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Abstract
While conditional generation models can now
generate natural language well enough to cre-
ate fluent text, it is still difficult to control
the generation process, leading to irrelevant,
repetitive, and hallucinated content. Recent
work shows that planning can be a useful in-
termediate step to render conditional gener-
ation less opaque and more grounded. We
present a web browser-based demonstration
for query-focused summarization that uses
a sequence of question-answer pairs, as a
blueprint plan for guiding text generation
(i.e., what to say and in what order). We illus-
trate how users may interact with the generated
text and associated plan visualizations, e.g., by
editing and modifying the blueprint in order to
improve or control the generated output.

A short video demonstrating our sys-
tem is available at https://goo.gle/
text-blueprint-demo

1 Introduction

With the advent of encoder-decoder models (Bah-
danau et al., 2014; Sutskever et al., 2014),
Transformer-based architectures (Vaswani et al.,
2017), and large-scale pretraining (Zhang et al.,
2020; Lewis et al., 2020), deep learning models
have achieved great performance on conditional
generation tasks such as summarization (Rush et al.,
2015; Nallapati et al., 2016; See et al., 2017; Liu
and Lapata, 2019) or task-oriented dialogue mod-
eling (Wen et al., 2018). However, it remains
challenging to control the text generation, as these
neural models tend to generate hallucinated (Song
et al., 2018; Maynez et al., 2020; Kryscinski et al.,
2020; Gabriel et al., 2021) or repetitive content
(Suzuki and Nagata, 2017; Li et al., 2018), and
struggle to identify which information is most rele-
vant to include in the output text (Tan et al., 2017).

Recent work shows that planning can be a useful
intermediate step to address some of these chal-
lenges (Puduppully et al., 2019; Moryossef et al.,

2019; Narayan et al., 2021, 2022). In this work,
we present Text-Blueprint, a demonstration for
showcasing the approach described in Narayan
et al. (2022), that uses a text plan, formulated
as a sequence of question-answer pairs called the
blueprint, to serve as an intermediate representa-
tion for content selection and organization of the
generated text. It draws inspiration from the “Ques-
tions Under Discussion” theory of discourse which
posits that the structure of a text can be derived by
identifying the questions that are answered by each
subsequent span of text (Carlson, 1983; Ginzburg,
1994; Van Kuppevelt, 1995; Larson, 2002; Roberts,
2012; Riester, 2019).

We implement this blueprint approach as an in-
teractive web application for query-focused sum-
marization. An example snapshot of our interface
is shown in Figure 1. As can be seen, for a given
generated summary, users can examine its corre-
sponding blueprint, modify it to make it more faith-
ful or relevant, and control its length by chang-
ing the number of question-answer pairs. Given a
query and relevant documents, there can be multi-
ple semantically-diverse summaries that meet the
communicative goal of synthesizing the most im-
portant points. Traditional generation systems do
well at single-best summaries, while our interac-
tive demonstration allows users to explore different
summaries for a given input, while directly ob-
serving the impact of changes to the plan on the
generated text. The formulation of the blueprint
plan as question-answer pairs makes it intuitive
and user-friendly (e.g., users can inspect and ask
questions without any instructions).

Our demonstration is an example of what can
be achieved with human-in-the-loop conditional
generation (Cheng et al., 2022). It allows users to
revise the output text (i.e., by editing the blueprint)
subject to their information needs. Additionally,
it allows researchers to analyze what constitutes a
good blueprint for various summarization tasks.

105

https://goo.gle/text-blueprint-demo
https://goo.gle/text-blueprint-demo


Figure 1: User interface of the web browser-based Text-Blueprint demonstration showcasing the iterative model.

2 Related Work

There are several libraries for broad NLP tasks,
such as AllenNLP1 or GluonNLP2. The Language
Interpretability Tool (Tenney et al., 2020) is an
interactive platform for examining model behav-
ior, meant for rapid exploration and error analy-
sis. A variety of toolkits have been developed re-
cently that support generation tasks. For instance,
Texar (Hu et al., 2019) is an open-source platform
that unifies the development of diverse yet closely-
related applications, such as machine translation,
summarization, and dialog. TextBox (Li et al.,
2021) is a modular framework that offers inter-
faces for various common functions in text genera-
tion models, allowing researchers and practitioners
to reproduce baseline models and compare new
models. The Giant Language Model Test Room,
also known as GLTR (Gehrmann et al., 2019b),
helps users differentiate automatically-generated
text from human-written text.

