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Abstract

We participate in the 11th Dialog System Tech-
nology Challenges (DSTC) track-5' called
Task-oriented Conversational Modeling with
Subjective Knowledge. Introducing subjective
knowledge into task-oriented dialogue (TOD)
can help the DS to understand variables of sub-
jective user needs and to suit more dialogue
scenarios. Track-5 includes several sub-tasks:
1) knowledge-seeking turn detection; 2) knowl-
edge entity tracking; 3) knowledge entry se-
lection; and 4) use of the selected knowledge
entries for response generation. Besides the
challenges of each sub-tasks own, there are
two challenges across different sub-tasks. The
first is that there are multiple valid knowledge
entries for each knowledge-seeking turn, the
accuracy of the knowledge entry selection is
important for the quality of response generation.
The second challenge is how to address the un-
seen dialogue/entities/entries in the validation
and the test set. In this paper, we propose a
difference-aware ensemble method to address
these sub-tasks and the two challenges men-
tioned above. Our method helps to obtain more
robust results and performs well on unseen in-
stances. Among all the submissions for the test
set, our method ranks Ist on the knowledge-
seeking turn detection task and achieves 3rd
on the overall automatic evaluation score. Our
code and data will be released on GitHub.

1 Introduction

Task-oriented Dialogue Systems (TODS) aim to as-
sist users in domain-specific tasks, such as booking
a traveling ticket or a restaurant. The TODS is usu-
ally based on a domain-specific API or Database
(DB) that can provide the required information for
accomplishing the task, such as the price of a ticket
or the location of a restaurant. However, these
*These three authors contributed equally.
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Subjective Knowledge (the first review):

"0": "My work colleagues and I recently visited Nandos
City Centre for lunch."

"1": "We tried many Portuguese dishes such as Alheira,
Caldo Verde, Francesinha, and Torricado and washed
everything down with beer."

"2": "The dishes were cooked perfectly and we were able
to order a lot as the prices for the dishes and the beer
were very reasonable."

"3": "It did take a little longer for the food to arrive at the
table. Our plates took a while to clear from the wait staft."
"4": "But overall it was a good lunch."

Subjective Knowledge (the second review):

"0": "Yesterday me and some coworkers went to Nando’s
City Centre."

"1": "I’ve never had Portuguese cuisine but my coworker
insisted on it."

"2": "I was disappointed with how expensive everything
was though and I hoped everything tasted good."

"3": "I was surprised with how much food there was
overall, the portions were quite generous."

"4": "I’m not sure I liked the food, it didn’t live up to the
hype for me."

Dialogue:

User: What do you know about Nandos City Centre?

Agent: Which part do you prefer to know?

User: How is the price? Is it expensive?

Agent: The price is very reasonable because the portions
were quite generous.

User: Do we need to wait a long time for the food?

Agent: Yes, some customers say it did take a little while
for the food to arrive.

Table 1: SK-TOD example that the agent produces re-
sponse based on the subjective knowledge (two reviews
are both under the entity "Nandos City Centre").

APIs or DBs usually do not contain information
for subjective user requests (e.g., “Is this a good
place for meeting colleagues?” or “Does the hotel
have a good atmosphere?”’). TODS trained with
these APIs/DBs can only handle a limited range of
scenarios. To address this issue, Zhao et al. (2023)
propose a novel task called subjective-knowledge-
based TOD (SK-TOD). One SK-TOD example is
shown in Table 1, where the dialogue agent (DS)
needs to use subjective knowledge to complete a
dialogue. According to Zhao et al. (2023), a TODS
should consider multiple reviews with both positive
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and negative opinions, along with their respective
proportions to make a response (as exemplified in
Table 1). This two-sided response is recognized as
more credible and valuable for customers, thereby
fostering trust in the TODS. The SK-TOD data
is used as the track-5 of the 11th Dialog System
Technology Challenges (DSTC 11) workshop?.

