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Abstract

We introduce small-text, an easy-to-use ac-
tive learning library, which offers pool-based
active learning for single- and multi-label text
classification in Python. It features numerous
pre-implemented state-of-the-art query strate-
gies, including some that leverage the GPU.
Standardized interfaces allow the combination
of a variety of classifiers, query strategies, and
stopping criteria, facilitating a quick mix and
match, and enabling a rapid and convenient de-
velopment of both active learning experiments
and applications. With the objective of mak-
ing various classifiers and query strategies ac-
cessible for active learning, small-text inte-
grates several well-known machine learning li-
braries, namely scikit-learn, PyTorch, and
Hugging Face transformers. The latter inte-
grations are optionally installable extensions,
so GPUs can be used but are not required. Us-
ing this new library, we investigate the perfor-
mance of the recently published SetFit train-
ing paradigm, which we compare to vanilla
transformer fine-tuning, finding that it matches
the latter in classification accuracy while out-
performing it in area under the curve. The li-
brary is available under the MIT License at
https://github.com/webis-de/small-text, in
version 1.3.0 at the time of writing.

1 Introduction

Text classification, like most modern machine learn-
ing applications, requires large amounts of training
data to achieve state-of-the-art effectiveness. How-
ever, in many real-world use cases, labeled data
does not exist and is expensive to obtain, especially
when domain expertise is required. Active Learn-
ing (Lewis and Gale, 1994) solves this problem by
repeatedly selecting unlabeled data instances that
are deemed informative according to a so-called
query strategy, and then having them labeled by an
expert (see Figure 1a). A new model is then trained
on all previously labeled data, and this process is
repeated until a specified stopping criterion is met.
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Figure 1: Illustrations of (a) the active learning process,
and (b) the active learning setup with the components
of the active learner.

Active learning aims to minimize the amount of
labeled data required while maximizing the effec-
tiveness (increase per iteration) of the model, e.g.,
in terms of classification accuracy.

An active learning setup, as shown in Figure 1b,
generally consists of up to three components on the
system side: a classifier, a query strategy, and an
optional stopping criterion. Meanwhile, many ap-
proaches for each of these components have been
proposed and studied. Determining appropriate
combinations of these approaches is only possi-
ble experimentally, and efficient implementations
are often nontrivial. In addition, the components
often depend on each other, for example, when a
query strategy relies on parts specific to certain
model classes, such as gradients (Ash et al., 2020)
or embeddings (Margatina et al., 2021). The more
such non-trivial combinations are used together,
the more the reproduction effort increases, making
a modular library essential.

An obvious solution to the above problems is the
use of open source libraries, which, among other
benefits, accelerate research and facilitate technol-
ogy transfer between researchers as well as into
practice (Sonnenburg et al., 2007). While solu-
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Figure 2: Module architecture of small-text. The core module can optionally be extended with a PyTorch
and transformers integration, which enable to use GPU-based models and state-of-the-art transformer-based
text classifiers of the Hugging Face transformers library, respectively. The dependencies between the module’s

packages have been omitted.

tions for active learning in general already exist,
few address text classification, which requires fea-
tures specific to natural language processing, such
as word embeddings (Mikolov et al., 2013) or lan-
guage models (Devlin et al., 2019). To fill this
gap, we introduce small-text, an active learning
library that provides tried and tested components
for both experiments and applications.

2 Overview of Small-Text

The main goal of small-text is to offer state-of-
the-art active learning for text classification in a
convenient and robust way for both researchers and
practitioners. For this purpose, we implemented
a modular pool-based active learning mechanism,
illustrated in Figure 2, which exposes interfaces
for classifiers, query strategies, and stopping cri-
teria. The core of small-text integrates scikit-
learn (Pedregosa et al., 2011), enabling direct use
of its classifiers. Overall, the library provides thir-
teen query strategies, including some that are only
usable on text data, five stopping criteria, and two
integrations of well-known machine learning li-
braries, namely PyTorch (Paszke et al., 2019) and
transformers (Wolf et al., 2020). The integra-
tions ease the use of CUDA-based GPU computing
and transformer models, respectively. The modular
architecture renders both integrations completely
optional, resulting in a slim core that can also be
used in a CPU-only scenario without unnecessary
dependencies. Given the ability to combine a con-
siderable variety of classifiers and query strategies,
we can easily build a vast number of combinations
of active learning setups.

