also based on Apache UIMA1 while the fron-
tend is based on Apache Wicket2. Besides the
support for Codebooks, another main contribu-
tion of CodeAnno is the integration of an external
machine-learning-based service to automate Code-
book annotations.

Codebooks are hierarchical document-level an-
notations consisting of a name, optional parent and
child Codebooks, and a list of Codebook Tags. The
resulting Codebook structure is therefore best rep-
resented as a tree. Codebook Tags are the value of
the respective Codebook annotation and can be pre-
defined by the project organization or, if allowed,
created ad-hoc by the annotator. Further, Code-
books and Codebook Tags can have a textual de-
scription so that the annotators know what they
stand for and when or how to use them to ensure
high coding quality.

1https://uima.apache.org/
2https://wicket.apache.org/

12

https://uima.apache.org/
https://wicket.apache.org/


Figure 1: The Codebook settings UI in project settings to create and manage Codebooks and Codebook Tags.

Before the actual coding process starts, the
project manager has to set up the Codebook struc-
ture that the coders will use to annotate the docu-
ments. This is done in the project settings with an
intuitive and easy-to-use Codebook Editor shown
in Figure 1. In the left part of the figure, a Code-
book structure is displayed as a directory tree. The
“Expand all” and “Collapse all” buttons are used to
show or hide nodes in the Codebook tree. Code-
books can be moved up or down on the same level
with the arrow buttons on the right. During creating
a new Codebook, the project manager enters the
Codebook properties in the middle part of Figure 1.
To create a Codebook hierarchy, the parent Code-
book can be selected from the drop-down list. If
the Codebook is a root, none is selected. It is also
possible to change the parent Codebook afterwards
to update the tree structure. Further, if annotators
should be allowed to enter custom Codebook Tags,
the respective checkbox must be selected. Other-
wise, only predefined Codebook Tags shown on
the right side of Figure 1 can be chosen during the
coding process.

In the “Tag Details” panel, that appears when
a new Codebook Tag is created, its name, its de-
scription, and its parent tag will be recorded. The
sort, move-up, and move-down buttons can be used
to sort the list of Codebook Tags alphabetically or
manually. When deleting a Codebook that is not
a leaf node in the structure, all Codebooks in the
subtree with their Codebook Tags also get deleted.
Moreover, it is possible to import or export Code-
book structures in human-readable JSON format.
This is especially helpful when multiple coding
projects with CodeAnno are planned.

3.1 Codebook Annotation
The WebAnno annotation interface is extended by a
Codebook Editor panel that can be opened from the

left sidebar to annotate documents with Codebooks.
As shown in Figure 2, the classical WebAnno Layer
Annotation editor can also be shown or hidden to
enable span-level annotation at the same time. An
example that shows the Codebook Editor with the
configured Codebook structure from Figure 1 is
shown in the left side of Figure 2. Each node in
the tree represents a Codebook with its name in
bold. The input for a Codebook combines a text
input field and a dropdown selection. If enabled,
annotators can enter any value to create a custom
Codebook Tag or select a predefined tags from the
dropdown list.

3.2 Codebook Curation and Agreement

Often, to ensure high-quality annotations, it is nec-
essary that multiple users annotate the same docu-
ment. However, since it can be subjective to decide
which Codebook Tag fits best for the document, it
can easily result in different Codebook annotations.
This gives rise to the Codebook Curation feature,
where project managers or curators can see how
each user annotated the selected document in a sep-
arate UI. Based on this information, the curator
chooses the “final” or correct Codebook Tag for
each Codebook in the structure. An example of
this UI is shown in Figure 3 – for space reasons,
we cropped the image so that the document viewer,
which would be on the right, is not shown. The
Codebook structure is shown in a tree view similar
to the annotation UI. The Codebook Tags of each
user are shown in a list per Codebook. If all users
agree on the same tag, the name of the respective
Codebook is highlighted in green. Otherwise, it
is highlighted in red. Below the list, the curation
user can choose the correct Codebook Tag from a
dropdown selection, where every tag is contained.
If all users agree, the respective tag is preselected

13



Figure 2: The CodaAnno annotation UI with the Codebook Editor for document-level annotations on the left, the
document viewer in the middle, and the Layer Editor for span annotations on the right.