For conditional generation, many demonstra-
tions are summarization systems. For instance,
Nyzam and Bossard (2019) present a modular tool
for automatic summarization. Syed et al. (2021)
showcase a visualization tool for summaries ob-
tained by different summarization methods. The
SummVis platform (Vig et al., 2021) serves a simi-

1allennlp.org
2gluon-nlp.mxnet.io

lar goal to the demonstration presented in this paper.
It enables users to visually analyze the models, data,
and evaluation metrics associated with abtractive
summarization, e.g., by highlighting hallucinated
entities in the generated text. While previous tools
and frameworks are versatile and modular, their
focus is not on empowering users with control over
the generated text in an interactive environment.

In particular, studies on human-AI interaction
for text summarization (Cheng et al., 2022; Lai
et al., 2022) show that users’ overall experience is
better when they can control the generation process.
Users preferred systems that allowed them to adjust
and see the impact of their changes on the output
directly, and the controllability improved their trust
in the system when summarizing unfamiliar topics.

Systems more geared toward interactive text
generation include chatbots such as Meena (Adi-
wardana et al., 2020) or other specialized dia-
logue systems such as ParlAI (Miller et al., 2017).
Gehrmann et al. (2019a) present an approach called
collaborative semantic inference that exposes latent
variables to the user for interactive generation. Still,
these tasks differ from conditional generation using
planning for which our demonstration is designed.

3 Summarization Using Planning

This demonstration showcases query-focused sum-
marization using planning as described in Narayan

106

allennlp.org
gluon-nlp.mxnet.io


Figure 2: a) End-to-end and b) iterative Blueprint models. The end-to-end model generates the entire blueprint
plan before generating the output text, while the iterative model plans and generates one proposition at a time,
conditioning on the input and the sentences generated so far. Each portion of the output is color-coded with its
corresponding question-answer pair.

et al. (2022).3 In their approach, question-answer
text plans, called blueprints, serve as intermediate
representations for content selection and structur-
ing of the generated text. We implement three
Blueprint models in our demonstration, which we
briefly describe below; they are all encoder-decoder
variants instantiated from a Transformer (Vaswani
et al., 2017) architecture.

Let d denote the input to our models, which
is a user query concatenated with a document
or a set of documents relevant to this query.
From this input d, the model generates b; s, the
blueprint b and its corresponding summary s. The
blueprint itself is a sequence of question-answer
pairs {(q1, a1), (q2, a2), . . . , (qm, am)}. Existing
datasets do not contain such blueprints, they are
typically designed as (d, s) pairs. Narayan et al.
(2022) describe a suite of data enhancement meth-
ods for obtaining blueprint annotations (we refer
the interested reader to their paper for details).

3Code and checkpoints to be released at github.com/
google-research

End-to-End Model The end-to-end Blueprint
model uses an encoder-decoder model to encode
the input documents d and generate b; s, the con-
catenation of the blueprint and output text, in one
go (Figure 2a). The decoder first predicts the
blueprint b autoregressively and continues to gen-
erate the output s, conditioned on both b and d.
In particular, it predicts b as q1; a1; . . . ; qm; am, a
concatenated sequence of question-answer pairs.
In contrast to systems that use prompted encoders,
such as CTRLSum (He et al., 2020), the Blueprint
models use decoder prompting. As a consequence,
the blueprint plan is entirely generated by the
model, without human intervention or relying on
external systems. After the generation, users can in-
spect the question-answer pairs and corresponding
summary. If desired, they can then select question-
answer pairs to remove from the plan. The system
is fed the updated blueprint b′ which prompts the
decoder to generate the corresponding output s′.