The library provides relevant text classification
baselines such as SVM (Joachims, 1998) and Kim-
CNN (Kim, 2014), and many more can be used
through scikit-1learn. Recent transformer mod-
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els such as BERT (Devlin et al., 2019) are available
through the transformers integration. This inte-
gration also includes a wrapper that enables the use
of the recently published SetFit training paradigm
(Tunstall et al., 2022), which uses contrastive learn-
ing to fine-tune SBERT embeddings (Reimers and
Gurevych, 2019) in a sample efficient manner.

As the query strategy, which selects the instances
to be labeled, is the most salient component of an
active learning setup, the range of alternative query
strategies provided covers four paradigms at the
time of writing: (i) confidence-based strategies:
least confidence (Lewis and Gale, 1994; Culotta
and McCallum, 2005), prediction entropy (Roy and
McCallum, 2001), breaking ties (Luo et al., 2005),
BALD (Houlsby et al., 2011), CVIRS (Reyes
et al., 2018), and contrastive active learning (Mar-
gatina et al., 2021); (ii) embedding-based strategies:
BADGE (Ash et al., 2020), BERT k-means (Yuan
et al., 2020), discriminative active learning (Gissin
and Shalev-Shwartz, 2019), and SEALS (Cole-
man et al., 2022); (iii) gradient-based strategies:
expected gradient length (EGL; Settles et al.,
2007), EGL-word (Zhang et al., 2017), and EGL-
sm (Zhang et al., 2017); and (iv) coreset strategies:
greedy coreset (Sener and Savarese, 2018) and
lightweight coreset (Bachem et al., 2018). Since
there is an abundance of query strategies, this list
will likely never be exhaustive—also because strate-
gies from other domains, such as computer vision,
are not always applicable to the text domain, e.g.,
when using the geometry of images (Konyushkova
et al., 2015), and thus will be disregarded here.

Furthermore, small-text includes a consider-
able amount of different stopping criteria: (i) stabi-
lizing predictions (Bloodgood and Vijay-Shanker,
2009), (iv) overall-uncertainty (Zhu et al., 2008),
(ii1) classification-change (Zhu et al., 2008),



(ii) predicted change of F-measure (Altschuler and
Bloodgood, 2019), and (v) a criterion that stops
after a fixed number of iterations. Stopping criteria
are often neglected in active learning although they
exert a strong influence on labeling efficiency.

The library is available via the python packaging
index and can be installed with just a single com-
mand: pip install small-text. Similarly, the
integrations can be enabled using the extra require-
ments argument of Python’s setuptools, e.g., the
transformers integration is installed using pip
install small-text[transformers]. The ro-
bustness of the implementation rests on extensive
unit and integration tests. Detailed examples, an
API documentation, and common usage patterns
are available in the online documentation.'

3 Library versus Annotation Tool

We designed small-text for two types of set-
tings: (i) experiments, which usually consist of ei-
ther automated active learning evaluations or short-
lived setups with one or more human annotators,
and (ii) real-world applications, in which the final
model is subsequently applied on unlabeled or un-
seen data. Both cases benefit from a library which
offers a wide range of well-tested functionality.
To clarify on the distinction between a library
and an annotation tool, small-text is a library,
by which we mean a reusable set of functions and
classes that can be used and combined within more
complex programs. In contrast, annotation tools
provide a graphical user interface and focus on the
interaction between the user and the system. Ob-
viously, small-text is still intended to be used
by annotation tools but remains a standalone li-
brary. In this way it can be used (i) in combination
with an annotation tool, (ii) within an experiment
setting, or (iii) as part of a backend application,
e.g. aweb APL As a library it remains compatible
to all of these use cases. This flexibility is sup-
ported by the library’s modular architecture which
is also in concordance with software engineering
best practices, where high cohesion and low cou-
pling (Myers, 1975) are known to contribute to-
wards highly reusable software (Miiller et al., 1993;
Tonella, 2001). As a result, small-text should be
compatible with most annotations tools that are
extensible and support text classification.

"https://small-text.readthedocs.io
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4 Code Example

In this section we show a code example to perform
active learning with transformers models.