The track-5 (called Task-oriented Conversational
Modeling with Subjective Knowledge) challenge
can be divided into four sub-tasks (Zhao et al.,
2023): 1) knowledge-seeking turn detection. It
takes the dialogue context as input and decides
whether the response to this context requires se-
lecting external knowledge; 2) knowledge entity
tracking. It selects entities from the entity pool
of the subjective knowledge; 3) knowledge entry
selection. It selects knowledge entries related to
the selected entity from the subjective knowledge;
4) response generation uses the selected knowledge
entry for generating a response. The knowledge
entity tracking and entry selection sub-tasks are
performed only when a response turn is detected
as a knowledge-seeking turn. Each of the four sub-
tasks has its own challenge. However, there are
two main challenges in this competition that across
different sub-tasks. The first is that there are mul-
tiple related subjective knowledge entries for each
knowledge-seeking turn. This affects all knowl-
edge entity tracking, knowledge entry selection,
and response generation. The second is that there
is a big portion of unseen instances in the validation
and test set (see Table 3), which includes unseen di-
alogues/entities/entries in the train set. This affects
all sub-tasks.

In this paper, we propose a difference-aware en-
semble method to address the two challenges across
sub-tasks. For each sub-task, we start by training a
group of models that are good at specific abilities
(e.g. unseen instances, noisy environment). Then
we aim to combine the advantages of each model
for different sub-tasks and for unseen instances. In
other words, we need to assign a reasonable weight
for each model based on the desired metric. To this
end, we need to jointly consider three differences:
1) the different requirements of each sub-task; 2)
the difference between each trained model; 3) the
difference between the validation set and the test
set. Our ensemble method can automatically bal-
ance these differences among tasks/models/datasets

There are also a set of FAQs besides the subjective review

knowledge. However, the dialogue is mainly grounded on
subjective knowledge. Please refer to Table 3 for more details.

Dialogue Turn Entity Entry Response
Context Detection Tracking Selection Generation
e —
Knowledge

Figure 1: The pipeline we used for the SKTOD task.

and use a unified pattern to cope with different
task scenarios. Experiments show that our method
largely improves performance. Among all the sub-
missions for the DSTC 11 track-5 test set, our
method ranks 1st on the knowledge-seeking turn
detection task and achieves 3rd on the overall au-
tomatic evaluation score. To sum up, our contribu-
tions are:

* To address the multiple knowledge entries and
the unseen instance problems, we propose a
difference-aware ensemble method to leverage
the advantages of different models that are
good at specific abilities. Our method can
automatically balance the differences between
tasks/datasets/models.

* Experiments show that our method outperforms
strong baselines and performs well on the DSTC
11 track-5. We give a detailed analysis of the
experiments. Our code and data will be released
on GitHub.

2 Related Work

We introduce related work in this section, including
knowledge-grounded conversation, task-oriented
dialogue, large language models, and ensemble
methods.

2.1 Knowledge-grounded Conversation

Knowledge-grounded conversation task first
choose context-related knowledge from external
sources (can be structured knowledge graph or
unstructured text) and use the selected knowledge
to construct a response (Zhou et al., 2018; Moghe
et al., 2018; Dinan et al., 2019; Gopalakrishnan
et al., 2019; Jang et al., 2022; Zhao et al., 2022).
The SK-TOD task is similar to KGC with un-
structured text as external knowledge, especially
the knowledge selection (Kim et al., 2020a;
Meng et al., 2020; Xu et al., 2022) and response
generation (Zhao et al., 2020; Prabhumoye
et al., 2021; Majumder et al., 2022) sub-tasks.
However, the KGC task usually does not contain
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knowledge-seeking turn detection task and are
usually open-domain dialogue.