Iterative Model It is generally challenging for
encoder-decoder models to generate long output
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sequences (Ko and Li, 2020; Tan et al., 2021). The
end-to-end model ultimately suffers from this prob-
lem as it aims to generate sequence b; s instead
of just s. The iterative Blueprint model mitigates
this by adopting an incremental approach that in-
terleaves planning with text generation rather than
predicting a global plan before generating the out-
put s (Figure 2b).

If we denote the output s as consisting of n sen-
tences {s1, s2, . . . , sn}, then the corresponding
blueprint b can be expressed as {b1, b2, . . . , bn},
where bi : {(qi1, ai1), (qi2, ai2), . . . , (qik, aik)} con-
sists of k question-answer pairs for sentence si.
This model iteratively plans and generates one sen-
tence at a time, conditioning on the input and the
output sentences generated so far. In particular, it
is trained such that the encoder first encodes the in-
put d, while the decoder takes the output generated
so far {s1, . . . , si} as a forced prompt and gener-
ates the blueprint bi+1 for the following sentence
si+1, followed by sentence si+1 itself.

The iterative approach naturally addresses some
of the issues the end-to-end model faces. In particu-
lar, it does not run into sequence length limitations
as it predicts one sentence at a time.

Interactive Model The third model is an interac-
tive Blueprint model that allows the user to modify
the blueprint and directly change the generated out-
put. It operates similarly to the end-to-end model
previously described but in addition to letting the
user select which elements of the plan to keep or
remove, we design the system to allow the user to
provide their own plan.

We do not expect users to be able to provide an-
swers to all the questions they come up with when
creating their own plans. Therefore, we modify the
original paradigm set by Narayan et al. (2022) and
develop a new model specifically for the interactive
mode that uses a question-only blueprint instead
of a question-answer blueprint. From the input
documents d, we fine-tune this model to generate
b; s, where b is a concatenated sequence of ques-
tions q1; q2; . . . ; qm. For this new model, we use
the same blueprint training data as the iterative and
end-to-end models, but only use the question anno-
tations during fine-tuning, ignoring the answers. In
the interactive mode, the user can edit the plan by
typing in questions they come up with. This pro-
cess creates an updated blueprint b′ which prompts
the decoder to generate an updated summary s′.

Model Training The models made available in
this demonstration are based on the LongT5 model
(Guo et al., 2021), an extension of T5 (Raffel et al.,
2020) designed to handle long inputs. Specifically,
we fine-tune the XL 3B-parameter model4 with
maximum input and output sequence lengths of
4,096 and 512 tokens, respectively, on the AQua-
MuSe dataset (Kulkarni et al., 2020). This is
a query-focused multi-document summarization
dataset which leverages the Google Natural Ques-
tions dataset (Kwiatkowski et al., 2019). The lat-
ter contains real user queries from Google search
logs paired with crowd-sourced answer spans from
Wikipedia, and matched with passages from web
documents from Common Crawl. AQuaMuse uses
the answer passages as summaries with the pas-
sages extracted from Common Crawl as the input
documents. This dataset is query-focused, with
long inputs and multi-sentence outputs, making it
well-suited to a user-centric summarization system.

4 System Description

Our web browser-based demonstration is designed
so that researchers and practitioners can inspect
and interact with the different Blueprint models.
We frame the summarization task around a user
query, since in a real world scenario we would ex-
pect users to have a question or intent in mind. The
system retrieves documents relevant to the query
and displays their summary and its correspond-
ing blueprint. Figure 1 provides a snapshot of the
user interface (UI) and its components, namely the
model selection, document retrieval, and Blueprint
output views.

Model Selection View Using the left-side menu,
the user selects which of the models to use: end-to-
end, iterative, or interactive Blueprint. The UI then
adapts to the selected model.

Retrieval View In the search bar at the top of the
middle panel, the user can enter an information-
seeking query. For instance, in the example from
Figure 1: “What is the Titanic known for?”. The
system automatically retrieves documents relevant
to the query and displays them underneath in dif-
ferent tabs, allowing the user to navigate between
them and examine individual documents. The URL
for each document is shown at the top. For longer
documents, scrolling is also enabled.

4Using the checkpoints from github.com/
google-research/longt5
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Figure 3: Schematic representation of the different
components of the web browser-based demonstration.