Dataset First, we create (for the sake of a sim-
ple example) a synthetic two-class spam dataset
of 100 instances. The data is given by a list of
texts and a list of integer labels. To define the to-
kenization strategy, we provide a transformers
tokenizer. From these individual parts we construct
a TransformersDataset object which is a dataset
abstraction that can be used by the interfaces in
small-text. This yields a binary text classifica-
tion dataset containing 50 examples of the positive
class (spam) and the negative class (ham) each:

import numpy as np

from small_text import TransformersDataset, \
TransformerModelArguments

from transformers import AutoTokenizer

# Fake data example:

# 50 spam and 50 non-spam examples

text = np.array(['this is ham'] * 50 +
['this is spam'] * 50)

np.array([0] * 50 + [1] * 50)

labels

transformer_model = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(
transformer_model)

train = TransformersDataset.from_arrays(
text, labels, tokenizer,
target_labels=np.array([0, 1]),
max_length=10

Active Learning Configuration Next, we con-
figure the classifier and query strategy. Although
the active learner, query strategies, and stopping
criteria components are dataset- and classifier-
agnostic, classifier and dataset have to match
(i.e. TransformerBasedClassification must be
used with TransformersDataset) owing to the
different underlying data structures:

from small_text import LeastConfidence, \
TransformerBasedClassificationFactory \
as TransformerFactory

num_classes 2

model_args = TransformerModelArguments (
transformer_model)

clf_factory = TransformerFactory(model_args,
num_classes, kwargs={'device': 'cuda'})
query_strategy = LeastConfidence()
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Since the active learner may need to instantiate a
new classifier before the training step, a factory
(Gamma et al., 1995) is responsible for creating
new classifiers. Finally, we set the query strategy
to least confidence (Culotta and McCallum, 2005).

Initialization There is a chicken-and-egg prob-
lem for active learning because most query strate-
gies rely on the model, and a model in turn is
trained on labeled instances which are selected by
the query strategy. This problem can be solved
by either providing an initial model (e.g. through
manual labeling), or by using cold start approaches
(Yuan et al., 2020). In this example we simulate
a user-provided initialization by looking up the re-
spective true labels and providing an initial model:

from small_text import \
PoolBasedActiveLearner, \
random_initialization_balanced as init

active_learner = PoolBasedActiveLearner(
clf_factory, query_strategy, train)

# Provide initial data.
indices_initial = init(train.y, n_samples=10)

active_learner.initialize_data(
indices_initial,
train.y[indices_initial]

To provide an initial model in the experimental
scenario (where true labels are accessible), small-
text provides sampling methods, from which we
use the balanced sampling to obtain a subset whose
class distribution is balanced (or close thereto). In
a real-world application, initialization would be ac-
complished through a starting set of labels supplied
by the user. Alternatively, a cold start classifier or
query strategy can be used instead.

Active Learning Loop After the previous code
examples prepared the setting by loading a dataset,
configuring the active learning setup, and providing
an initial model, the following code block shows
the actual active learning loop. In this example, we
perform five queries during each of which ten in-
stances are queried. During a query step the query
strategy samples instances to be labeled. Subse-
quently, new labels for each instance are provided
and passed to the update method, and then a new
model is trained. In this example, it is a simulated
response relying on true labels, but in a real-world
application this part is the user’s response.
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from sklearn.metrics import accuracy_score

num_queries = 5
for i in range(num_queries):
# Query 10 samples per iteration.
indices_queried = active_learner.query(
num_samples=10

)

# Simulate user interaction here.
# Replace this for real-world usage.
y = train.y[indices_queried]

# Provide labels for the queried indices.
active_learner.update(y)

# Evaluate accuracy on the train set

print(f'Iteration {i+1l}')

y_pred = active_learner.classifier\
.predict(train)

print('Train accuracy: {:.2f}'.format(
accuracy_score(y_pred, train.y)))

In summary, we built a full active learning setup
in only very few lines of code. The actual active
learning loop consists of just the previous code
block and changing hyperparameters, e.g., using a
different query strategy, is as easy as adapting the
query_strategy variable.

