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Abstract

To fulfill complex user requirements in a situ-
ated conversational scenario, the agent needs to
conduct step-by-step multi-modal logic reason-
ing, which includes locating objects, querying
information and searching objects. However,
existing methods omit this multi-step procedure
and therefore constitute the risk of shortcuts
when making predictions. For example, they
may directly copy the information from the dia-
logue history or simply use the textual descrip-
tion without visual reasoning. To address this
issue and further boost the system performance,
we apply the dual process theory to plug a rea-
soner into the original transformer-based model
for step-by-step reasoning. When system 2
completes multi-step reasoning, its output is
regarded as the final prediction. Our proposed
method achieved the 1st rank on the summing
scores across all four DSTC-11 SIMMC 2.1
sub-tasks.

1 Introduction

A situated conversational agent (Moon et al., 2020)
engages in a conversation in an embedded multi-
modal context, which may involve a virtual environ-
ment, a real physical world, etc. This task features
language understanding, visual perception, deci-
sion feedback, and abundant interactions and rea-
soning among various modalities. Recently, (Kot-
tur et al., 2021) proposed virtual shopping scenarios
based on fashion and furniture, i.e. SIMMC, and
it becomes a popular benchmark for the situated
conversational task.

Current efforts (Lee et al., 2022; Lee and Han,
2021; Nguyen et al., 2021) on SIMMC target this
task by designing unique model structures, auxil-
iary losses, and pre-training strategies. Although
their approaches could improve the model’s perfor-
mance in predicting metadata related answer, such
improvements partially come from shortcuts that
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Object ID: 44
type: dress
color: purple
pattern: plain
brand: Uptown Gallery 
sleeve length: sleeveless
price: 224.99
size: XL
customer review: 3.6
available sizes: M, XS, L, XL, XXL

Object ID: 42
type: dress
color: maroon
pattern: plain
brand: Nature Photographers 
sleeve length: sleeveless
price: 184.99
size: L
customer review: 3.2
available sizes: XS, S, L, XL, XXL

User: I'd like something with a sim-
ilar brand and price as those two 
purple dresses but sleeveless and 
in extra large.

Identity object 
IDs of “two 
purple dresses”

42

44
[231, 388, 319, 81]

[425, 395, 367, 108]

②

③ ④

①

Query brand
and price based 
on object IDs

Include “sleeveless
and in extra large” into 
the search criteria.

Search for 
objects in the 
whole scene

① ②

③④

Metadata

Multi-step Reasoning

…
Dialogue Scene

[After Reasoning] System: The 
purple dress on the right is what 
I have to show you like that.

[Before Reasoning] System: 
Which items are you interested 
in learning more about?

Figure 1: The multi-modal multi-step reasoning process
for complex user requirements in the real world. Num-
bers ❶❷❸❹ represent the sequence of reasoning steps.
To make the response to user, the situated conversational
agent needs to identify objects on the scene image, query
information from metadata, add extra user requirements
and search for the target object in the whole scene. With-
out such a reasoning process, the agent fails to give an
effective answer.

have been revealed in recent studies (Ye and Ko-
vashka, 2021; Dancette et al., 2021; Si et al., 2022;
Ye et al., 2023). These shortcuts include directly
copying keywords from dialogue history or mak-
ing predictions simply based on textual mappings
without performing visual reasoning. Apparently,
shortcuts could harm the model performance es-
pecially for complex user requests. Instead, ex-
plicitly modeling the multi-step reasoning chain
can provide a clear clue to help the model yield
more reliable predictions. For instance, as shown
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in Fig. 1, when the agent responds to a user query,
I’d like something with a similar brand and price
as those two purple dresses but sleeveless and in
extra large, it needs to go through the subsequent
step-by-step deliberation process. Step ❶, clarify
the user’s reference, i.e., identify the object id of
the two purple dresses, based on the dialogue
history and the current visual scene. Step ❷, check
the corresponding brands and prices for the two
purple dresses based on their object ids. Step
❸, include the newly stated requirements of the
user in the search criteria: sleeveless and extra
large. Step ❹, the eligible objects in the current
visual scene are identified by incorporating the in-
formation from our query and the new requirements
stated by the speaker.

