
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 96–104

May 2-4, 2023 ©2023 Association for Computational Linguistics

kogito: A Commonsense Knowledge Inference Toolkit

Mete Ismayilzada
EPFL

mahammad.ismayilzada@epfl.ch

Antoine Bosselut
EPFL

antoine.bosselut@epfl.ch

Abstract

In this paper, we present kogito, an open-
source tool for generating commonsense in-
ferences about situations described in text.
kogito provides an intuitive and extensible
interface to interact with natural language gen-
eration models that can be used for hypothesiz-
ing commonsense knowledge inference from
a textual input. In particular, kogito offers
several features for targeted, multi-granularity
knowledge generation. These include a stan-
dardized API for training and evaluating knowl-
edge models, and generating and filtering in-
ferences from them. We also include helper
functions for converting natural language texts
into a format ingestible by knowledge models
— intermediate pipeline stages such as knowl-
edge head extraction from text, heuristic and
model-based knowledge head-relation match-
ing, and an ability to define and use custom
knowledge relations. We make the code for
kogito available at https://github.com/epfl-
nlp/kogito along with thorough documentation
at https://kogito.readthedocs.io.

1 Introduction

In recent years, large-scale language models (Rad-
ford and Narasimhan, 2018; Devlin et al., 2019;
Brown et al., 2020) trained on massive amounts of
text have been conceptualized as implicit knowl-
edge bases that encode knowledge about the world
(Petroni et al., 2019; Roberts et al., 2020). As they
are trained to receive natural language inputs, these
models can be prompted to generate text that ex-
presses a fact. Leveraging this property, knowlege
models train on knowledge graph tuples (triplets
of head entity, relation, tail entity) and learn to
express knowledge encoded in the parameters of
language models when provided with a head entity
and relation (Bosselut et al., 2019; Hwang et al.,
2021; Da et al., 2021; West et al., 2022).

The success of these knowledge models has in-
spired the field to deploy them in various down-

stream use-cases such as generating figurative lan-
guage (Chakrabarty et al., 2020b), producing sar-
castic responses (Chakrabarty et al., 2020a), design-
ing plots for stories (Ammanabrolu et al., 2021) and
text-based games (Dambekodi et al., 2020), and
developing persona-grounded dialogue agents (Ma-
jumder et al., 2020). Given the prevalence of appli-
cations that benefit from augmenting NLP systems
with commonsense inferences, we present a novel
commonsense KnOwledGe Inference TOolkit,
kogito, that standardizes commonsense infer-
ence generation from knowledge models. To the
best of our knowledge, kogito is the first library
that facilitates access to knowledge models through
an easy-to-use, customizable interface. In particu-
lar, we make the following contributions:

1. A Python package1 for knowledge inference
with a customizable and extensible API.

2. A module to perform commonsense infer-
ence with a library of pretrained models, in-
cluding GPT-2 (Radford et al., 2019), GPT-3
(Brown et al., 2020) and COMET (Hwang
et al., 2021).

3. A standardized interface to train, evaluate and
predict with knowledge models.

4. Modules to extract relevant candidates for
commonsense inference (i.e., head extraction)
with support for customization and extension.

5. Modules to match relevant relations to ex-
tracted head entities (i.e., relation matching)
with support for customization and extension.

6. A module to filter commonsense inferences
based on their contextual relevance using com-
monsense fact linkers (Gao et al., 2022)

7. Functionality to define novel knowledge re-
lations on top of the built-in ATOMIC2020

1https://pypi.org/project/kogito/

96

https://github.com/epfl-nlp/kogito
https://github.com/epfl-nlp/kogito
https://kogito.readthedocs.io
https://pypi.org/project/kogito/

(Hwang et al., 2021) and ConceptNet (Speer
and Havasi, 2013) relation sets.