The document retrieval component is query-
focused in a similar style to the AQuaMuSe dataset
(Kulkarni et al., 2020). It retrieves candidate URLs
and ranks relevant passages for a query using an
off-the-shelf retrieval system.5 It extracts a text
document from each of the best-ranking web pages,
resulting in multi-document input for the Blueprint
models. Documents are formatted similarly to
AQuaMuse to closely match the data on which
the models were trained.

Blueprint Output View The retrieved docu-
ments serve as inputs for the summarization. The
outputs of the selected model are displayed on the
right. The top-right box displays the blueprint b and
the bottom-right box shows the corresponding gen-
erated output s. The question-answer blueprint (or
question-only, in the case of the interactive model)
highlights what the model deemed important, such
as, in the example from Figure 1, "What kind of
ship is the Titanic?" or "What did the Titanic hit
that caused it to sink?". We see that the generated
output closely follows the blueprint.

In the end-to-end and interactive models, the user
can click on elements of the blueprint to include
or exclude them from the plan to re-generate the
summary. Furthermore, when using the interactive
model, an additional text box allows the user to
input and edit a custom question plan.

System Design Figure 3 shows the different com-
ponents of the web application. The web inter-
face is made interactive with LitElement6 compo-
nents and is implemented in HTML and TypeScript.

5github.com/google-research/t5x_retrieval
6See lit.dev for details.

The back-end services are implemented in Python
and C++. Requests for document retrieval and
blueprint model inference are sent to back-end ser-
vices to be processed asynchronously. Outputs are
then sent back to the front-end web interface.

5 Use Cases

In the following we explore some of the possibili-
ties of human-in-the-loop summarization and illus-
trate different use cases for our demonstration.

Informative Blueprints While the inner work-
ings of deep learning models might be opaque to
a human user, the formulation of the blueprint as
a sequence of questions makes the control of the
system’s output user-friendly. Users do not have
to be machine learning experts to interact with the
system through questions and answers. Moreover,
the ability to change the blueprint and observe the
result on the summary, provides the user with im-
mediate feedback.

The planning step also brings some insight into
the often black-box nature of conditional genera-
tion. This property is especially valuable when the
user summarizes complex or difficult information,
since it breaks down the generation process into a
sequence of questions. The blueprint plan offers
context for the information in the generated output,
which has been shown to be a desirable property
in human-AI interaction for text summarization
(Cheng et al., 2022). Plan agnostic models do not
provide details as to why certain pieces of informa-
tion were included. In contrast, as seen in Figure 4,
the blueprint plan anchors conditional generation,
providing the user with a question-answer explana-
tion for each proposition.

Improved Faithfulness Narayan et al. (2021)
evaluate the Blueprint models across several
datasets and show improvements in faithfulness
over models that do not use planning. More-
over, they also evaluate the impact of automated
blueprint edits on the output summary. For each
generated blueprint, they automatically remove
question-answer pairs for which the answer is not
contained in the input, thus eliminating questions
that cannot be answered based on the input doc-
uments. They then prompt the decoder with the
modified blueprint to generate the summary, fol-
lowing a similar setting as in our system demon-
stration. Their results confirm that this automatic
filtering of the generated blueprint further improves
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Plan

The blue color of the sky is caused by light 
being scattered more by molecules in the air 
than by what?

the Sun

Violet and blue light have what kind of 
wavelengths?

Which light has the longest wavelength?

What appears blue during the day because blue 
light is scattered more than red light?

Along with dawn, at what time does the sun 
appear low in the sky?

What has to travel a longer distance through 
the Earth’s atmosphere for it to appear red?

What is absorbed by the Earth’s atmosphere?

Violet and blue light have the shortest wavelengths. Therefore, 
blue light is scattered more than red light and the sky appears 
blue during the day.

Violet and blue light have the shortest wavelengths, while red 
light has the longest. Therefore, blue light is scattered more 
than red light and the sky appears blue during the day. During 
the sunrise and sunset, when the Sun is low in the sky, the light 
has to travel a longer distance through the Earth’s atmosphere, 
and so the shorter wavelengths of light are absorbed by the 
atmosphere, leaving only the red and orange light to reach our 
eyes. 