Additionally, according to the Dual process the-
ory (Evans, 2003), human cognition is produced by
the interaction of System 1, which is in charge of
quick, unconscious, implicit judgments, and Sys-
tem 2, which is in charge of complex, explicit,
step-by-step reasoning. The cognitive ability of
humans is mediated by the interaction of System
1 and System 2. However, current situated conver-
sational agents solely rely on intuition to derive
answers from straightforward processing of input
data (analogous to System 1). These responses are
frequently inaccurate when the questions are com-
plex because of the lack of interlocking logical
reasoning (analogous to System 2). Therefore, we
argue that the acquisition of the reasoning capabili-
ties performed by humans in System 2, especially
step-by-step multi-modal reasoning, is a crucial
component of situated conversational agents.

To this end, inspired by cognitive theory, we pro-
pose a step-by-step multi-modal reasoning frame-
work. Concretely, in our framework, System 1’s
implicit understanding is handled by the conven-
tional encoder-decoder, while the explicit step-by-
step reasoning of System 2 is handled by the new-
born reasoner. Besides, we propose a simple, unsu-
pervised step-by-step reasoning process generation
approach based on rewriting the original user utter-
ance as a learning signal for the reasoner.

We evaluate our model on the 11th Dialog Sys-
tem Technology Challenge (DSTC-11) SIMMC
2.1 (Kottur et al., 2021) track. SIMMC 2.1 in-
cludes four sub-tasks of situated conversational
task, i.e., ambiguous candidate identification (Task
1 Ambigu.), multi-modal coreference resolution
(Task 2 MM-Coref), multi-modal dialog state track-

ing (Task 3 MM-DST) and multi-modal dialog re-
sponse generation (Task 4 Res. Gen.). Notably, af-
ter the official evaluation of the DSTC-11 commit-
tee, our proposed model achieved the 1st rank
on the summing scores across all four sub-tasks.

2 Related Work

2.1 Situated Conversational Agents

Situated conversational agents aim at holding a
meaningful conversation with humans based on nat-
ural images or real visual scene (Chen et al., 2020c).
Recently, the flourishing of visual and language rep-
resentation learning poses great demand for multi-
modal dialog systems. Several datasets have been
proposed to evaluate multi-modal dialog system,
e.g., VisDial (Das et al., 2017), MMD (Saha et al.,
2018), SIMMC (Moon et al., 2020), JDDC (Chen
et al., 2020b) and JDDC 2.0 (Zhao et al., 2021).
These datasets, however, are image-oriented di-
alogue systems without a comprehension of real-
world visual scenes. To address the aforementioned
issue, SIMMC 2.0 and 2.1 (Kottur et al., 2021)
have been proposed, which are datasets for situ-
ated interactive multi-modal dialogue system and
serve as official datasets for DSTC-10 and DSTC-
11 challenge respectively. To solve this challenge,
(Kottur et al., 2021) proposes a multi-modal GPT-
2 (Radford et al., 2019) model as task baseline to
generate current belief states and system response
auto-regressively. (Huang et al., 2021) suggested
using the rich multi-modal input and the pre-trained
UNITER (Chen et al., 2020d) model to predict user
mentioned objects. (Lee et al., 2022) encodes
multi-modal context by special tokens and designs
auxiliary tasks to predict object metadata so that the
single-stream model can better utilize this informa-
tion to respond to user requirements. All existing
methods make efforts to improve representations
of scene objects and fluency of agent response,
but they ignore modeling logic in the multi-modal
multi-step reasoning. Therefore, these methods
often make mistakes when dealing with complex
user requirements. Unlike them and (Long et al.,
2023; He et al., 2022c,a,b), we first notice the step-
by-step multi-modal reasoning based on cognitive
theory in situated conversational agents.