8. Extensive documentation with User Guides
and API Reference.2

The library is released under the Apache 2.0 Li-
cense. We provide a demo video3 for our library
along with a live demo app.4 Below, we outline
the commonsense inference challenges addressed
by this tool, its core design, and walk through its
major components in more detail.

2 Challenges of Commonsense Inference

While many works use knowledge models as com-
monsense inference engines to augment natural lan-
guage inputs, no work has formalized the pipeline
for producing such inferences. Here, we outline the
challenges of effectively setting up this pipeline.

Head Extraction Head extraction (i.e., finding
relevant concepts to produce commonsense infer-
ences about) is a consistent challenge when us-
ing knowledge models. Typically, these inferences
must be produced for more fine-grained textual
units than full contexts (Bosselut et al., 2021).
For instance, to understand figurative language,
Chakrabarty et al. (2020b) extract concepts from
similes such as "Love is like a unicorn". Com-
monsense inferences are generated about entities
such as "unicorn" (e.g., unicorns are rare, beautiful,
etc.), allowing them to produce literal interpreta-
tions of this figurative language: "Love is rare".
This use case motivates a need for fine-grained text
extraction functionality in our tool. In Section 5,
we outline our approach to address this challenge.

Relation Matching To generate commonsense
inferences, knowledge models typically take as in-
put a (head, relation) pair and produce a tail (i.e.,
the commonsense inference about the head entity).
Following this convention, once we have extracted
candidate heads from a given text, they must be
paired with relevant relations to produce valid com-
monsense inferences. For example, a head entity
such as “go to mall” should not be paired with an
ObjectUse relation as it is unlikely to produce a
valid (and practical) commonsense inference. Con-
sequently, a brute-force approach of matching all

2https://kogito.readthedocs.io/
3https://www.youtube.com/watch?v=

rFGzDrLCx00
4https://kogito.live

relations to presented head entities would be in-
adequate for most use cases. Current works often
circumvent this challenge by manually selecting
only a subset of available knowledge relations. As
part of kogito, we implement various heuristic
and model-based matching schemes to address this
challenge, while also providing users with the abil-
ity to define their own matching mechanisms. We
discuss these implementations in Section 6.

Inference Generation & Filtering Once a list
of relevant (head, relation) pairs is produced, we
run these examples through a knowledge model to
generate tail entities about these examples. How-
ever, many of these generated inferences may
not be relevant to the original context, particu-
larly for extracted head entities that have been de-
contextualized. kogito leverages a model-based
approach (Gao et al., 2022) to filter out irrelevant
commonsense generations. While other works re-
implement pipelines for performing these steps,
kogito offers an all-in-one solution.

3 kogito: A Pipeline for Commonsense
Inference

kogito is a pipeline for commonsense inference
from text and supports various steps to specialize
and customize inference behaviour. At full func-
tionality, given a text input, kogito extracts rel-
evant knowledge heads from textual inputs, and
matches these heads to plausible knowledge rela-
tions, thereby constructing an incomplete knowl-
edge graph of (head, relation) prompts. Then, this
partial graph is input to a knowledge model to gen-
erate tails to complete the graph. Finally, these
commonsense inferences (comprised of the head,
relation, and tail) are filtered based on their rele-
vance to the initial context. Below we provide a
simple example of how this module can be used to
generate commonsense inferences for the example
"PersonX becomes a great basketball player":

from kogito.models.bart.comet import COMETBART
from kogito.inference import CommonsenseInference

Load pre-trained model from HuggingFace
model = COMETBART

.from_pretrained("mismayil/comet-bart-ai2")

Initialize inference module
csi = CommonsenseInference()

Run inference
text = "PersonX becomes a great basketball player"
kgraph = csi.infer(text, model)

Save output knowledge graph to JSON file
kgraph.to_jsonl("kgraph.json")

97

https://kogito.readthedocs.io/
https://www.youtube.com/watch?v=rFGzDrLCx00
https://www.youtube.com/watch?v=rFGzDrLCx00
https://kogito.live

The resulting knowledge graph from the code
above contains inferences such as "PersonX needs
to practice a lot" and "PersonX is athletic". Various
parts of this pipeline can be customized and mod-
ified, allowing users to define their own modules.
In the following sections, we discuss kogito’s
core design, as well as the head extraction, relation
matching, and inference filtering components of
the pipeline. More details on these configuration
options can be found in the kogito documentation.