2.2 Task-oriented dialogue and
Recommendation

Task-oriented dialogues (TOD) usually rely on
domain-specific APIs and databases to support the
dialogue response (Levin et al., 2000; Zhao et al.,
2017; Akasaki and Kaji, 2017; Yan et al., 2017).
Later works ground task-oriented dialogues to web
pages (Chen et al., 2022), government service doc-
uments (Feng et al., 2020), and FAQ knowledge
snippets (Kim et al., 2020b). Different from these
works where factual knowledge is utilized, we ap-
ply subjective knowledge to generate the response
and ground in multiple knowledge snippets. There
are also work in TOD (Majumder et al., 2022) and
recommendation (Ni et al., 2019) that aim to gener-
ate review-based response or recommendation ex-
planations. However, the SK-TOD requires ground-
ing in multiple subjective knowledge and explicitly
considers the diversity of opinions and the propor-
tion of sentiments.

2.3 Ensemble Methods

The traditional ensemble iteratively minimizes the
loss of the joint output (Hastie et al., 2001) and
keeps the child model unchanged. Another ensem-
ble pattern is pseudo-ensemble where the child
models share parameters and structure through
their parent model, which will tend to correlate the
child models’ behavior (Hinton et al., 2012; Bach-
man et al., 2014). The ensemble method is usu-
ally used in DSTC competitions (Tan et al., 2020;
Chaudhary et al., 2021). Our methods belong to
traditional ensemble methods that learn a robust
model to input uncertainty. The difference is that
our difference-aware ensemble method can jointly
adjust different models/datasets/tasks.

2.4 Large Language Models

Large language models (LLMs) such as GPT-4
(OpenAl, 2023) and LLAMA (Touvron et al., 2023)
show that pre-trained models with a large amount
of parameters (usually more than 10 Billion) can
understand complex instructions and perform well
in a variety of tasks including dialogue. However,
despite their success, recent studies (Bubeck et al.,
2023) show that LLLM still has the hallucination
problem and could not perform well in domain-
specific or knowledge-intense tasks even with elab-
orately designed instructions. In this paper, we

test the response generation task with LLAMA-
13B. The input is dialogue context and the selected
knowledge entries. However, its performance is
not as good as a smaller model such as the BART
baseline.

3 Our Method

In this section, we first introduce how we train the
models for each sub-tasks in DSTC 11 track-5, then
introduce the difference-aware ensemble method.

3.1 Problem Statement

Formally, we have a dialogue context C =
(U1, A1, Us, Ag, ..., U] where each user turn U;
@ € [L,IC1)) is followed by a agent response turn
Si except the last user turn Uc|. The dialogue
involves one or multiple entities represented as
EC = {Elc,EQC,...,Eﬁ;c‘}. Each entity E¢ (i €
[1,IE€1]) has a group of subjective knowledge en-
tries KEi = [K1, Ko, ..., KIKEZ'CI]S' The entity and
their corresponding subjective knowledge are from
a subjective knowledge source B = {(E;, K1),
(Ez, K™2), ., (B 5, KEi2I) }. 1€, 1ECI IKPE,
and |BI are the number of elements in the corre-
sponding set. The DSTC 11 track-5 needs first
identify whether U)c| has a knowledge-seeking re-
quest and, if yes, then identifies a group of entities
and their corresponding knowledge entries from
the knowledge source B, then selects the most rele-
vant subjective knowledge entries from the group,
finally generates a response A grounded on the
selected entries. The pipeline for SK-TOD is illus-
trated in Figure 1. Next, we will introduce how we
train models for each sub-tasks.

3.2 Knowledge-Seeking Turn Detection
(KTD)

The KTD is a binary classification problem to iden-
tify whether the last user turn in context C requires
to be addressed with subjective knowledge. The
baseline is an auto-encoding pre-trained language
model (DeBERTa-v3-base (He et al., 2021)). The
baseline takes dialogue context C as input and uses
the hidden state of the first token as its representa-
tion. Then it applies a classifier as follows to obtain
the probability P(C) that the current user request
is a subjective knowledge-seeking turn:

*Each K; can be paragraph, sentence, or segment.
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hc = Enc(C), (1)
P(C) = softmax(FFN(h¢)). ()

The model is fine-tuned with the binary cross-
entropy loss. As we introduced in Section 1, we
want to obtain a group of models that are good
at specific abilities (e.g. unseen instances, noisy
environment) and then combine the advantages of
each model for different sub-tasks. For the KTD
task, we train three models.