2.2 Multi-modal Reasoning

Widely used multi-modal datasets, such as
VQA (Goyal et al., 2017), VisDial (Das
et al., 2017), FVQA (Wang et al., 2018) and
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KVQA (Shah et al., 2019), all contains complex
multi-modal questions or user utterances which
require multi-modal agent to conduct multi-step
reasoning on the image, text or structural data to
predict answers. For VQA task and VisDial task,
existing models, like ReDAN (Gan et al., 2019),
DMRM (Chen et al., 2020a) MUREL (Cadène
et al., 2019), GoG (Chen et al., 2021), design spe-
cial modules or graphs to increase multi-modal
agent’s attention on the target image objects step-
by-step under user guidance. In fact, these meth-
ods just complete visual grounding of objects by
understanding the multi-hop keywords in textual
instruction. when dealing with multiple actions
in context, they are not equipped with abilities of
multi-step logic reasoning. For FVQA task, (Zhu
et al., 2020) builds convolutional graph network
for retrieved facts and performs graph multi-step
reasoning through message passing scheme utiliz-
ing graph convolution. For KVQA task, (Heo
et al., 2022) constructs hypergraphs with multi-
modal multi-hop information and creates Hyper-
graph Transformer to predict answers. Although
their methods conduct multi-step logic reasoning,
their reasoning actions are limited to querying in-
formation. Besides, the reasoning chain of all these
methods is invisible to users, which makes their
prediction result lack of interpretation. Compared
with their method, our approach can generate a de-
tailed multi-step logic reasoning process dealing
with multiple actions according to user require-
ments, which is more interpretable and can be eas-
ily plugged into existing model architecture.

3 Task Descriptions

Ambiguous Candidate Identification (Ambigu.)
During the conversation, the user’s expressions
tend to be more colloquial and accompanied by
ambiguous object references. The ambiguous can-
didate identification task focuses on identifying all
possible candidates that match the user’s descrip-
tion. (e.g. U:"Can you tell me how much the brown
piece costs? I’d like the rating too." ⇒ All of the
brown objects in the current scene need to be pre-
dicted by the model.).
Multi-modal Coreference Resolution (MM-
Coref) Similar to the ambiguous candidate iden-
tification task, the user will refer to specific items
in the current scene when they are expressing their
meaning accurately. Based on the current dia-
logue context and visual scene, the task requires

the model to anticipate which object the user is
referring to.
Multi-modal Dialog State Tracking (MM-DST)
Dialogue state tracking task requires the model to
track the speaker’s belief state cumulative across
multiple turns. In addition to comprehending the
dialogue history, the MM-DST task requires the
model to reason about the objects and their at-
tributes in the current scene. (e.g. U: "Do you have
something in a similar brand as that grey coat" ⇒
It is necessary to predict the object id and brand
attribute of that grey coat.)
Multi-modal Dialog Response Generation (Res.
Gen.) Similar to text-driven dialog response gen-
eration, this task requires the model to generate
assistant responses based on the dialog history and
the current scene.

4 Method

Our model contains a dual system, similar to the
human cognitive system, consisting of System 1
and System 2. System 1 consists of a conventional
Encoder-Decoder, which is dedicated to a specific
task. System 2 consists of a generative Reasoner
capable of producing step-by-step multi-modal rea-
soning path generation.

4.1 System 1: Encoder-Decoder

The design of System 1 is followed by (Lee et al.,
2022) and it can perform SIMMC 2.1 sub-tasks
end-to-end by unique task loss. Here we describe
the architecture of System 1 in detail.

Encoder As Figure 2 shows, the encoder takes
multi-modal information as input. The textual in-
put includes dialogue history, current user utter-
ance and special tokens, e.g., "[act]", "[obj]" and
"[type]". The visual input of the encoder is all
scene object region features encoded by pretrained
models, e.g., ResNet-50 (He et al., 2016), which
are projected to visual embedding with the same
size as textual embedding. The projected bounding
box coordinates are added to object visual embed-
ding to represent spatial relations. Besides, similar
to (Lee et al., 2022), we add auxiliary tasks for
encoder to enhance the understanding of visual and
non-visual attributes.