4 Data Representation

To allow for standardization and ease of mainte-
nance, kogito defines an interface to represent
core concepts such as a knowledge tuple, a common-
sense knowledge graph, and a knowledge model.

Commonsense Knowledge Tuple Common-
sense knowledge graphs (Speer and Havasi, 2013;
Hwang et al., 2021) and knowledge models (Bosse-
lut et al., 2019) typically represent instances of
knowledge as tuples of 3 elements: (head, relation,
tail). The head entity refers to the subject of a
piece of knowledge (e.g., objects such as hammer;
events such as "PersonX becomes a great basket-
ball player"). A relation provides an implicit ques-
tion about the head (e.g., CapableOf→ what is
this head entity capable of?; xNeed→ What does
PersonX need before this event occurs?). Finally,
tail entities provide an answer option (among po-
tentially many) to the relation with respect to the
head (e.g., put nail in wood; to practice hard). We
often refer to the tail as the commonsense inference
about the head.

Following this convention, we define a class with
these elements and an additional two classes for
knowledge head and relation representation. While
knowledge heads and tails can be arbitrary text, we
use predefined relations from the ATOMIC2020
(Hwang et al., 2021) and ConceptNet (Speer and
Havasi, 2013) knowledge graphs.5 Below is an
example of defining a knowledge tuple in kogito:

from kogito.core.head import KnowledgeHead
from kogito.core.knowledge import Knowledge
from kogito.core.relation import X_NEED

head = KnowledgeHead("PersonX becomes a great
"basketball player")

kg = Knowledge(head=head, relation=X_NEED,
tails=["practice hard"])

Knowledge Graph In addition to individual
knowledge tuples, we also define a knowledge

5kogito also supports defining new custom relations and
using them to generate commonsense inferences (§8)

graph as a collection of knowledge tuples. In
kogito, a knowledge graph serves as the stan-
dardized input object to (and output from) knowl-
edge models, and has a simple API to manipulate
knowledge instances collectively. In particular, a
knowledge graph can be used to easily iterate over,
read, and write a collection of knowledge instances
to and from various files, and perform set-like oper-
ations on multiple knowledge graphs. These opera-
tions require a notion of equality, so we define two
knowledge instances to be equal if they have the
same head, relation and tail. Below is an example
of defining and manipulating knowledge graphs:

from kogito.core.knowledge import KnowledgeGraph

Read from csv
kgraph1 = KnowledgeGraph

.from_csv("sample_graph1.csv",
sep="|", header=None)

Read from jsonl (list of json objects)
kgraph2 = KnowledgeGraph

.from_jsonl("sample_graph2.jsonl",
head_attr="source",
relation_attr="rel",
tails_attr="targets")

Union
kgraph1.union(kgraph2)
kgraph3 = kgraph1 + kgraph2

Intersection
kgraph1.intersection(kgraph2)
kgraph3 = kgraph1 & kgraph2

Difference
kgraph1.difference(kgraph2)
kgraph3 = kgraph1 - kgraph2

Write to jsonl
kgraph3.to_jsonl("sample_graph3.jsonl")