Figure 3: The CodaAnno Curation UI showing the Code-
book annotations of different users. The curation user
can select the “correct” Codebook from the dropdown
menu at the bottom of each Codebook node.

to speed up the curation process.
With the Codebook Agreement feature, it is pos-

sible to calculate common inter-rater and intra-rater
agreement measures per Codebook and project. For
this purpose, the project manager first selects the
respective project and Codebook. With a dropdown
to select the measure, she can choose between Co-
hen’s Kappa, Fleiss’ Kappa, Krippendrof’s Alpha,
and Krippendorfs’s Kappa. When the calculation
has finished, the results are presented in a table like
with layer annotation agreement in WebAnno.

3.3 Codebook Import and Export
CodeAnno features multiple new import and ex-
port functionalities. They are separated into im-
port/export of the Codebook structure and the
coded data belonging to each document. This sepa-
ration allows reusing the Codebook structure by
easily transferring it to a blank project without

copying any document data. Since the Codebook is
structured hierarchically, CodeBook uses the JSON
format for import/export due to its convenient nest-
ing of objects. As such, in the Codebook settings,
it allows to import/export the whole CodeBook or
only subtrees of it, thereby providing great flexibil-
ity to reuse only parts of CodeBook. The separated
import/export in JSON of the Codebook (subtree)
structure further has the advantage of being both
human-readable and easy to manipulate in any text
editor or even programmatically. Thus, changing
many entries at once during construction of the
Codebook, e.g. mass renaming, becomes very ef-
ficient. The import/export of Codebook data be-
longing to a document is possible in multiple ways.
A document can be opened in CodeAnno and its
Codebook annotations can be exported. In addition,
the whole project can be exported, containing all
documents and the Codebook structure. Import-
ing documents previously exported is also possible
through the Codebook settings. Thus, documents
with Codebook annotations can be exported and
later imported to move the documents to another
project or make a backup.

4 CodeBook Automation (CBA)

Another major component of CodeAnno is the
Codebook Automation (CBA) extension. As the
name suggests, this functionality enables automatic
annotation of Codebooks leveraging state-of-the-
art machine learning technology to train and eval-
uate generic, user-specific classification models.
The component consists of three parts: The CBA
backend, the CBA WebApp, and the CBA integra-
tion in CodeAnno. An overview of the different
parts is shown in Figure 4. The backend, which
contains all logic and manages data and models, is
accessible via a REST API. The CBA WebApp is a
web-based user interface that consumes this API so

14



Figure 4: Overview of the Codebook Automation com-
ponents. The communication between the components
indicated by the arrows happens via HTTP.

that users can conveniently manage datasets, and
create, train and test user-specific Codebook classi-
fiers. Both parts are separated from CodeAnno and
run independently. The third part is the CBA inte-
gration in CodeAnno to apply trained classifiers to
annotate, i.e., predict documents with Codebooks
automatically.

4.1 Backend Architecture of CBA
The CBA backend holds all logic to manage
datasets and classifiers and exposes its function-
ality via a REST API. It is implemented using mod-
ern Python libraries and frameworks like FastAPI3,
pandas4, Redis5, and TensorFlow6.