For predicting user act, user mentioned object
IDs and slot values, the additional heads on special
tokens as classification layer, which are optimized
by cross-entropy losses.
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Encoder

Decoder

Reasoner

System 1

User: I ‘d like similar brand and price 
as those two purple dresses but sleev-
eess and in extra large. [act] [obj] 
[type] [size] [brand] [price] [sleeve]

System 2

System: The purple dress on the right is what I have to 
show you like that.

[act]  [obj] [type] [size] [brand] [price] [sleeve]

STEP-1

1

2

3

4

Identify object IDs of 
“two purple dresses” 
in [231,388,319,81], 
[425,395,367,108].

brand: Nature 
Photographers
price: 184.99
brand: Uptown Gallery 
price: 224.99

INFORM:GET dress XL sleeveless224.9942, 44 Global Voyager

…

STEP-2 STEP-3 STEP-4

Object ID: 44
size: XL
type: dress
price: 224.99
color: purple
pattern: plain
customer review: 3.6
sleeve length: sleeveless
brand: Uptown Gallery 
available sizes: M, XS, L, XL, XXL

Object ID: 42
size: L
type: dress
price: 184.99
color: maroon
pattern: plain 
customer review: 3.2
sleeve length: sleeveless
brand: Nature Photographers
available sizes: XS, S, L, XL, XXL

Metadata
…

Query brand and price 
based on object IDs.

Include “sleeveless 
and in extra large” 
into search criteria.

Search for objects in 
the whole scene.

brand: Nature 
Photographers
price: 184.99
brand: Uptown Gallery 
price:224.99
sleeve length: sleeveless
size: XL

Object ID: 44 (Target)

Mentioned Object ID: 42, 44, 

Belief State: type = dress, brand = Global Voyager, price = 224.99, size = XL, sleeve length = 
sleeveless 

Response: The purple dress on the right is what I have to show you like that.

Mentioned Object ID: 42, 44, 

Belief State: type = dress, brand = Uptown Gallery, price = 224.99, size = XL, sleeve length = 
sleeveless 

Final Prediction

Figure 2: Overview of our proposed framework. We reuse the example in Figure 1. According to the user utterance,
the encoder predicts the belief state and intent action of user, and the reasoner generates the detailed reasoning
steps of situated conversational agents. The Decoder is in charge of generating system response based on the
current multi-modal context. In the inference stage, the output of the reasoner is regarded as the final prediction if it
completes multi-step reasoning.

Decoder The decoder takes hidden representa-
tion H from the encoder as input and generates
output auto-regressively. For response generation,
the response decoder is optimized by the standard
left-to-right language modeling loss Ldec as the
following.

Ldec =
L∑

i=1

− logPθdec

(
ωi
dec | ω1

dec, . . . , ω
i−1
dec , H

)

(1)
where H denotes the last hidden states of encoder,
ωi
dec represents i-th target response token, Ldec is

the total length of target response and θdec means
decoder learnable parameters.

4.2 System 2: Reasoner

The aim of system 2 is to generate a concrete in-
ferring process step-by-step and implement cor-
responding actions on the scene image and meta-
data to get information about object IDs, bound-
ing boxes and attributes. The core module of sys-
tem 2 is a reasoner whose architecture is also a
Transformer-based auto-regressive decoder. As
Figure 2 shows, the reasoner takes encoded multi-
modal representation from the encoder as mod-
ule input and auto-regressively generates reasoning
steps.

According to reasoning intention, the generated
reasoning steps can be categorized into: Locate

Object, Query Information, Add Requirement,
Search Object, Compare and Disambiguate. 1)
In the step of locating objects, the reasoner extracts
object detailed description from the input text and
then predicts corresponding bounding box coordi-
nates on the scene image, which can be used to
crop object region visual features. The cropped re-
gion feature is compared with object screenshots in
the metadata to identify IDs of objects mentioned
in the current user utterance. 2) In the step of
querying information, the reasoner extracts user re-
quired attribute types, such as "brand" and "price",
about mentioned objects from inputted text and
queries metadata values based on identified object
IDs and attribute types. These queried values are
regarded as search requirements. 3) In the step
of adding requirement, the reasoner extracts user
extra requirements attribute values, like "sleeve-
less" and "in extra large", from inputted text and
adds them into search requirements. 4) In the step
of searching objects, the reasoner takes all search
requirements as criteria and searches for objects
satisfying all requirements among metadata. 5)
In the step of comparing, the reasoner retrieves
all metadata attribute of object 1 and object 2 and
compare their similarity and difference. 6) In the
step of disambiguation, the reasoner extracts ob-
ject detailed description from the input text and
transverses all metadata of scene objects to find out
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REASONING TYPE REASONING TEMPLATE

Locate Object Identify object IDs of "[Referring Expression]" in [x1, y1, x2, y2].