What adds color to the sky?

the shortest 
wavelengths

red light

the sky

dusk

the light

the shorter 
wavelengths

clouds

Summary

Summary

Figure 4: Example snapshot of the results obtained with the end-to-end Blueprint model for the user query "Why is
the sky blue?". Depending on which question-answer pairs the user selects, different summaries can be generated.

faithfulness. Their experiment further underscores
the importance of letting users interactively modify
the plan, since we expect manual editing of the
blueprint to have greater potential than automated
filtering alone. In addition to unanswerable ques-
tions, users can remove questions with incorrect
answers and irrelevant questions. A quantitative
evaluation of the full scope of various human edits
(e.g., remove an element of the blueprint, reorder
the blueprint, add human-written questions) is left
for future work.

Controllable Blueprints In the example in Fig-
ure 4, we examine the blueprint results obtained
with the end-to-end model for the user query “Why
is the sky blue?”. The first question-answer pair of
the blueprint is actually incorrect, but likely would
not have been caught by simple heuristics since it
seems fluent and its answer is present in the input
documents. The user selects the subset of question-
answers that are deemed most relevant, leading to
higher-quality output than would have been gener-
ated without the blueprint control step. In partic-
ular, we see that the output does not contain the
inaccuracies from the first question-answer pair.

This example also shows how the user can con-
trol the length of the generated summary by in-
cluding more or less question-answer pairs in the
blueprint. For instance, the user can restrict the
summary to contain only the explanation for blue
skies as shown at the top in Figure 4, or decide to
include information about orange skies at sunset,
as shown at the bottom. For a given query and

source documents, the system can lead to diverse
summaries by selecting different blueprints. More-
over, while it would be difficult for a user to come
up with a plan from scratch if they are unfamiliar
with the topic of their query, the provided blueprint
can serve as a starting point from which the user
can select what they would like to keep. As we
discuss next, the user could also elaborate on their
initial query by adding questions in the blueprint.

Personalized Generation Going beyond select-
ing and removing questions, in Figure 5, we illus-
trate results obtained with the interactive model
and a user-provided blueprint. The user can edit
the blueprint with their own follow-on questions,
leading to an updated summary with information it
did not contain originally. When summarizing un-
familiar topics, it might be difficult for the user to
come up with many new questions, and such cases
might be better served by the end-to-end model. In
Appendix A, we provide additional examples of
manually-edited blueprints and their corresponding
summary. We observe that editing the plan allows
the user to guide the generation to include certain
elements in the output summary.

6 Conclusions

This demonstration showcases a novel approach to
query-focused summarization that uses a blueprint
to plan the generated text. By implementing it
within an interactive framework, we transform it
into an example of human-in-the-loop conditional
generation. Our demonstration is designed in a
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What kind of ship was RMS Titanic?

What line operated the RMS Titanic?

In what body of water did the RMS Titanic sink?

On what date did the RMS Titanic sink?

What did the Titanic hit that caused it to sink?

During what voyage did the Titanic hit an iceberg?

What was the largest passenger liner afloat at the time it entered 
service?

When did the Titanic movie with DiCaprio come out?

Who played the female lead in the Titanic movie?

Figure 5: Snapshot of the results obtained with the interactive Blueprint model for the query “What is the Titanic
known for?”. Questions highlighted in red were manually added by the user, leading to a different output.

query-focused summarization setting; it retrieves
multiple documents for a given query and uses
them as input for the summarization. The system
offers three different model variations, namely an
end-to-end, iterative, and interactive Blueprint ap-
proach. The interactive model, in particular, allows
users to examine and edit the blueprint plans, of-
fering a more personalized experience. Since the
blueprint is formulated as a sequence of questions,
it provides a natural way for the user to interact
with the generated output, e.g., by selecting rel-
evant question-answer pairs, which in turn helps
reduce inaccuracies and hallucinations.

We hope this demonstration will spur further
exploration into controllable and interpretable con-
ditional generation systems and how human inter-
action can be an integral component in generating
personalized outputs. We further expect interactive
tools like the one presented here to assist in sum-
mary creation and editing, e.g., for data augmen-
tation in low-resource settings or for more robust
system evaluation by generating multiple outputs
for a given document.