5 Comparison to Previous Software

Unsurprisingly, after decades of research and de-
velopment on active learning, numerous other li-
braries are available that focus on active learning
as well. In the following we present a selection of
the most relevant open-source projects for which
either a related publication is available or a larger
user base exists: JCLAL (Reyes et al., 2016) is a
generic framework for active learning which is im-
plemented in Java and can be used either through
XML configurations or directly from the code. It
offers an experimental setting which includes 18
query strategies. The aim of libact (Yang et al.,
2017) is to provide active learning for real-world
applications. Among 19 other strategies, it includes
a well-known meta-learning strategy (Hsu and
Lin, 2015). BaalL (Atighehchian et al., 2020) pro-
vides bayesian active learning including methods
to obtain uncertainty estimates. The modAL library
(Danka and Horvath, 2018) offers single- and multi-
label active learning, provides 21 query strategies,
also builds on scikit-1learn by default, and offers
instructions how to include GPU-based models us-
ing Keras and PyTorch. ALiPy (Tang et al., 2019)
provides an active learning framework targeted at



Name Active Learning Code
QS SC Text GPU Unit Language License Last Reposi-
Focus support Tests Update tory

JCLAL' 18 2 x x x Java GPL 2017 9]
libact? 19 - x x v Python BSD-2-Clause 2021 (9]
modAL> 21 - x v v Python MIT 2022 (v}
ALiPy* 22 4 x x v Python BSD-3-Clause 2022 (9]
Baal® 9 - x v v Python Apache 2.0 2023 (9]
Irtc® 7 - v v % Python Apache 2.0 2021 (v}
scikit-activeml” 29 - x v v Python BSD-3-Clause 2023 (]
ALToolbox® 19 - v v v Python MIT 2023 (v)
small-text 14 5 v v v Python MIT 2023 (]
Table 1: Comparison between small-text and relevant previous active learning libraries. We abbre-

viated the number of query strategies by “QS”, the number of stopping criteria by “SC”, and the
low-resource-text-classification framework by 1rtc. All information except “Publication Year” and “Code
Repository” has been extracted from the linked GitHub repository of the respective library on February 24th, 2023.
Random baselines were not counted towards the number of query strategies. Publications: 'Reyes et al. (2016),
2Yang et al. (2017), ®Danka and Horvath (2018), “Tang et al. (2019), ® Atighehchian et al. (2020), ®Ein-Dor et al.

(2020), "Kottke et al. (2021), 8Tsvigun et al. (2022).

the experimental active learning setting. Apart
from providing 22 query strategies, it supports al-
ternative active learning settings, e.g., active learn-
ing with noisy annotators. The low-resource-
text-classification-framework (1rtc; (Ein-
Dor et al., 2020)) is an experimentation framework
for the low resource scenario and supports which
can be easily extended. It also focuses on text
classification and has a number of built-in mod-
els, datasets, and query strategies to perform ac-
tive learning experiments. Another recent library
is scikit-activeml which offers general active
learning built around scikit-learn. It comes
with 29 query strategies but provides no stopping
criteria. GPU-based functionality can be used via
skorch,? a PyTorch wrapper, which is a ready-to-
use adapter as opposed to our implemented clas-
sifier structures but is on the other hand restricted
to the scikit-1learn interfaces. ALToolbox (Tsvi-
gun et al., 2022) is an active learning framework
that provides an annotation interface and a bench-
marking mechanism to develop new query strate-
gies. While it has some overlap with small-text,
it is not a library, but also focuses on text data,
namely on text classification and sequence tagging.

In Table 1, we compare small-text to the pre-
viously mentioned libraries, and compare them
based on several criteria related to active learning
or to the respective code base: While all libraries
provide a selection of query strategies, not all li-

2We also evaluated the use of skorch but transformer mod-
els were not supported at that time.
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braries offer stopping criteria, which are crucial
to reducing the total annotation effort and thus di-
rectly influence the efficiency of the active learning
process (Vlachos, 2008; Laws and Schiitze, 2008;
Olsson and Tomanek, 2009). We can also see a
difference in the number of provided query strate-
gies. While a higher number of query strategies
is certainly not a disadvantage, it is more impor-
tant to provide the most relevant strategies (either
due to recency, domain-specificity, strong general
performance, or because it is a baseline). Based
on these criteria, small-text provides numerous
recent strategies such as BADGE (Ash et al., 2020),
BERT K-Means (Yuan et al., 2020), and contrastive
active learning (Margatina et al., 2021), as well
as the gradient-based strategies by Zhang et al.
(2017), where the latter are unique to active learn-
ing for text classification. Selecting a subset of
query strategies is especially important since active
learning experiments are computationally expen-
sive (Margatina et al., 2021; Schroder et al., 2022),
and therefore not every strategy can be tested in the
context of an experiment or application. Finally,
only small-text, 1rtc, and ALToolbox focus on
text, and only about half of the libraries offer access
to GPU-based deep learning, which has become
indispensable for text classification due to the re-
cent advances and ubiquity of transformer-based
models (Vaswani et al., 2017; Devlin et al., 2019).