Query Information Query [Metadata Type] of object [Object ID].

Add Requirement Include "[Attribute Value]" into search criteria.

Search Object Search for objects in the whole scene.

Compare Compare metadata of object [Object 1 ID] and [Object 2 ID].

Disambiguate Find all possible "[Referring Expressions]" in the whole scene.

Table 1: Six types of reasoning step templates designed for SIMMC 2.1. "[*]" is the template slots to be filled. By
extracting information from user utterances and filling the templates, multi-step reasoning data can be generated as
reasoner training data.

matched objects.

Reasoning Process Generation By analyzing
complex user utterances in the multimodal conver-
sation datasets (Kottur et al., 2021; Moon et al.,
2020; Saha et al., 2018), we find that there are
signal words, like "similar", "but" and "as", exist
in the user utterance, which indicates the start of
essential information. In this case, original user
utterance can be divided into different reasoning
semantics by these signal words. For example,
user utterance "I’d like similar brand and price as
those two purple dresses but sleeveless and in ex-
tra large" can be splitted into referring expression
"as those two purple dresses", information inquiry
"similar brand and price" and new requirements
"but sleeveless and in extra large". Based on com-
mon reasoning semantics in the SIMMC 2.1, we
design six types of reasoning step templates as Ta-
ble 1 shows. After determining the template by
signal words, regular expressions are utilized to
extract attribute types and values from splitted rea-
soning semantics to fill template slots. In this way,
a multi-step reasoning process can be generated
from the original user utterance. If there are no
signal words in the utterance, the generation target
is set to "No multi-step reasoning".

Reasoning Task The reasoner is optimized by
the standard left-to-right language modeling loss
Lrea as the following.

Lrea =
L∑

i=1

− logPθrea

(
ωi
rea | ω1

rea, . . . , ω
i−1
rea , H

)

(2)
where ωi

rea represents i-th target reasoning process
token, Lrea is the total length of target reasoning
process and θrea is reasoner learnable parameters.

After the reasoner executes all steps, it can ob-
tain object IDs mentioned by current user utterance,
user utterance slot values and object information

to be responded by agent, which is collected as the
output of system 2. Compared with system 1, sys-
tem 2 is more reliable because system 2 completes
the whole reasoning process explicitly instead of
utilizing shortcuts to respond to complex user re-
quirements. Therefore, in the inference stage, sys-
tem 2 output is chosen as the final prediction result
if its output exists.

5 Experiments

5.1 Dataset
The SIMMC 2.1 dataset follows the setting of
SIMMC 2.0 (Kottur et al., 2021), which is
geared towards building virtual assistant that gener-
ates conversations with users in the form of co-
observation and immersive virtual reality (VR)
environments. The conversation’s content may
take several turns, and the context is dynamically
modified based on the user’s activities at each
turn. There are a total of 11244 dialogues and
1566 scenes gathered in the SIMMC 2.1 dataset,
which uses a two-stage pipeline to collect dialogues
(multi-modal dialogue simulation and manual in-
terpretation). The dialogue of SIMMC 2.1 involves
two domains: fashion (7.2k dialogs) and furniture
(4k dialogs), which are randomly divided into four
splits: train (64%), dev (5%), dev-test (15%), and
test-std (15%). The test-std split is used as the eval-
uation dataset for the DSTC-11 Challenge2 and its
data annotation is not publicly available.