Knowledge Model Knowledge models concep-
tually accept as input a (head, relation) pair and
output an inferred knowledge tail. However, these
models can sometimes expect a subtly different for-
mats for these inputs and outputs. To increase the
extensibility and interoperability of our tool, so that
users can easily substitute one knowledge model
for another, we define a model-agnostic abstraction
over possible types of knowledge models. Conse-
quently, knowledge models inherit from an abstract
interface that defines core abstract methods, which
users can implement to port new knowledge mod-
els into kogito. The knowledge model interface
provides methods to train, generate from, evaluate
these models, as well as save and load them. The
input dataset for training, generating, or evaluat-
ing is given as a knowledge graph and the output
dataset (in the case of generation) is returned as a
knowledge graph.
kogito currently offers the following knowl-

edge models: COMET-BART and COMET-GPT2

98

from Hwang et al. (2021), GPT2-zeroshot (Rad-
ford et al., 2019), and GPT3-zeroshot (Brown et al.,
2020). Pre-trained COMET models can be loaded
either from HuggingFace6 by name or from local
disk by model path. The GPT-3 model requires
an API key. Each model method supports cus-
tomization of various model-specific hyperparame-
ters. kogito currently evaluates models using the
following metrics: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Lavie and Agar-
wal, 2007), CIDEr (Vedantam et al., 2015) and
BERTScore (Zhang et al., 2019).

Pipeline Design In the following sections, we
discuss the head extraction, relation matching, and
inference filtering components of this pipeline. We
note that we provide a “dry-run” mode which al-
lows for faster iteration on head extraction and
relation matching by skipping the inference gener-
ation portion of kogito’s pipeline. More details
on these configuration options can be found in the
kogito docs.

5 Head Extraction

Head extraction refers to finding relevant chunks
of a text in a sequence that can serve as knowledge
heads (i.e., the concepts commonsense inferences
should be generated about). For example, given
a text input "PersonX becomes a great basketball
player", we might be interested in generating infer-
ences for the full sentence, but also about entities
such as "basketball player", "basketball", or poten-
tially "become player". For different applications,
different sets of head entities might be appropriate
for generating inferences. Consequently, kogito
allows the user to customize this behaviour and
define arbitrary head extraction methods.7

At the same time, by default, kogito comes
with a few standard head extraction methods. These
built-in methods segment sentences, and then ex-
tract noun phrases (NP) and verb phrases (VP) us-
ing dependency parses produced from spaCy.8 Ex-
tracted heads are deduplicated using string match-
ing and passed onto the next stage of the pipeline,
relation matching. We note that the head extraction
stage itself is optional and the user can also provide
a dedicated list of heads to kogito, which would
replace the pre-processing of head entities.

6https://huggingface.co/models
7https://tinyurl.com/head-extraction
8https://spacy.io/

6 Relation Matching

Not all relations that a knowledge model is trained
with will be relevant to each extracted head. For ex-
ample, a head entity, "hammer", would ideally be
match to a relation such as AtLocation, while
a relation such as xWants (i.e., what does this
head entity want) would not be matched. Similarly,
"PersonX becomes a basketball player" might be
matched to a relation such as xIntent (i.e., what
is the intent of the main persona in the head entity),
while a relation such as UsedFor (i.e., what is
the head entity used for) would yield an incoher-
ent inference. In this next stage, kogito matches
relations to the given head input so that the result-
ing (head, relation) pair constitutes a sensible and
plausible prompt for the knowledge model.
kogito supports relation matching as a pre-

processing step before generating inferences. Suit-
able relation matches may be subjective depending
on the use case, so kogito supports specifying
subsets of relations and creation of custom relation
matching modules developed by the user.9

In addition, kogito also provides native rela-
tion matching algorithms. These relation matchers
follow the categorization of relations set out by
Hwang et al. (2021), where relations were mapped
into three categories: Physical, Social and Event
types. Following this standard, we design relation
matchers that identify a given head with whether
it should be connected to the Physical, Social or
Event categories, and match all relations in these
categories to the head entity. Below, we describe
three relation matching methods provided as part
of kogito’s core library:

Base Matcher Every relation defined for a
knowledge graph is matched to the head entities.
This matcher is particularly useful if the user pre-
defines a set of acceptable known relations or if
they define new relations for their use case (§8).