7 Ethics statement

An ethical consideration with generative language
models is the problem of misinformation. While
the work we present here makes a step towards im-
proving the faithfulness and factual consistency of
text generation systems, it is important to note that
current systems are still far from being perfect in
this respect, and thus should be used with caution.

While we did not observe harmful speech with typ-
ical queries, such a system can still be abused and
additional controls and filters on both the queries
and the system’s output could help mitigate this.
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Why did France give the US the Statue of Liberty?
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Q1: Who proposed that a statue be built as a gift from France to the United
States to commemorate the friendship between France and the United States?
Q2: In what year was the Statue of Liberty designed?
Q3: Who designed the Statue of Liberty?
Q4: Along with freedom and democracy, what did Laboulaye want the Statue
of Liberty to represent?
Q5: To whom was the Statue of Liberty presented?
Q6: In what city was the Statue of Liberty presented to the U.S. ambassador?
Q7: Gustave Eiffel helped build what for the Statue of Liberty?

In 1865, French political thinker and abolitionist Édouard de Laboulaye pro-
posed that a statue be built as a gift from France to the United States to commem-
orate the friendship between France and the United States and to commemorate
the 100th anniversary of U.S. independence. Designed by sculptor Auguste
Bartholdi, the statue was meant to symbolize the American welcome of im-
migrants and refugee seekers. It was presented to the U.S. ambassador Levi
Morton in Paris on July 4, 1881, by French Marshal Nicolas Luckner as a com-
memoration of the friendship between France and the United States. Gustave
Eiffel helped build the pedestal for the Statue of Liberty.
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States to commemorate the friendship between France and the United States?
Q2: In what year was the Statue of Liberty designed?
Q3: Who designed the Statue of Liberty?
Q4: Along with freedom and democracy, what did Laboulaye want the Statue
of Liberty to represent?
Q5: To whom was the Statue of Liberty presented?
Q6: In what city was the Statue of Liberty presented to the U.S. ambassador?
Q7: How was the Statue of Liberty transported to New York City?

In 1865, French political thinker and abolitionist Édouard de Laboulaye pro-
posed that a statue be built as a gift from France to the United States to commem-
orate the friendship between France and the United States and to commemorate
the 100th anniversary of the United States’ independence. Designed by sculptor
Auguste Bartholdi, the statue was meant to symbolize the American welcome
of immigrants and refugee seekers. It was presented to the U.S. ambassador
Levi Morton in Paris on July 4, 1881, and later transported to New York
City where it was reconstructed.

Who plays Queen Lannister in Game of Thrones?
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Q1: Who is the actress who played Cersei Lannister?
Q2: What is Cersei Lannister’s role in Game of Thrones?
Q3: What is the name of the book series in which Cersei Lannister appears?
Q4: Who wrote ’A Song of Ice and Fire’?
Q5: What is Game of Thrones based on?
Q6: When did Game of Thrones first air?
Q7: What is one of the wealthiest and most powerful families in Westeros?
Q8: In what year did Cersei Lannister first appear in the books?

Cersei Lannister is a fictional character in the A Song of Ice and Fire series of
epic fantasy novels by American author George R.R. Martin, and its television
adaptation Game of Thrones, where she is portrayed by Bermudian-English
actress Lena Headey. Introduced in 1996’s A Game of Thrones, Cersei is a
member of House Lannister, one of the wealthiest and most powerful families
on the continent of Westeros. She subsequently appears in A Clash of Kings
(1998) and A Storm of Swords (2000), and becomes a prominent point of view
character beginning with A Feast for Crows (2005).

M
A

N
U

A
L

LY
-E

D
IT

E
D

P
L

A
N

Q1: Who is the actress who played Cersei Lannister?
Q2: What is Cersei Lannister’s role in Game of Thrones?
Q3: Has the actress received any awards?
Q4: Is the actress famous?

Cersei Lannister is a fictional character in the A Song of Ice and Fire series of
epic fantasy novels by American author George R.R. Martin, and its television
adaptation Game of Thrones, where she is portrayed by Bermudian-English
actress Lena Headey. Headey has received widespread critical acclaim for
her portrayal of the character, making her one of the most popular and
longest-running actors on television.