5.2 Evaluation Metric
In order to evaluate the performance of the multi-
modal dialogue system, SIMMC 2.1 employs dif-
ferent evaluation metrics for each subtask. For Am-
biguous Candidate Identification task and Multi-
modal Coreference Resolution task, the perfor-
mance is mainly evaluated by the F1 score of object

2https://dstc11.dstc.community
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Task 1 Ambigu. Task 2 MM-Coref Task 3 MM-DST Task 4 Res. Gen.

Model Object F1 (↑) Object F1 (↑) Slot F1 (↑) Act F1 (↑) BLEU-4 (↑)
B

as
el

in
e GPT-2 18.00% 26.50% 73.50% 93.00% 19.20

MTN 43.20% – 75.00% 94.30% 21.00
BERT 43.90% – – – –

D
ST

C
-1

0 I2R Singapore – 40.50% 86.40% 96.30% 34.62
Sogang University – 46.97% 88.25% 96.13% 28.38
Kakao Enterprise – 60.80% – – 28.50
KAIST – 73.50% 88.30% 96.30% 33.10

D
ST

C
-1

1

#2 62.45% 73.78% 92.48% 97.30% 30.00
#3 69.28% – – – –
#5 68.46% 78.64% 92.05% 97.82% 39.09

(Ours) #1 70.30% 94.40% 93.32% 99.19% 42.55
- Reasoner 65.10% 79.65% 89.42% 96.53% 41.24

Table 2: Results on the SIMMC 2.1 devtest set. The first block shows the baselines, which are separately trained on
each subtask. The second block and third block provide the complete results and ablation study on DSTC-10 &
DSTC-11 model: “- Reasoner” means taking system 1 prediction as the final prediction under all cases without
system 2 participation. Task 1 is the new task of DSTC-11, hence it isn’t included in the result of DSTC-10.

prediction (Object F1). For the Multi-modal Dia-
log State Tracking task, the performance is mainly
evaluated by the F1 score of dialog action and slot-
values prediction (Slot F1 & Act F1). For the Multi-
modal Dialog Response Generation task, the per-
formance is mainly evaluated by the BLEU-4 for
generated system response (BELU-4).

5.3 Baselines

The official SIMMC 2.1 proposer provided three
baseline models, the finetuned GPT-2 baseline gen-
erates the results of tasks 1 to 4 in a way simi-
lar to the language model. The MTN and BERT
baselines combine visual scene information and
dialogue history to generate user belief state and
system response (these two models are not involved
in all tasks). The visual features for the correspond-
ing bounding boxes in each scene have been ex-
tracted by using pretrained ResNet-50 (He et al.,
2016). Additionally, we have included the result
from other DSTC-10 and DSTC-11 participating
teams. In table 2, We display the teams with pub-
licly available results due to certain teams still not
publishing their performance on devtest set. In ta-
ble 3 we display the official leaderboard of DSTC-
11 & DSTC-10 on the teststd set of SIMMC 2.1.

5.4 Implementation Detail

For the encoder module in System 1, we employ the
pre-trained longformer-base (Beltagy et al., 2020)
model provided by HuggingFace’s transformers
library (Wolf et al., 2020). The decoder in System
1 and the reasoner in System 2 are designed as 6

hidden layers with a size of 512 and 8 attention
heads. In our training stage, the batch size is set to
64 and the number of training epochs is set to 100.
We introduce a cosine warm-up mechanism and
set the warm-up rate and learning rate to 0.1 and
5e-5. The AdamW optimizer is used to optimize
all models and all experiments are conducted with
PyTorch. Our source code will be released online.

5.5 Experimental Results
5.5.1 Comparison Analysis
From the evaluation results in Table 2, it can
be observed that our model achieves state-of-the-
art performance on each task. In particular, the
performance on multi-modal coreference resolu-
tion (Task 2) and response generation (Task 4)
exceed the runner-up for a large margin (15.76
(78.64 → 94.40) in object f1-score and 6.30
(39.09 → 45.39) in Bleu-4 score), which demon-
strates the effectiveness of introducing the step-by-
step multi-modal reasoning strategy. By introduc-
ing the reasoning generation process of system 2,
our model can better comprehend the coreference
relationship and implicit reasoning logic in the dia-
logue. For the ambiguous candidate identification
(Task 1) and multi-modal dialog state tracking task
(Task 3), we apply a similar framework and achieve
favorable performance. Additionally, in contrast to
other teams which employ an autoregressive lan-
guage approach to deal with the MM-DST, We
first utilize the encoder module for processing. We
also conducted an ablation analysis on the primary
modules in the framework.
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Task 1 Ambigu. Task 2 MM-Coref Task 3 MM-DST Task 4 Res. Gen.