We define the first model as an expert on seen
dialogue data. It is similar to the baseline model
given by the DSTC 11 track-5 organizers. We fur-
ther fine-tune the model with the training set and
select the checkpoint with the best performance on
the validation set.

We define the second model as an expert on un-
seen dialogue data. To this end, we construct an
unseen dialogue dataset with the given subjective
knowledge and use this new unseen dataset to fine-
tune a RoBERTa (Liu et al., 2019) model*. The
unseen dialogue dataset combines original training
dialogue data and the external knowledge Tan et al.
(2020). This competition’s training dialogue data
usually starts with talking about an entity. For each
entity, there are question-answering (QA) pairs in
the corresponding knowledge source B. We first
keep the starting 2 turns of a training example and
randomly select the QA pairs related to this en-
tity in B. We concatenate the selected QA pairs to
the starting turns. Then we obtain a new unseen
dialogue example that focuses on this entity. To
mimic the situation of a topic shift in the real sce-
nario, we check whether the last turn of the new
example contains another entity in B. If so, we
continue selecting QA pairs related to the second
entity and add the QA pairs to the dialogue. Finally,
we obtain a dialogue example that does not appear
in the original training data. In practice, we use
at most three entities and restrict the total length
of the dialogue to 10 turns (which is similar to the
average length of the training data). The length of
turns under each entity is randomly decided. Train-
ing an unseen expert with this data can help the
performance of unseen dialogue instances.

We define the third model as a de-noise expert.
To this end, we pre-trained and fine-tuned a De-
BERTa (He et al., 2021) model with an enlarged

*We use different PLMs because we want the difference
between the seen and unseen experts to be more pronounced

noisy training set so that the model is more aware
of the noisy inputs. The pre-training is a classi-
cal word-masking training (Devlin et al., 2019;
Liu et al., 2019) that randomly masks a portion
(15%) of input words and asks the language model
to recover them. The enlarged noisy data is ob-
tained with a back-translation and synonym sub-
stitution process. We adopt the Google translation
service’ to translate English into other languages
(such as Spanish/German/Japanese/French), then
back-translated them into English®. Finally, we
obtain 5 times dialogue and knowledge data. These
data are used to pre-train the language models. We
further pair the 5-times dialogue data with knowl-
edge translated from different languages, which
gives 25 times data for fine-tuning. These data are
considered noise because the back-translation and
synonym substitution introduces word-level and
semantic-level disturbance.

After getting the seen expert, unseen expert,
and de-noise expert models. We use a difference-
aware ensemble method to combine their advan-
tages, which will be introduced in Section 3.6.

3.3 Knowledge Entity Tracking (KET)

The goal of KET is to identify the entities that
are relevant to the last user turn request. It can
help to reduce the number of candidates in the
step of knowledge selection. The baseline model
given by the DSTC 11 track-5 organizers is a word-
matching-based method (Jin et al., 2021) to extract
relevant entities. It first normalizes entity names
in the knowledge source using a set of heuris-
tic rules. Then a fuzzy n-gram matching is per-
formed between the normalized entity and all dia-
logue turns. To find the entities that are relevant to
the last user request, the baseline method chooses
the last dialogue turn in which the entities are de-
tected and uses these entities as the output. We
follow the baselines and have Precision=0.9516,
Recall=0.9841, F1=0.9676, and accuracy=0.9398
on the validation set. It should be noted that the
competition did not require to calculate results for
the KET task. Meanwhile, we are limited by the
schedule of the competition and fail to train well-
performed experts on this sub-task. However, we
believe our ensemble method is also useful for this
task and we leave this training for future work.