Heuristic matcher The heuristic relation
matcher matches extracted head entities that are
noun phrases to ATOMIC2020 Physical relations
and extracted head entities that are sentences or
verb phrases to Social and Event relations. In our
example, "PersonX becomes a great basketball
player", an extracted verb phrase such as "become
player" would be matched to the Social and
Event relations, while the extracted noun phrase

9https://tinyurl.com/relation-matching

99

https://huggingface.co/models
https://tinyurl.com/head-extraction
https://spacy.io/
https://tinyurl.com/relation-matching

Dataset ntrain ntest Overlap
Original 36,940 6,559 0.80 / 0.81

D4 40,395 1,192 0.30 / 0.36
D2 40,516 1,071 0.20 / 0.27
D0 40,777 810 0.00 / 0.11

Table 1: Summary of Relation Matching datasets. The
overlap column reports the degree of overlap with /
without stopwords included.

"basketball player" would be matched to the
Physical relations.

6.1 Model-based relation matching

The above matchers do not consider the semantic
meaning of the head entities when matching them
to relations. We also define model-based matchers
that learn which heads and relations would be good
matches. Relation matching is modeled as a clas-
sification problem. A head entity is given as input,
and the model must determine the relation groups
that match: Physical, Social and Event.

Dataset We use the ATOMIC2020 knowledge
graph to train and evaluate the model-based rela-
tion matchers. First, we construct a dataset where
the inputs are head entities and the label space cor-
responds to the three relation groups. If a head
entity in the knowledge graph is connected to a
relation from a particular group, we treat that re-
lation group as a positive label for the head entity.
As relations from multiple relation groups may be
connected to a head entity, this labeling yields a
multi-label prediction problem.

To evaluate the performance of our relation
matchers (and test their generalization so they may
be applicable to a broad scope of use cases), we
split our dataset into both an in-distribution (ID)
and an out-of-distribution (OOD) evaluation sam-
ple set. For the ID test set, we use the original
ATOMIC2020 development set. For the OOD
test set, we combine the train and test set of
ATOMIC2020 and resplit this joint dataset while
minimizing the word overlap between the train and
test set. More specifically, we prepare 3 sets of
(train, test) splits called D0, D2 and D4 where n
in Dn is defined as the maximum number of times
a word in a particular test set example can occur
in the training dataset (excluding stopwords). A
bigger n indicates more overlap between these two
sets. In D0, the test set does not have any overlap-

Split Head Entity Labels
Train PersonX acts funny event, social
Train accordion physical
Train big investment event
Test agenda physical
Test PersonX wreaks havoc event, social
Test PersonX motivates PersonY social

Table 2: Samples from resplit train and test set D0

ping non-stopwords with the training set. Finally,
we ensure that the resulting test set is balanced over
each relation group. Table 1 provides the summary
of the constructed datasets and Table 2 lists some
examples from the D0 dataset.

Models We report results for fine-tuned models
using different pretrained embeddings: GloVe (Pen-
nington et al., 2014), BERT (Devlin et al., 2019)
and DistilBERT (Sanh et al., 2019). The GloVe
model uses the technique of Shen et al. (2018) with
average pooling over 100 dimensional GloVe em-
beddings and a projection layer on top. The BERT
and DistilBERT models are finetuned on the task
with a projection layer to predict the label.10 These
models are provided with kogito, and can be
selected to match relations to head inputs.

In Table 3, we report the train, ID test and OOD
test F1 scores for these models using different train-
ing datasets Dn, allowing users to understand their
relative benefits and trade-offs.