The process to train a classifier is schematically
depicted in Figure 5. The dataset, uploaded by a

Figure 5: Schematic overview of the process to train a
classifier in the Codebook Automation backend.

user, is a ZIP archive containing two CSV files for
the training set and the evaluation set. Both files
have to consist of two columns: The “text” column
contains arbitrarily long text representing the docu-
ment, and the “label” column contains the class or
label for the sample. Further, the user must provide
configurations defining the model architecture and
training process. A model’s architecture configu-
ration contains the number of hidden layers and
their respective hidden units, the activation func-
tion, the drop-out percentage, and the optimizer

3https://fastapi.tiangolo.com/
4https://pandas.pydata.org/
5https://redis.io
6https://www.tensorflow.org

used for training. Further, the specification con-
tains an URL pointing to a text-embedding model
available on TensorFlow Hub7. A typical choice
for this is, e.g., a Universal Sentence Encoder (Cer
et al., 2018). The training process configuration
specifies the batch size, the number of maximum
training and evaluation steps, the optimizer, and if
early stopping is activated or not. Once the model
training is completed, it is persisted in the Ten-
sorFlow SavedModel format, supporting efficient
model serving.

4.2 CBA WebApp and CodeAnno Integration
The CBA WebApp is the user interface for upload-
ing or managing datasets and training or managing
classifiers. The application consumes the REST
API of the CBA backend and is implemented using
NuxtJS8.

Codebook Automation is also neatly integrated
into CodeAnno so that human coders can leverage
CBA classifiers to accelerate the Codebook anno-
tation process. To use this functionality, a project
administrator can start a bulk prediction process, in
which all project documents are sent to the CBA
backend and classified by the specified model. An-
other way is that annotators can send their currently
processing document to the backend and let the de-
fault model set by an administrator classify the
document.

The predictions are available in the Codebook
Annotation UI when the process has been com-
pleted. Users can then easily accept or reject the
suggestions from the CBA classifiers.

Details about the CBA WebApp and the CBA
CodeAnno integration can be found on our
GitHub910 pages.

5 Case Studies

5.1 The NEPOCS Codebook
NEPOCS stands for Network of European Political
Communication Scholars11 established by a group
of social science researchers who are working on
political communication research. Each member
is an expert on a particular European country, and
the mission is to further internationally compara-
tive political communication research. The work

7https://tfhub.dev
8https://nuxtjs.org/
9https://github.com/uhh-lt/codebook_

automation
10https://github.com/uhh-lt/codeanno
11https://nepocs.eu/about-nepocs/

15

https://fastapi.tiangolo.com/
https://pandas.pydata.org/
https://redis.io
https://www.tensorflow.org
https://tfhub.dev
https://nuxtjs.org/
https://github.com/uhh-lt/codebook_automation
https://github.com/uhh-lt/codebook_automation
https://github.com/uhh-lt/codeanno
https://nepocs.eu/about-nepocs/


by Hopmann et al. (2017) discussed the methods
and approaches they have used in coding around
7,500 news items gathered from 16 different Eu-
ropean countries. The news items were collected
considering different criteria such as consisting of
comparable countries (established Western democ-
racies) and media and political system level. As
a source of the news item, televised news, news-
papers, and online news outlets were considered.
As part of the goal to the "2012 Journalism special
issue", Hopmann et al. (2017) build a codebook as
a contribution to increasing standardization of how
key concepts are conceptualized. In collaboration
with political communication science experts at
Universität Hamburg, we have built standard code-
book of NEPOCS, as shown in Figure 6 that can
be released as part of CodeAnno for further use.

Figure 6: Parts of NEPOCS codebook designed with
social science researchers.

5.2 CLICCS project
The Cluster of Excellence “Climate, Climatic
Change, and Society” (CLICCS12) is following

12https://www.cliccs.uni-hamburg.de/

the overarching question: “Which climate futures
are possible and which are plausible?” In the B1
sub-project researchers from journalism, media,
and communication studies work on the question:
“how do journalists frame climate futures?” For a
quantitative study of climate future frames across
countries, they have manually annotated hundreds
of news articles in CodeAnno. Texts have been
sampled from four countries (Germany, the United
States, South Afrika and India) in German for Ger-
many and English for the other three countries.