Who said my enemy’s enemy is my friend?
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Q1: What did the Latin phrase "Amicus meus, inimicus inimici mei" mean?
Q2: During what time period did the Latin phrase "Amicus meus, inimicus
inimici mei" become common?
Q3: When did the English version of the phrase "the enemy of my enemy is my
friend" first appear?
Q4: Who was the first person to use the modern English version of the phrase
"the enemy of my enemy is my friend"?
Q5: When did the English version of the phrase "the enemy of my enemy is my
friend" first appear?

The exact meaning of the modern phrase was first expressed in the Latin phrase
"Amicus meus, inimicus inimici mei" ("my friend, the enemy of my enemy"),
which had become common throughout Europe by the early 1700s, while
the first recorded use of the current English version came in 1884. The first
recorded instance for this phrasing comes from Gabriel Manigault, who in his
1884 Political Creed described the sense that "the enemy of my enemy is my
friend" as a "natural feeling".
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Q1: Who was the first person to use the modern English version of the
phrase "the enemy of my enemy is my friend"?
Q2: What did Gabriel Manigault describe as a natural feeling?

The first recorded instance for this phrasing comes from Gabriel Mani-
gault, who in his 1884 Political Creed described the sense that "the enemy
of my enemy is my friend" as a "natural feeling".

Table 1: Examples of machine-generated and manually-edited plans and their corresponding summaries. We
highlight in bold changes made by the user and the resulting changes to the summary.
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Is it illegal to have a bald eagle?
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Q1: What is the section number of the Bald and Golden Eagle Protection Act
in the United States Code?
Q2: What is the Bald and Golden Eagle Protection Act?
Q3: What does the Bald and Golden Eagle Protection Act prohibit the taking
of?
Q4: Along with golden eagles, what bald eagle is protected by the Bald and
Golden Eagle Protection Act?
Q5: The Bald and Golden Eagle Protection Act prohibits the taking of bald
eagles, their parts, nests, and what else?
Q6: Who is required to obtain a permit from the Secretary of the Interior to take
bald eagles?
Q7: What can result in a fine of up to $100,000?
Q8: How much is the fine for a first offense of taking a bald eagle?

The Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d), enacted in
1940, and amended several times since, prohibits anyone, without a permit
issued by the Secretary of the Interior, from "taking" bald or golden eagles,
including their parts (including feathers), nests, or eggs. The Act provides
criminal penalties for persons who take, possess, sell, purchase, barter, offer to
sell, purchase or barter, transport, export or import, at any time or any manner,
any bald eagle (or any golden eagle), alive or dead, or any part (including
feathers), nest, or egg thereof. A violation of the Act can result in a fine of up
to $100,000 ($200,000 for organizations), imprisonment for one year, or both,
for a first offense.
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Q1: What is the Bald and Golden Eagle Protection Act?
Q2: Can Native Americans ask for an eagle permit?

The Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d), enacted in
1940, and amended several times since, prohibits anyone, without a permit
issued by the Secretary of the Interior, from "taking" bald or golden eagles,
including their parts (including feathers), nests, or eggs. Native Americans
may ask for an eagle permit.

Is software engineer a good job?
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Q1: What is projected to grow 22% from 2020 to 2030?
Q2: What is the average salary for a software engineer?
Q3: What is the average salary for a software engineer?
Q4: Along with management, in what area do software engineers earn more
than most other workers?

Employment of software developers is projected to grow 22% from 2020 to
2030, which is much higher than the national average for other occupations.
The average salary for a software engineer is $99,400 with an average yearly
growth rate of 7%. In addition, software engineers earn more than most other
workers in the more traditional business aspects such as management and sales.
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Q1: What is the average salary for a software engineer?
Q2: What degree should you get to become a software engineer?

The average salary for a software engineer is $99,400 according to the BLS.
Having a bachelor’s degree in computer science or software engineering
is recommended, though a master’s degree may be more beneficial.

Table 2: Examples of machine-generated and manually-edited plans and their corresponding summaries (Contin-
ued). We highlight in bold changes made by the user and the resulting changes to the summary.
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