7 Inference Filtering

By default, the commonsense inference module
returns all generated tails without any filtering
applied. However, many of these resulting in-
ferences may be irrelevant to the initial context,
particularly for extracted heads that have been de-
contextualized. Given most users may only be in-
terested in relevant subsets of these commonsense
inferences, kogito provides a separate module
to determine the relevance of the given knowledge
tuples with respect to the initial context from which
it was extracted. In our running example, "Per-
sonX becomes a great basketball player", an ex-
tracted head entity "player" may yield contextually-
irrelevant inferences such as "player plays video
games" and "player is at a soccer match", which

10All models are trained using binary cross-entropy loss
and the Adam optimizer (Kingma and Ba, 2015) for 20 (for
SWEM models) and 3 (for BERT and DistilBERT models)
epochs with a batch size of 64.

100

Data Model Train F1 ID F1 OOD F1

D4

Base 0.68 0.82 0.62
Heuristic 0.84 0.80 0.69
GloVe 0.90 0.91 0.82
DistilBERT 0.97 0.91 0.85
BERT 0.97 0.91 0.86

D2

Base 0.68 0.82 0.61
Heuristic 0.84 0.80 0.69
GloVe 0.89 0.90 0.81
DistilBERT 0.97 0.93 0.85
BERT 0.97 0.94 0.86

D0

Base 0.68 0.82 0.63
Heuristic 0.84 0.80 0.73
GloVe 0.89 0.90 0.76
DistilBERT 0.97 0.93 0.84
BERT 0.97 0.91 0.85

Table 3: Relation matcher performance on datasets Dn

would be filtered.
To filter inferences, kogito comes with the off-

the-shelf DeBERTa-based commonsense fact link-
ing model from Gao et al. (2022), which achieved
a state-of-the-art average 72.5% F1 across multiple
benchmarks. However, our setting is different from
the one evaluated in Gao et al. (2022) as we evalu-
ate generated commonsense inferences (rather than
ones from an existing KB) for contextual relevance.
To evaluate how well our method transfers to this
new setting, we perform an expert study on the
performance of the inference filtering model with
respect to the knowledge generated from a knowl-
edge model such as COMET. We randomly select
50 instances from the test split of ROC-ATOMIC
dataset Gao et al. (2022) where each instance is
composed of a context and a fact as a knowledge
tuple (head, relation, tail). We then run the de-
fault kogito inference pipeline (with full head
extraction and heuristic relation matching) on the
heads which produces several inferences per head
instance. We select 100 results randomly from the
output of the previous step and apply our inference
filtering model. Finally, we ask a human expert to
annotate each instance with the true relevance label
of the fact and find that our model achieves a 75%
F1 on the knowledge model generated inferences.
We also offer a modular interface to define and plug
in new filtering models in the future.

8 Defining New Relations

In previous knowledge modeling papers (Bosselut
et al., 2019; Hwang et al., 2021), the set of rela-

tions that can be used in prompts is limited by the
knowledge graph used to to train the knowledge
model (e.g., ATOMIC2020). However, a user may
want to generate inferences for new dimensions of
knowledge, define their own custom relations for
them, and produce commonsense inferences based
on these new properties. However, if there are no
large KGs that use this schema, training a suitable
knowledge model would pose a challenge.

kogito provides this functionality by imple-
menting the approach of West et al. (2022), which
allows a user to prompt large language models for
knowledge using custom relations and has been
shown to generate high-quality knowledge. Specif-
ically, a user defines an instance of a knowledge
relation class, a verbalizer function that describes
how to convert the new relation into a natural lan-
guage prompt (with a head and tail), and an instruc-
tion prompt to GPT-3. At inference time, the user
provides a list of sample knowledge tuples that use
the new relation. These tuples are verbalized using
the verbalizer function and provided to the GPT-3
model along with the instruction prompt. Below,
we illustrate this process with an example where a
new relation, xWishes, which describes person’s
wishes, is defined using the sample code:

from kogito.core.relation import (KnowledgeRelation,
register_relation)

def x_wishes_verbalizer(head, **kwargs):
index will be passed from the model
so that we can enumerate samples
which helps with inference
index = kwargs.get("index")
index_txt = f"{index}" if index is not None \

else ""
return f"Situation {index_txt}: {head}."