Shttps://translate.google.com

®When the back-translation sentence is the same as the
original sentence, we employ synonym substitution with Word-
net (https://wordnet.princeton.edu/) to increase diversity.
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3.4 Knowledge Entry Selection (KES)

The goal of KS is to select the knowledge entries
that are relevant to the user’s request. The inputs
are the dialogue context C and the knowledge can-
didates K, which is a combination of all the knowl-
edge entries of the relevant entities in E©. The
output K™ is a subset of K with the most relevant
knowledge candidates. Note that there might be
multiple knowledge snippets in K. To select rel-
evant knowledge snippets, the baseline proposed
by DSTC organizers uses a bi-encoder (Mazaré
et al., 2018) structure to calculate the relevance
score between the dialogue context C and a knowl-
edge entry K; € K. The C and K; are encoded
separately using the same pre-trained encoder and
obtain two representations, h¢ and hg,. Then the
concatenation of h¢, hg,, and |hc — hg;,| is used
as features to obtain the probability of relevance
P(C, K;) as follows:

hc = Enc(C), hg, = Enc(K;), (3)
[hes his |he — b ] “4)
SOftmaX(FFN(hfeature))' 5

hfeature =

Similar to the KTD task, we also train three
different models for KES. There are also denoted
the seen expert, the unseen expert, and the de-noise
expert.

3.5 Response Generation (RG)

The goal of RG is to use dialogue context C and
the selected knowledge entries KT to construct a
response. The baseline for RG is a pre-trained
generation model (BART (Lewis et al., 2020)) that
concatenates C and K™ as the input and generates
the response. The model is trained to maximize
the generation probability P(A4; | C, KT). We fine-
tuned BART and T5 (Raffel et al., 2020) for this
task.

3.6 Ensemble Method

Algorithm 1 shows how our ensemble method bal-
ances the advantages of different models. Taking
the knowledge entry selection for example, we cal-
culate top N candidates for the k-th validation ex-
ample from each model and sort them in descend-
ing order with respect to model confidence’. The
S ;Zt is ground-truth results for this example with K

"In this task, the confidence is a score between 0 and 1

since we train the turn detection and entry selection with
binary classification loss.

Algorithm 1: Difference-aware ensemble method.
1 : During training:

2: Input: SP, SE SE s WP, WE WE S,,.
3 : Output: Weight for each model.

4 : for p € range(start=0, stop=1, step=0.1) do

5 Score =0

6: for k € {validation set} do

7

8

Initialize W: {W,; = 0,¢=1,2,...,T}
foriec [1,T];do

9: W; =pP - WP+pR . WhEpP - WE
10: end for

11: Score += Metric(S} ¢!, Gt

12:  end for

13:  Record weight p for the Best Score.

14: end for

15: During test:

16: for k € {test set} do

17:  Initialize W: {W; =0, =1,2,...,T}
18: forie [1,T];do

19: Wi =pP - WP +p - WE+p2  WF

20:  end for
21: Sk — S}tﬂh’r'eshold
22: end for

entries, K’ < N. Each candidate is given a weight
which is the reciprocal of its ranking number plus
one. For instance, candidates from DeBERTa (seen
expert) are SJ»D, (7 = 1,2,...,N), and the corre-
sponding weight is W]-D = ]% Similarly, S jR and
W for ROBERTa (unseen expert), Sf° and W1
for DeBERTa (de-noise expert). Then we use these
candidates to form a final candidate dictionary S
={S5;, ¢ =1,2,...,.1)}, N <T < 3N. The
ensemble weight W; of S;, is calculated by W; =
pP - WPapft WhEpE - WE (i = 1,2,...,T),
p is the hyper-parameter that we want to learn,
pP+plapl = 1. WZD = WjD if there is a j such
that S jD =~ G, 0 otherwise. = means exact match
here. W and W} follows the same definition as
WiD . Then we use a specific Metric, such as Re-
call/Precision/F1/EM (or the combination of them),
to learn the optimal p with all examples in the
validation set. We set a threshold for S and only re-
serve the candidates with TW; larger than the thresh-
old, denoted by Sipreshorg- The threshold is set to
% according to the average entry numbers in Table
3. During testing, we use the threshold to select
a set of candidates from S as our final prediction
using the learned weight®.