The researcher developed a sophisticated, hier-
archical Codebook for the task based on a selected
sample of documents. Coded are formal aspects
like the type of text, author type and topic with a
fixed number of categories. For the classification of
future scenarios, they use hierarchically structured
Codebooks for e.g. type of scenario, timeframe, ge-
ographic scope, plausibility, actors etc. In another
sub-tree of the Codebook, the causes including at-
tribution of blame and measures are structured into
seven nested Codebooks.

In total, the whole Codebook comprises 26 as-
pects, each either coded as a Boolean or selection
from multiple classes. To perform the annotation
on the large sample, three coders have been trained
on the developed Codebook. The CSV export of
all coded documents has been used frequently to
perform custom analysis on the annotations.

6 Conclusion
In this paper, we discussed main functionalities of
CodeAnno, an extension of WebAnno that supports
coding of social science documents using hierarchi-
cal Codebooks. Social science researchers usually
employ traditional annotation tools, for example
spreadsheet applications to code and analyze a text.
This annotation process is cumbersome and hin-
ders the development of predictive machine learn-
ing models. CodeAnno supports the creation of
Codebooks, coding or annotating documents, and
integration of custom machine learning models.
Further, it eases the analysis of annotated docu-
ments and enables to import and export documents
in different formats. Since CodeAnno intrinsically
supports the annotation of entities and relations
from WebAnno, we plan to integrate a functionality
that provides automatic coding recommendations
using the span-level entity and relation annotations.
This facilitates the explainability of Codebook An-
notations by linking back to the rationale in the
document.

16

https://www.cliccs.uni-hamburg.de/


Acknowledgement
This work is partly supported by the Cluster of Ex-
cellence CLICCS (EXC 2037), Universität Ham-
burg, funded by DFG, and the D-WISE project,
funded by BMBF (grant ID 01UG2124).

References
Beto Boullosa, Richard Eckart de Castilho, Naveen Ku-

mar, Jan-Christoph Klie, and Iryna Gurevych. 2018.
Integrating Knowledge-Supported Search into the IN-
CEpTION Annotation Platform. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 127–132, Brussels, Belgium.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
Sentence Encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium.

Nan-Chen Chen, Margaret Drouhard, Rafal Kocielnik,
Jina Suh, and Cecilia R. Aragon. 2018. Using Ma-
chine Learning to Support Qualitative Coding in So-
cial Science: Shifting the Focus to Ambiguity. ACM
Trans. Interact. Intell. Syst., 8(2).

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A Web-based Tool for the Integrated Annotation of
Semantic and Syntactic Structures. In Proceedings
of the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84, Osaka, Japan.

David Nicolas Hopmann, Frank Esser, Claes de Vreese,
Toril Aalberg, Peter Aelst, Rosa Berganza, Nico-
las Hubé, Guido Legnante, Jörg Matthes, Stylianos
Papathanassopoulos, Carsten Reinemann, Susana
Salgado, Tamir Sheafer, James Stanyer, and Jesper
Strömbäck. 2017. How We Did It: Approach and
Methods. In Comparing Political Journalism, pages
10–21.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
Annotation Tool for Human. Software available from
https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2019. An Extensive Re-
view of Tools for Manual Annotation of Documents.
Briefings in Bioinformatics, 22(1):146–163.

Tal Perry. 2021. LightTag: Text Annotation Platform.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 20–27, Online and Punta
Cana, Dominican Republic.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a Web-based Tool for NLP-Assisted Text
Annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107, Avignon, France.

Max Wiechmann, Seid Muhie Yimam, and Chris
Biemann. 2021. ActiveAnno: General-Purpose
Document-Level Annotation Tool with Active Learn-
ing Integration. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies: Demonstrations, pages 99–105,
Online.

Seid Muhie Yimam, Chris Biemann, Richard Eckart
de Castilho, and Iryna Gurevych. 2014. Automatic
annotation suggestions and custom annotation lay-
ers in WebAnno. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 91–96, Balti-
more, Maryland.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6, Sofia, Bulgaria.

17


