Three Ways of Using Large Language Models to Evaluate Chat

Ondrej Platek, Vojtéch Hudecek, Patricia Schmidtova, Mateusz Lango and Ondrej DusSek
Charles University, Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
Prague, Czech Republic
oplatek@ufal.mff.cuni.cz

Abstract

This paper describes the systems submitted
by team6 for ChatEval, the DSTC 11 Track
4 competition. We present three different
approaches to predicting turn-level qualities
of chatbot responses based on large language
models (LLMs). We report improvement over
the baseline using dynamic few-shot examples
from a vector store for the prompts for Chat-
GPT. We also analyze the performance of the
other two approaches and report needed im-
provements for future work. We developed
the three systems over just two weeks, show-
ing the potential of LLMs for this task. An
ablation study conducted after the challenge
deadline shows that the new Llama 2 models
are closing the performance gap between Chat-
GPT and open-source LLMs. However, we
find that the Llama 2 models do not benefit
from few-shot examples in the same way as
ChatGPT.

1 Introduction

This paper describes the systems submitted by
team6 for ChatEval, the DSTC 11 Track 4 compe-
tition aimed at evaluating open-domain chat.! We
participated in Task 2, which focuses on evaluating
multiple criteria on the level of individual dialogue
turns. The task of evaluating responses in a chat is
challenging because it requires an understanding
of the interlocutor’s roles (pragmatics), the con-
versation’s context, and the response’s meaning
(semantics). At the same time, the conversations
are often ungrammatical (Rodriguez-Cantelar et al.,
2023) and vary in style (Zhang et al., 2018). The
commonly used metrics, such as BLEU (Papineni
etal., 2002), METEOR (Banerjee and Lavie, 2005),
or BERTScore (Zhang et al., 2019), are based on
comparison to human references and thus corre-
late poorly with human judgments on the turn-

'Results & task description at chateval.org/dstcl1. Our

experimental code is available at github.com/oplatek/chateval-
IIm.
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Figure 1: The architecture of the vector store approach
with a LLM. During training, we construct the vector
store from embedded annotated dialogues. At infer-
ence time, the input dialogue is embedded, and most
similar examples from the vector store are retrieved to
be included in the prompt.

level, as they penalize many correct responses for
a given chat context (Zhao et al., 2017). At the
same time, human evaluation is expensive and time-
consuming. Previous referenceless metrics based
on neural networks and language models still do
not reach sufficient correlations with human judge-
ments (Zhang et al., 2020; Lowe et al., 2017).

In our work, we followed up on the recent de-
velopment of pretrained Large Language Models
(LLMs) with instruction finetuning (Brown et al.,
2020; Raffel et al., 2020), which have been found
to be capable evaluators in machine translation,
summarization as well as dialogue (Kocmi and Fe-
dermann, 2023; Liu et al., 2023). Therefore, we
applied LL.Ms and specific prompting to elicit rat-
ings for the multiple qualities evaluated in DSTC11
Track 4 Task 2: appropriateness, content rich-
ness, grammatical correctness, and relevance. We
present three different systems used for our three
submissions, all of which are based on LLMs and
few-shot prompting: (1) We evaluate a straight-
forward approach with manually designed fixed
prompts for off-the-shelf open LLMs checkpoints.
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(2) We train a simple feed-forward regression neu-
ral network (FNN) on top of frozen LLM embed-
dings to predict the turn-level metrics scores. (3)
We used the ChatGPT API and few-shot examples
retrieved dynamically from the development set to
improve the prompting performance. As no data
annotated with the target metrics were available
for the challenge, we heuristically mapped exist-
ing annotations from the development set to the
target metrics, and we manually annotated a small
rehearsal dataset for hyperparameter search.

Based on the human annotations released after
the challenge finished, our team6 achieved sec-
ond place thanks to our third method, dynamically
prompted chatGPT with few-shot examples. This
approach showed that LLM prompting is a viable
option for prototyping chat evaluation. However,
the two other methods we explored scored worse:
open LLMs with fixed prompts generally showed
poor performance, and the regression FFN worked
well on the development set but did not generalize
well to the test set.

2 Task & Data

The goal of the DSTC11 Track 4 Task 2 was to
predict several turn-level metrics automatically on
the test set. For each dialogue turn, considering the
preceding dialogue history, the participants were to
submit a system to predict the score of the target
metrics, defined by the organizers as:

» Appropriateness — The response is appropriate
given the preceding dialogue.