"As a result, PersonX wishes"

X_WISHES = KnowledgeRelation("xWishes",
verbalizer=x_wishes_verbalizer,
prompt="How does this situation affect"

" each character's wishes?")
register_relation(X_WISHES)

Then, to use this new relation for inference, the
user can provide a sample knowledge graph (i.e.,
a prompt filled with example tuples using this
relation), and a head such as "PersonX makes a
huge mistake" to generate inferences about. Below,
we show how such a sample knowledge graph
could be verbalized into a prompt for GPT-3:

101

How does the situation affect the character’s
wishes?
Situation 1: John is at a party. As a result, John
wishes to drink beer and dance
Situation 2: Terry bleeds a lot. As a result, Terry
wishes to see a doctor
Situation 3: Eileen works as a cashier. As a result,
Eileen wishes to be a store manager
Situation 4: James gets dirty. As a result, James
wishes to clean up
Situation 5: Janice stays up all night studying. As
a result, Janice wishes to sleep all day
Situation 6: Isaac makes a huge mistake. As a
result, Isaac wishes...

The result of prompting GPT-3 with the above text
is returned as the generated tail inference for the
given head. Using this approach, users can instanti-
ate a prompt defining a new relation, and use large
language models to produce inferences for it.

9 Conclusion & Future Work

In this system description, we presented kogito,
a toolkit for generating commonsense inferences
for open-world text using knowledge models.
kogito provides a foundational, customizable,
and extensible interface for inference generation
from knowledge models, and supports preprocess-
ing and manipulation utilities such as head extrac-
tion, relation matching, and relation definition.

Future work may include improved head extrac-
tion, such as semantic head extraction (e.g., para-
phrased noun phrase extraction, etc.), new relation
matching methods that more rigorously trade off
performance and latency, support for new knowl-
edge models trained on other knowledge graphs
(e.g., ANION; Jiang et al., 2021), and multimodal
inputs such as images.

Acknowledgements

We thank Silin Gao, Deniz Bayazit, Beatriz Borges,
Antoine Masanet, and other members of the EPFL
NLP lab for their feedback on earlier iterations
of this library. Significant portions of the model
training and evaluation code for this tool have
been adapted from the codebase11 of Hwang et al.
(2021). Antoine Bosselut gratefully acknowledges
the support of Innosuisse under PFFS-21-29, the
EPFL Science Seed Fund, the EPFL Center for

11https://github.com/allenai/
comet-atomic-2020

Imaging, Sony Group Corporation, and the Allen
Institute for AI.

Ethical Considerations

kogito is a library that uses knowledge models
such as COMET (Bosselut et al., 2019) to generate
commonsense inferences from text. These knowl-
edge models are seeded with pretrained language
models and subsequently finetuned on knowledge
graphs so that they may generate knowledge in
the structure of the finetuning KG. Consequently,
kogito could reflect harmful behaviors exhibited
by language models and knowledge graphs that
are used to train the knowledge models in its li-
brary. For example, language models have been
shown to encode biases about race, gender, and
many other demographic attributes (Sheng et al.,
2020; Weidinger et al., 2021). They can also gen-
erate toxic outputs when prompted in overt (Wal-
lace et al., 2019), but also seemingly innocuous
(Gehman et al., 2020), ways. We encourage users
of this library to consider the same precautions they
would apply to other language models and methods
that use noisy knowledge sources.

References
Prithviraj Ammanabrolu, Wesley Cheung, William

Broniec, and Mark O. Riedl. 2021. Automated sto-
rytelling via causal, commonsense plot ordering. In
AAAI.

Antoine Bosselut, Ronan Le Bras, and Yejin Choi. 2021.
Dynamic neuro-symbolic knowledge graph construc-
tion for zero-shot commonsense question answering.
In Proceedings of the 35th AAAI Conference on Arti-
ficial Intelligence (AAAI).

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762–4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.