The distinguishing characteristic of small-text
is the focus on text classification, paired with a
multitude of interchangeable components. It of-
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Dataset Name ap) Type Classes Training Test

AG’s News! (AGN) N 4 120,000 *7,600
Customer Reviews? (CR) S 2 3,397 378
Movie Reviews® (MR) S 2 9,596 1,066
Subjectivity? (SUBJ) S 2 9,000 1,000
TREC-6° (TREC-6) Q 6 5,500 *500

Table 2: Key characteristics about the examined
datasets: 'Zhang et al. (2015), 2Hu and Liu (2004),
3Pang and Lee (2005), “Pang and Lee (2004), °Li and
Roth (2002). The dataset type was abbreviated by N
(News), S (Sentiment), Q (Questions). *: Predefined
test sets were available and adopted.

fers the most comprehensive set of features (as
shown in Table 1) and through the integrations
these components can be mixed and matched to
easily build numerous different active learning se-
tups, with or without leveraging the GPU. Finally,
it allows to use concepts from natural language pro-
cessing (such as transformer models) and provides
query strategies unique to text classification.

6 Experiment

We perform an active learning experiment com-
paring an SBERT model trained with the recent
sentence transformers fine-tuning paradigm (Set-
Fit; (Tunstall et al., 2022)) over a BERT model
trained with standard fine-tuning. SetFit is a con-
trastive learning approach that trains on pairs of
(dis)similar instances. Given a fixed amount of dif-
ferently labeled instances, the number of possible
pairs is considerably higher than the size of the
original set, making this approach highly sample
efficient (Chuang et al., 2020; Hénaff, 2020) and
therefore interesting for active learning.

Setup We reproduce the setup of our previous
work (Schroder et al., 2022) and evaluate on the
datasets shown in Table 2 with an extended set of
query strategies. Starting with a pool-based ac-
tive learning setup with 25 initial samples, we per-
form 20 queries during each of which 25 instances
are queried and labeled. Since SetFit has only
been evaluated for single-label classification (Tun-
stall et al., 2022), we focus on single-label clas-
sification as well. The goal is to compare the
following two models: (i) BERT (bert-large-
uncased; (Devlin et al., 2019)) with 336M param-
eters and (i) SBERT (paraphrase-mpnet-base-
v2; (Reimers and Gurevych, 2019)) with 110M pa-
rameters. The first model is trained via vanilla fine-
tuning and the second using SetFit. For the sake of
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Model  Strategy Rank Result
Acc. AUC Acc. AUC
BERT PE 2.20 2.80 0.917 0.858
BT 1.40 1.60 0919  0.868
LC 3.80 3.20 0.916 0.863
CA 4.20 5.00 0915  0.857
BA 3.00 5.20 0.917 0.855
BD 6.20 4.60 0909  0.862
CS 6.60 7.60 0.910 0.843
RS 7.80 5.40 0901  0.856
SetFit PE 2.80 3.20 0.927  0.906
BT 2.80 1.60 0926 0912
LC 2.20 2.60 0.927  0.908
CA 4.80 3.80 0924  0.907
BA 5.20 6.20 0923  0.902
BD 6.60 5.60 0915  0.904
CS 2.80 4.40 0.927 0.909
RS 6.60 6.80 0.907  0.899

Table 3: The “Rank” columns show the mean rank when
ordered by mean accuracy (Acc.) and by area under
curve (AUC). The “Result” columns show the mean
accuracy and AUC. All values used in this table refer to
state after the final iteration. Query strategies are abbre-
viated as follows: prediction entropy (PE), breaking ties
(BT), least confidence (LC), contrastive active learning
(CA), BALD (BA), BADGE (BD), greedy coreset (CS),
and random sampling (RS).

brevity, we refer to the first as “BERT” and to the
second as “SetFit”. To compare their performance
during active learning, we provide an extensive
benchmark over multiple computationally inexpen-
sive uncertainty-based query strategies, which were
selected due to encouraging results in our previous
work. Moreover, we include BALD, BADGE, and
greedy coreset—all of which are computationally
more expensive, but have been increasingly used in
recent work (Ein-Dor et al., 2020; Yu et al., 2022).