Model Entry Object F1 (↑) Object F1 (↑) Slot F1 (↑) Act F1 (↑) BLEU-4 (↑)
D

ST
C

-1
0

I2R Singapore – 42.20% 87.80% 96.20% 25.60
Sogang University – 52.10% 88.30% 96.30% 28.50
QS goal Diggers – 56.40% 89.30% 96.40% 32.20
Kakao Enterprise – 68.20% 4.000% 41.40% 29.70
Hariot-Watt University – 68.20% 87.70% 95.80% 32.70
New York University – 73.30% – – –
KAIST – 75.80% 90.30% 95.90% 29.50
UCLA – 78.30% – – –

D
ST

C
-1

1 #2 65.17% – – – –
#3 63.84% 75.85% 90.48% 96.77% 30.29
#4 – – – – 25.19
#5 70.50% 80.28% 92.66% 97.75% 36.50

(Ours) #1 67.26% 94.29% 94.24% 95.98% 40.93

Table 3: The official leaderboard of DSTC-11 & DSTC-10 on the teststd set of SIMMC 2.1. The first block shows
the results of DSTC-10 and the second block shows the results of DSTC-11. The task winners are bold-faced and
runner-ups are marked with underline.’-’ means that the entry did not participate in that task. Task 1 is the new task
of DSTC-11, hence it isn’t included in the result of DSTC-10. Our entry is officially announced as the Winner of
Subtask 2,3,4 (MM-Coref, MM-DST, Res. Gen.) and Runner-up of Subtask 1 (Ambigu.)1.

As indicated by the last row of Table 2, the re-
moval of the reasoner weakens our model’s perfor-
mance on all sub-tasks. Especially, reasoner has
a huge influence on the Task 1 and Task 2. The
reason may lay on the fact that these two tasks re-
quire the model to ground all mentioned objects
or possible referred objects in the scene image,
which leads to the failure of shortcuts. The ablation
study reflects the significance of the step-by-step
multi-modal reasoning for the multi-modal dialog
system.

For the official evaluation, we generate the eval-
uation file in accordance with the competition set-
tings3. As shown in table 3 our model achieved the
1st rank when summing the metrics across all four
sub-tasks. We withheld the names of the DSTC-
11 participating teams in order to comply with the
anonymity requirement.

5.5.2 Human Evaluation
The human evaluation for response generation
mainly focuses on 4 aspects: fluency, relevance,
correctness, and informativeness, which are im-
portant for task-oriented dialogue systems. First,
We randomly select 500 dialogues from SIMMC
2.1 dev-test dataset as candidates. According to
SIMMC rule, only the last response of each di-
alogue in devtest is evaluated. Therefore, we
choose the last responses of these selected 500 di-
alogues generated by KAIST, I2R Singapore, and

3https://github.com/facebookresearch/simmc2
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Figure 3: The human evaluation results on SIMMC
2.1 from four aspects. Our model displays significant
improvement on correctness and informativeness.

our model. We release human evaluation task on
Amazon Mechanical Turk (AMT) platform and
hire 10 evaluators with different AMT ID. Every
evaluator is assigned with these 1500 randomly
shuffled evaluation data samples. Each data sample
contains complete GT dialogue, scene images and
last generated response without the model name.
Evaluators need to score from four aspects on a
scale of 1-5. The final score of each aspect of
each model is the average score of 10 evaluators on
500 responses generated by corresponding model
on this aspect. To guarantee the effectiveness of
our human evaluation result, we respectively cal-
culate Fleiss Kappa scores for fluency, relevance,
correctness, and informativeness, which are 0.9077,
0.9189, 0.8813, 0.8698. As shown in 3, it can be
observed that our model consistently outperforms
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Mentioned Objects: None
Belief State: color=green, violet

Last Round User Utterance: Have you got any tops in a white and gray combo?
Last Round System Response: At the bottom left on the wall, I have that gray and white top.
User Utterance: I'd like something in a similar size and brand as that, but in green, violet.