Next, we explain why this method can balance
different tasks. According to the experiments
of Zhao et al. (2023), different sub-tasks in SK-

8For example, an entry ranks 1st in DeBERTa (seen), 3rd in
RoBERTa (unseen) and 4th in DeBERTa (de-noise), p©=0.2,
pT=0.3, p¥ = 0.5 then the final weight to re-rank this entry in
S is 0.2*0.5 + 0.3*0.254+0.5%0.2 = 0.275.
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Models . Qn validation set . .On final-test set
Precision | Recall F1 Precision | Recall F1
DeBERTa-v3-base (baseline) 1.0000 0.9990 | 0.9995 0.9982 0.9979 | 0.9980
DeBERTa-v3-base (seen expert) 0.9979 0.9989 | 0.9982 - - -
RoBERTa-large (unseen expert) 0.9953 0.9946 | 0.9949 - - -
DeBERTa-v3-large (de-noise expert) 0.9960 0.9983 | 0.9980 - - -
Ensemble with Precision 1.0000 0.9990 | 0.9995 - - -
Ensemble with Recall 0.9990 1.0000 | 0.9995 0.9979 0.9989 | 0.9984
Ensemble with F1 1.0000 1.0000 | 1.0000 0.9979 0.9993 | 0.9986

Table 2: Experimental results on the knowledge-seeking turn detection.

TOD requires different metric. For example, the
knowledge-seeking turn-detection task can be seen
as the simplified version the Algorithm 1. The N
candidate is reduced to 1 in the turn detection task,
i.e. the Sgt only has 1 ground-truth result (yes
or no). We can use Exact Match between S and
S,gt to learn the weight p. For the KES task, both
precision and recall matter since there can be multi-
ple knowledge entries for each knowledge-seeking
turn. Instead of selecting the top few results with
the threshold, we can also set a threshold for the
relevance score in Section 3.4.

At last, the difference-aware method is also suit-
able for different datasets. For example, the test set
contains more portion unseen instances and mul-
tiple entity instances than the validation set. We
can adjust the portion of unseen instances of the
validation set so that it is similar to that of the test
set. Then we can use Algorithm 1 to learn a p more
suitable for the test set.

4 Experimental Settings

4.1 Data

The data set is provided by the organizers of the
track”. The statistics are shown in Table 3. We can
see that there are around 50% unseen instances in
validation and test sets. The portion of the instances
requiring multiple entities is also increased in the
validation and test sets.

4.2 Evaluation Metrics

We use the metrics provided by the DSTC orga-
nizers ' to show the automatic results. For the
knowledge-seeking turn detection task, we report
the Precision, Recall, and F1 scores. For entity
tracking, we report the instance-level Accuracy
score. An instance is regarded as accurate only
if the predicted entities are the same as the gold
entities. For knowledge entry selection, we report

*https://github.com/alexa/dstc1 1-trackS/tree/main/data
https://github.com/alexa/dstc11-track5

Train Val Test
dialogue instances 14,768 2,129 2,798
seen instances 14,768 1,057 1,349
unseen instances 0 1,072 1,449
multi-entity instances 412 199 436
Knowledge entries
Avg.entries / instance 3.80 4.07 4.21
Avg.review / instance 3.51 3.94 391
Avg.FAQ / instance 0.29 0.23 0.29
Avg.tokens / entry 15.14 1581 14.92
Dialogue
Avg.uttrances / instance 9.29 9.44 9.36
Avg.tokens / request 8.66 8.95 9.13
Avg.tokens / response 2427  23.69 24.05

Table 3: Data statistics of the DSTC 11 track-5.