Results In Table 3, the results show the summa-
rized classification performance in terms of (i) fi-
nal accuracy after the last iteration, and (ii) area
under curve (AUC). We also compare strategies
by ranking them from 1 (best) to 8 (worst) per
model and dataset by accuracy and AUC. First,
we can also confirm for SetFit the earlier finding
that uncertainty-based strategies perform strong for
BERT (Schroder et al., 2022). Second, SetFit con-
figurations result in between 0.06 and 1.7 percent-
age points higher mean accuracy, and also in be-
twen 4.2 and 6.6 higher AUC when averaged over
model and query strategy. Interestingly, the greedy
coreset strategy (CS) is remarkably more success-
ful for the SetFit runs compared to the BERT runs.
Detailed results per configuration can be found



Figure 3: An exemplary learning curve showing the
difference in test accuracy for breaking ties strategy on
the TREC dataset, comparing BERT and SetFit. The
tubes represent the standard deviation across five runs.

in the appendix, where it can be seen that SetFit
reaches higher accuracy scores in most configura-
tions, and better AUC scores in all configurations.

Discussion When trained with the new SetFit
paradigm, models having only a third of the param-
eters compared to the large BERT model achieve
results that are not only competitive, but slightly
better regarding final accuracy and considerably
better in terms of AUC. Since the final accuracy
values are often within one percentage point or less
to each other, it is obvious that the improvement in
AUC stems from improvements in earlier queries,
i.e. steeper learning curves. We suspect that this
is at least partly owed to sample efficiency from
SetFit’s training that uses pairs of instances. More-
over, this has the additional benefit of reducing
instability of transformer models (Mosbach et al.,
2021) as can be exemplarily seen in Figure 3. This
increasingly occurs when the training set is small
(Mosbach et al., 2021), which is likely alleviated
with the additional instance pairs. On the other
hand, training cost increase linearly with the num-
ber of pairs per instance. In the low-data regime,
however, this is a manageable additional cost that
is worth the benefits.

7 Library Adoption

As recent publications have already adopted small-
text, we present four examples which have already
successfully utilized it for their experiments.

Abusive Language Detection Kirk et al. (2022)
investigated the detection of abusive language
using transformer-based active learning on six
datasets of which two exhibited a balanced and
four an imbalanced class distribution. They evalu-

90

ated a pool-based binary active learning setup, and
their main finding is that, when using active learn-
ing, a model for abusive language detection can be
efficiently trained using only a fraction of the data.

Classification of Citizens’ Contributions In or-
der to support the automated classification of Ger-
man texts from online citizen participation pro-
cesses, Romberg and Escher (2022) used active
learning to classify texts collected by three cities
into eight different topics. They evaluated this real-
world dataset both as a single- and multi-label ac-
tive learning setup, finding that active learning can
considerably reduce the annotation efforts.

Softmax Confidence Estimates Gonsior et al.
(2022) examined several alternatives to the softmax
function to obtain better confidence estimates for
active learning. Their setup extended small-text
to incorporate additional softmax alternatives and
found that confidence-based methods mostly se-
lected outliers. As a remedy to this they proposed
and evaluated uncertainty clipping.

Revisiting Uncertainty-Based Strategies In a
previous publication, we reevaluated traditional
uncertainty-based query strategies with recent
transformer models (Schroder et al., 2022). We
found that uncertainty-based methods can still be
highly effective and that the breaking ties strategy
is a drop-in replacement for prediction entropy.

Not only have all of these works successfully ap-
plied small-text to a variety of different problems,
but each work is also accompanied by a GitHub
repository containing the experiment code, which
is the outcome we had hoped for. We expect that
small-text will continue to gain adoption within
the active learning and text classification commu-
nities, so that future experiments will increasingly
rely on it by both reusing existing components and
by creating their own extensions, thereby support-
ing the field through open reproducible research.