System 2

System 1

11

(No size and brand)

Reasoning Process: 
1. Identify object IDs of “grey coat and black coat on the floor rack” 

in [378, 188, 575, 674] and [1620, 810, 1813, 1007].  
2. Query brand and pattern based on object IDs.
3. Include “good customer reviews” into search criteria.  
4. Search for objects in the whole scene.

Mentioned Objects: 4, 38
Belief State: type=coat, brand=North Lodge, pattern=plain, customer review = good

Mentioned Objects: 4
Belief State: type=coat, brand=Art News Today, pattern=plain, customer review=good

User Utterance: I'd like something similar to the grey coat and the black coat on the 
floor rack, in terms of brand and pattern but with good customer reviews.

4

38

System 2

System 1

Reasoning Process: 
1. Identify object IDs of “that” in [1039, 386, 172, 47].
2. Query size and brand based on object IDs.
3. Include “green, violet” into search criteria.  
4. Search for objects in the whole scene.

Mentioned Objects: 11
Belief State: type=blouse, brand=Style Now Feed, size=S, color=green, violet

Figure 4: The left case: in which system 1 fails to predict user mentioned "black coat" and slot value of the brand
while system 2 conducts a complete reasoning process and predicts the correct mentioned object ID "38" and brand
slot value "North Lodge". The right case: in which system 1 fails to resolve user coreference "that" and misses slot
values of size and brand while system 2 identifies "grey and white top" referred by "that" in the last round system
response and predicts correct mentioned object ID "11", brand "StyleNow Feed" and size "S".

the other two models on all metrics, which is in
line with automatic evaluation results.

5.5.3 Case Study

To better illustrate the advantage of our method on
multi-step reasoning, we visualize several system
responses to complex user utterances generated by
our model and existing SOTA models.

As shown in the left part of Figure 4, system
1 fails to predict the corresponding object ID of
"black coat" and therefore directly uses the brand
of "grey coat" and copies pattern "plain" and cus-
tomer review "good" in the user utterance to an-
swer. Compared with system 1, system 2 success-
fully identifies object IDs of "grey coat" and "black
coat" and conducts multi-step reasoning to obtain
the correct brand of target object. As shown in
the right part of Figure 4, system 1 is confused
about coreference word "that" and unable to link
it to "grey and white top" in the dialogue history.
In this case, system 1 simply judges there is no
mentioned object in the current the user utterance
and ignores brand and size slots. It only predicts
color slot by copying user requirement about color
"green, violet". Compared with system 1, system
2 successfully links "that" to "grey and white top"
and predicts its IDs, brand and size by multi-step
reasoning.

From the above cases, it can be observed that:

(1) our model is able to locate user mentioned ob-
jects more accurately on the scene image when
more than one object exists in the user utterance.
(2) our model has the ability to resolve corefence
like "that", "those" and "these" in the dialogue his-
tory and link them to corresponding object IDs. (3)
our model predicts slot values about complex user
utterances through implementing reasoning actions
step-by-step instead of directly copying informa-
tion from the current user utterance or simply using
the textual description without visual reasoning.

6 Conclusion

In this paper, we propose to enhance the abil-
ity of situated conversational agents by emphasiz-
ing step-by-step multi-modal reasoning. Specifi-
cally, the original user utterance is rewritten into
a step-by-step reasoning process by introducing
a knowledge- and semantic-based extraction ap-
proach. In light of dual process theory, we propose
a step-by-step multi-modal reasoning framework,
and transmit complicated multi-step reasoning and
implicit multi-modal comprehension to different
modules. Extensive experiments on benchmarks
SIMMC validate the superiority of our framework.
After the official evaluation of the 11th Dialog Sys-
tem Technology Challenge (DSTC-11) SIMMC 2.1
track, our model is ranked at the 1st of the summing
score of all sub-tasks.
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