Precision, Recall, F1, and Exact Match (EM). For
response generation, we report BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007),
and ROUGE-1/2/L (Lin, 2004). In the competi-
tion, the KTD task servers as the foundation of the
rest sub-tasks. Specifically, when calculating the
metric for each sub-task, the true positive score of
sub-task 1 serves as a weight and is multiplied by
other results. The overall score is calculated by the
mean reciprocal rank over all the metrics.

4.3 Implementations

Our implementations of RoBERT, DeBERTa,
BART, and T5 are based on the public Pytorch
implementation of Transformers'!. During pre-
training, we follow the hyper-parameters setting of
the original implementation. During pre-training
and fine-tuning, we set the maximum input length
to 512 tokens. Candidate size /N in Algorithm 1 is
set to 10. We use a single Tesla v100s GPU with 32
GB memory for the experiments, the pre-training
time is around 48 hours and fine-tuning time is
around 4 hours for each model.

5 Results and Analysis

In this competition, each team has up to five sub-
mission opportunities on the final test set. We re-

"https://github.com/huggingface/transformers
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Models _ On validation set _ On final-test set
Precision | Recall F1 EM Precision | Recall F1 EM

DeBERTa-v3-base (baseline) 0.7951 0.8843 | 0.8373 | 0.4049 0.7901 0.7877 | 0.7889 | 0.3906
DeBERTa-v3-base (seen expert) 0.7966 0.8841 | 0.8379 | 0.4224 - - - -
RoBERTa-large (unseen expert) 0.7896 0.8410 | 0.8252 | 0.4110 - - - -
DeBERTa-v3-large (de-noise expert) 0.7996 0.8713 | 0.8358 | 0.4310 - - - -
Ensemble with Precision 0.8894 0.8434 | 0.8658 | 0.4937 - - - -
Ensemble with Recall 0.7278 0.9486 | 0.8236 | 0.4227 - - - -
Ensemble with F1 0.8591 0.8889 | 0.8737 | 0.5148 0.8096 0.8413 | 0.8252 | 0.5210
Ensemble with EM 0.8588 0.8763 | 0.8675 | 0.5195 0.8183 0.8506 | 0.8342 | 0.5314

Table 4: Experimental results on the knowledge entry selection. EM is short for exact match.

port the submission results and also provide the
performance on the validation set.

5.1 Sub-task 1: knowledge seeking turn
detection

Table 2 shows the experimental results. We can
see the baseline model already has a high perfor-
mance on the validation set. However, considering
there are unseen instances in the final test set, we
aim to use the difference-aware method to have
a better performance. We test the ensemble with
Precision, Recall, and F1 and choose the last two
as our final submission since a higher Recall is
more useful for unseen instances. On the final test
set, our method achieve better Recall and F1 than
the baseline model (the results of the baselines are
reported by the organizer). Specifically, we have
the highest F1 and second-highest Recall among
all submissions. We also have the highest sum of
the Precision/Recall/F1. These results give us an
advantage over the rest of the sub-tasks.

5.2 Sub-task 3: knowledge entry selection

Table 4 shows the experimental results of the
knowledge entry selection task. We can see that the
experts we trained all performed close to the base-
line. They are only a little better on the exact match
metric than the baseline. However, when using our
ensemble method, the performance is largely im-
proved. On the validation set, the highest Precision,
Recall, F1, and EM results are obtained when using
the corresponding metric as the ensemble indicator.
These results show that 1) the different expert mod-
els are good at different aspects; 2) our ensemble
method can successfully combine the advantage of
the experts and achieve the desired results on spe-
cific metrics. We finally choose the last two results
(ensemble with F1 and EM) for final submission
according to the sum of all four metrics. On the
test set, our method has consistent performance
and largely outperforms the baseline. On EM, our

method surpasses the baseline by 14 percent. We
denote these two results as KS-F1 and KS-EM for
the convenience of the next section.