8 Conclusion

We introduced small-text, a modular Python li-
brary, which offers state-of-the-art active learning
for text classification. It integrates scikit-learn,
PyTorch, and transformers, and provides robust
components that can be mixed and matched to
quickly apply active learning in both experiments
and applications, thereby making active learning
easily accessible to the Python ecosystem.



Limitations

Although a library can, among other things, lower
the barrier of entry, save time, and speed up re-
search, this can only be leveraged with basic knowl-
edge of the Python programming language. All in-
cluded algorithmic components are subject to their
own limitations, e.g., the greedy coreset strategy
quickly becomes computationally expensive as the
amount labeled data increases. Moreover, some
components have hyperparameters which require
an understanding of the algorithm to achieve the
best classification performance. In the end, we pro-
vide a powerful set of tools which still has to be
properly used to achieve the best results.

As small-text covers numerous text classifica-
tion models, query strategies, and stopping criteria,
some limitations from natural language processing,
text classification and active learning apply as well.
For example, all included classification models rely
on tokenization, which is inherently more difficult
for languages which have no clear word boundaries
such as Chinese, Japanese, Korean, or Thai.

Ethics Statement

In this paper, we presented small-text, a library
which can—Ilike any other software—be used for
good or bad. It can be used to bootstrap classifi-
cation models in scenarios where no labeled data
is available. This could be used for good, e.g. for
spam detection, hatespeech detection, or targeted
news filtering, but also for bad, e.g., for creating
models that detect certain topics that are to be cen-
sored in authoritarian regimes. While such sys-
tems already exist and are of sophisticated quality,
small-text is unlikely to change anything at this
point. On the contrary, being open-source soft-
ware, these methods can now be used by a larger
audience, which contributes towards the democrati-
zation of classification algorithms.
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Supplementary Material
A Technical Environment

All experiments were conducted within a Python
3.8 environment. The system had CUDA 11.1 in-
stalled and was equipped with an NVIDIA GeForce
RTX 2080 Ti (11GB VRAM).
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B Experiments

Each experiment configuration represents a com-
bination of model, dataset and query strategy, and
has been run for five times.

B.1 Datasets

We used datasets that are well-known benchmarks
in text classification and active learning. All
datasets are accessible to the Python ecosystem via
Python libraries that provide fast access to those
datasets. We obtained CR and SUBJ using glu-
onnlp, and AGN, MR, and TREC using hugging-
face datasets.

B.2 Pre-Trained Models

In the experiments, we fine-tuned (i) a large
BERT model (bert-large-uncased) and (ii) an
SBERT paraphrase-mpnet-base model (sentence-
transformers/paraphrase-mpnet-base-v2). Both are
available via the huggingface model repository.

B.3 Hyperparameters

Maximum Sequence Length We set the maxi-
mum sequence length to the minimum multiple of
ten, so that 95% of the given dataset’s sentences
contain at most that many tokens.

Transformer Models For BERT, we adopt the
hyperparameters from Schroder et al. (2022). For
SetFit, we use the same learning rate and optimizer
parameters but we train for only one epoch.

C Evaluation

In Table 4 and Table 5 we report final accuracy and
AUC scores including standard deviations, mea-
sured after the last iteration. Note that results ob-
tained through PE, BT, and LC are equivalent for
binary datasets.

C.1 Evaluation Metrics

Active learning was evaluated using standard met-
rics, namely accuracy und area under the learning
curve. For both metrics, the respective scikit-learn
implementation was used.


https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/pdf/1710.00379.pdf
https://doi.org/10.18653/v1/2022.naacl-main.102
https://doi.org/10.18653/v1/2022.naacl-main.102
https://doi.org/10.18653/v1/2022.naacl-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
https://aclanthology.org/C08-1142
https://aclanthology.org/C08-1142
https://nlp.gluon.ai
https://nlp.gluon.ai
https://github.com/huggingface/datasets
https://github.com/huggingface/datasets
https://huggingface.co/bert-large-uncased
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/models