102

https://github.com/allenai/comet-atomic-2020
https://github.com/allenai/comet-atomic-2020
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470

Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Tuhin Chakrabarty, Debanjan Ghosh, Smaranda Mure-
san, and Nanyun Peng. 2020a. Rˆ3: Reverse, retrieve,
and rank for sarcasm generation with commonsense
knowledge. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7976–7986, Online. Association for Computa-
tional Linguistics.

Tuhin Chakrabarty, Smaranda Muresan, and Nanyun
Peng. 2020b. Generating similes effortlessly like a
pro: A style transfer approach for simile generation.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6455–6469, Online. Association for Computa-
tional Linguistics.

Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, and
Antoine Bosselut. 2021. Analyzing commonsense
emergence in few-shot knowledge models. In Pro-
ceedings of the Conference on Automated Knowledge
Base Construction (AKBC).

Sahith Dambekodi, Spencer Frazier, Prithviraj Am-
manabrolu, and Mark Riedl. 2020. Playing text-
based games with common sense.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Silin Gao, Jena D. Hwang, Saya Kanno, Hiromi Wakaki,
Yuki Mitsufuji, and Antoine Bosselut. 2022. Com-
fact: A benchmark for linking contextual common-
sense knowledge. In Findings of EMNLP.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. Realtoxic-
ityprompts: Evaluating neural toxic degeneration in
language models. ArXiv, abs/2009.11462.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. Comet-atomic 2020: On sym-
bolic and neural commonsense knowledge graphs. In
AAAI.

Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula,
and Yejin Choi. 2021. “I’m not mad”: Commonsense
implications of negation and contradiction. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4380–4397, Online. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
automatic metric for MT evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 228–231, Prague, Czech Republic.
Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Tay-
lor Berg-Kirkpatrick, and Julian McAuley. 2020.
Like hiking? you probably enjoy nature: Persona-
grounded dialog with commonsense expansions. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9194–9206, Online. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

103

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.711
https://doi.org/10.18653/v1/2020.acl-main.711
https://doi.org/10.18653/v1/2020.acl-main.711
https://doi.org/10.18653/v1/2020.emnlp-main.524
https://doi.org/10.18653/v1/2020.emnlp-main.524
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2210.12678
https://doi.org/10.48550/ARXIV.2210.12678
https://doi.org/10.48550/ARXIV.2210.12678
https://doi.org/10.18653/v1/2021.naacl-main.346
https://doi.org/10.18653/v1/2021.naacl-main.346
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.emnlp-main.739
https://doi.org/10.18653/v1/2020.emnlp-main.739
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1910.01108

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple word-
embedding-based models and associated pooling
mechanisms. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 440–450,
Melbourne, Australia. Association for Computational
Linguistics.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2020. Towards Controllable Biases in
Language Generation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3239–3254, Online. Association for Computational
Linguistics.

Robyn Speer and Catherine Havasi. 2013. Conceptnet 5:
A large semantic network for relational knowledge.
In The People’s Web Meets NLP.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4566–4575.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
Zac Kenton, Sasha Brown, Will Hawkins, Tom
Stepleton, Courtney Biles, Abeba Birhane, Julia
Haas, Laura Rimell, Lisa Anne Hendricks, William S.
Isaac, Sean Legassick, Geoffrey Irving, and Iason
Gabriel. 2021. Ethical and social risks of harm from
language models. CoRR, abs/2112.04359.

Peter West, Chandrasekhar Bhagavatula, Jack Hessel,
Jena D. Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. 2022. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. In NAACL.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore: Evalu-
ating text generation with bert.

104

https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/2020.findings-emnlp.291
https://doi.org/10.18653/v1/2020.findings-emnlp.291
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
http://arxiv.org/abs/2112.04359
http://arxiv.org/abs/2112.04359
https://doi.org/10.48550/ARXIV.1904.09675
https://doi.org/10.48550/ARXIV.1904.09675