5.3 Sub-task 4: response generation

Table 5 shows the experimental results on response
generation. We only have five submission oppor-
tunities and all the results are shown in the Table.
Notice that we did not use any ensemble in a gen-
eration. The results can reflect how the knowledge
selection results affect the generation. The baseline
uses the selected knowledge from the baseline in
Table 4. The BART-base with KS-F1 use the fourth
result of Table 4), its generation results are better
than baselines on all metrics. This result shows
that the KS-F1 provides higher-quality knowledge
entries and again proves the effectiveness of our en-
semble methods. Benefiting from more parameters,
the BART-large and TS are better than BART-base
on most metrics. The BLEU of BART-large (KS-
F1) ranks 2nd among all the submissions to track-5.
The BART-large (KS-EM) is better on ROUGE and
the T5-3B (KS-EM) is better on METEOR. How-
ever, the T5 models perform badly on BLEU on the
test set and do not show an obvious advantage over
BART-large. This may indicate that fine-tuning
pre-trained language models with large amounts of
parameters to a specific task is not always work.
The DSTC 11 track-5 also performs a manual evalu-
ation for the generation results. The organizer only
chooses one of the submissions for each team based
on the mean reciprocal rank over all the metrics.
The BART-large (KS-F1) is chosen by the organizer
since this submission has the highest overall score
among our 5 submissions. We finally ranked 5th
among all teams in this manual evaluation. In our
own manual evaluation, the BART-large (KS-EM)
is better than the BART-large (KS-F1). We also
provide the results on LLAMA-13B, the results are
much lower than other models.
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On validation set

On final-test set

Models BLEU | METEOR ROUGE BLEU | METEOR ROUGE
BART-base (baseline) | 0.1042 | 0.1810 | 0.365170.150670.2875 | 0.1004 | 0.1748 | 0.352070.143070.2753
LLAMA (fine-tuned) | 0.0653 | 0.1012 | 0.2132/0.0975/0.1667 . - -
BART-base (KS-F1) | 0.1089 | 0.1793 | 0.368970.153270.2918 | 0.1047 | 0.1764 | 0.3603/0.1463 70.2801
BART-large (KS-F1) | 0.1087 | 0.1796 | 0.3693/0.1530/0.2925 | 0.1075 | 0.1744 | 0.3585/0.1459/0.2794
BART-large (KS-EM) | 0.1103 | 0.1796 | 0.3695/0.1534/0.2929 | 0.1050 | 0.1774 | 0.3617/0.1474/0.2805
T5-3B (KS-F1) 0.1104 | 0.1773 | 0.3657/0.1524/0.2883 | 0.0897 | 0.1744 | 0.3591/0.1458 /0.2840
T5-3B (KS-EM) 0.1042 | 0.1827 | 0.3743/0.1489/0.2894 | 0.0959 | 0.1805 | 0.3552/0.1450/0.2784

Table 5: Experimental results on the response generation.

6 Conclusion

We participated in track-5 of the 11th Dia-
log System Technology Challenges (DSTC 11),
called Task-oriented Conversational Modeling with
Subjective-knowledge. The task includes four sub-
tasks and we propose a difference-aware ensem-
ble method to address two main challenges in this
competition. The first challenge is there are multi-
ple reasonable knowledge entries for one context.
The second challenge is that the data distribution
is different in train/validation/test sets. We first
train several expert models that are good at cer-
tain aspects for each sub-task. Then we use the
difference-aware ensemble method to balance the
abilities of expert models. Experimental results
verify the effectiveness of our method and we got
third on the final test set. Future work includes but
is not limited to 1) testing our ensemble method on
the knowledge entity tracking task; 2) designing a
method to automatically learned the threshold in
Algorithm 1.

Limitations

The method proposed by this work is only verified
on limited data in DSTC competition and the lan-
guage is only with narrow morphology (English).
Whether the technique can be used for other mor-
phology needs further verification. Another limita-
tion is that the SK-TOD generation task needs to
explicitly consider the diversity of opinions and the
proportion of sentiments. This requires a specific
module to assist the generation model or using a
much larger language model such as GPT-4 to fully
utilize the review information. We also do not per-
form these experiments and hope future researchers
could investigate this task.
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