Dataset Model Query Strategy
PE BT LC CA BA BD CS RS
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CR BERT 0.9200.009 0.9200.009 0.9160.006 0.9170.010 0.9190.010 09110010 0.9150012 0.9020.014
SetFit  0.9370.014 0.9370014 09370014 0.9380.009 0.9340.004 0.9130.011 0.9390.011 0.9120.010
MR BERT 0.8500.005 0.8500.005 0.8460.008 (0.8440.008 0.8590.003 0.8350.017 0.8430.006 (.8310.020
SetFit  0.8710.009 0.8710.009 0.8710.009 0.8690.004 0.8670.005 0.8640.008 0.8700.008 0.871 0.003
SUBJ BERT 0.9590.005 0.9590.005 0.9580.003 0.9580.008 0.9590.003 0.9480.006 0.9570.004 0.9370.006
SetFit  0.9620.004 0.9620.004 0.9620.004 0.9600.002 0.9660.002 0.9420.002 0.9630.003 0.9320.005
TREC-6 BERT 0.9600.002 0.9660.003 0.9600.008 0.9650.006 0.9580.007 0.9580.009 0.9520.015 0.9470.009

SetFit  0.9660.005 0.9610.005 0.9660.005 0.9630.008 0.9610.005 0.9580.005 0.9670.004 (.9460.009

Table 4: Final accuracy per dataset, model, and query strategy. We report the mean and standard deviation over
five runs. The best result per dataset is printed in bold. Query strategies are abbreviated as follows: prediction
entropy (PE), breaking ties (BT), least confidence (LC), contrastive active learning (CA), BALD (BA), BADGE
(BD), greedy coreset (CS), and random sampling (RS). The best result per dataset is printed in bold.

Dataset Model Query Strategy
PE BT LC CA BA BD CS RS
AGN BERT 0.8270.009 0.8390.014 0.8360.0090 0.8210.015 0.8190.012 0.8400.003 0.8040.012 0.8250.011

SetFit  0.8810.002 0.8890.003 0.8850.005 0.8790.004 0.8690.006 0.8810.002 0.8810.003 (.8670.004
BERT 0.8850.007 0.8850.007 0.8810.007 0.8810.011 0.8820.006 0.8760.005 0.8740.011 0.8770.011

CR SetFit  0.9250.001  0.9250.001  0.9250.001 0.9270.003 0.9240.005 0.9100.005 0.9300.002 (0.908 0.008
MR BERT 0.8190.010 0.8190.010 0.8200.007 0.8130.009 0.8170.013 0.8080.011 0.8040.010 (0.8130.004
SetFit  0.8590.004 0.8590.004 0.8590.004 0.8590.003 (0.8580.004 0.8550.002 (0.8580.004 (.8570.002
SUBJ BERT 0.9440.008 0.9440.008 0.9430007 0.9400.009 0.9390.009 0.9290.005 0.9340.006 0.924 0.007
SetFit  0.9530.002 0.9530.002 0.9530.002 0.9520.003 0.9500.002 0.9400.003 0.9490.001 (0.9350.002
TREC-6 BERT 0.8180.033 0.8550.023 0.8370.034 0.8290.030 0.8160.029 0.8560.024 0.7990.037 (0.8430.008

SetFit  0.9100.008 0.9340.005 0.9190.008 0.9170.013 0.9070.017 0.9340.010 0.9270.008 (0.9270.004

Table 5: Final area under curve (AUC) per dataset, model, and query strategy. We report the mean and standard
deviation over five runs. The best result per dataset is printed in bold. Query strategies are abbreviated as follows:
prediction entropy (PE), breaking ties (BT), least confidence (LC), contrastive active learning (CA), BALD (BA),
BADGE (BD), greedy coreset (CS), and random sampling (RS). The best result per dataset is printed in bold.

D Library Adoption

As mentioned in Section 7, the experiment code of
previous works documents how small-text was
used and can be found at the following locations:

» Abusive Language Detection:
https://github.com/HannahKirk/ActiveTran
sformers-for- AbusiveLanguage

¢ Classification of Citizens’ Contributions:
https://github.com/juliaromberg/egov-2022

* Softmax Confidence Estimates:
https://github.com/jgonsior/btw-softmax-cli
pping

» Revisiting Uncertainty-Based Strategies:
https://github.com/webis-de/ACL-22
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