* Content Richnes — The response is informa-
tive, with long sentences including multiple
entities and conceptual or emotional words.

* Grammatical Correctness — Responses are
free of grammatical and semantic errors.

* Relevance — Responses are on-topic with the
immediate dialogue history.

Table 1 shows chat conversations from the rehearsal
dataset with the turn-level metric annotations.

The organizers provided the participants with
training, development, and test sets (Rodriguez-
Cantelar et al., 2023), each coming from different
domains and annotated with different metrics:

* Training set — consists of 390k dialogues, an-
notated with sentiment and toxicity labels.
This set was not used in our experiments at

all since our goal was to fine-tune or select
LLMs that are already well-performing with
no finetuning.

* Development set — consists of 24 datasets,
some annotated with dataset-specific metrics.
For our experiments, we created a heuristic
mapping to the target metrics on a subset of
the development set (see Section 3).

o Test set — consists of 3,470 dialogues and 130k
turns, annotated with the target metrics. The
data was only published in an anonymized
form and at the end of the challenge, with
no annotations or metadata, so that challenge
participant could produce their model outputs.
The annotations were published after the chal-
lenge was finished.

* Rehearsal set — this is a set of 156 turns col-
lected in the same way as the test set, released
earlier than the test set. We manually anno-
tated this set with the target metrics (see Sec-
tion 3) and used the result for hyperparameter
search.

The submitted systems were benchmarked for
the quality of their ranking using the Spearman cor-
relation coefficients (SCC) (Zar, 2005) computed
between the predicted scores and the human judg-
ments. As a secondary measure, the Pearson cor-
relation coefficients (PCC) (Freedman et al., 2007)
were used to evaluate the correlation. The mea-
sures were computed for each of the target metrics
separately. The overall submissions’ ranking was
determined using the average of the four SCCs.

3 Data Preprocessing

Since no information was provided on how the
individual development dataset metrics relate to
the target dialogue metrics, we built a heuristic to
obtain target metric scores. The heuristic uses a
linear combination of one or more dataset-specific
metrics to the target metrics, chosen based on in-
dividual descriptions from the literature.> Using
the development set and the heuristic, we created a
supervised dataset and split it into training and de-
velopment splits. We used this development dataset
for model selection or supervised training, and we
use this dataset to develop the three systems de-
scribed in Section 4.

*See the line 354 for the turn metric mapping for different
datasets.
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My boss gave me a 10 raise just last month And it was a nice surprise

It’s great and he might think you’re doing a great job

We have always been very nice He has always been very supportive of me

That’s a good thing
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do you have any pets?

I am retired so I love to travel so pets would slow me down
I understand that my idea of traveling is a hot hot bubble bath
Yes I have dogs and cats I like to take them with me on trips
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Table 1: Two examples of complete conversations from the rehearsal set are annotated with turn-level metrics:
appropriateness, content richness, grammatical correctness, and relevance. The context for each turn are the pre-
vious turns (lines) in the conversation. The second conversation at the bottom of the table shows an inappropriate
response in the last turn because the last response contradicts previous responses of the system.

During our experiments, we struggled to find
representative labels and input data which could
be used as a development set. Therefore, we de-
cided to annotate the additional 156 turns from the
rehearsal set with the target metrics described in
Section 2. We used this data to find our submitted
systems’ optimal hyperparameters. We assumed
that this data came from the same distribution as
the test set, but this later proved clearly not to be
the case, as seen in Figure 2.

Note that we did not use the training set at all.

4 Submitted Systems

Inspired by (Kocmi and Federmann, 2023), we
used pre-trained LLMs with prompts for predicting
the individual metrics. We started with the sim-
plest approach possible and manually designed the
prompts.

4.1 Method 1: Simple Prompting

We experimented with prompting GPT-NeoX-20B
(Black et al., 2022), OPT-30B (Zhang et al., 2022b),
and TK-Instruct-11B (Wang et al., 2022).3 We tried
several prompt templates for each model and se-
lected the best-performing one on the development
set and the manually annotated rehearsal set. The
templates were slightly adapted for each model to
control for the deviations in model pretraining or
instruction finetuning procedures, i.e., the word-
ing of instructions or tags denoting a user-system
interaction.

We used templates evaluating a single quality
of each turn (i.e., calling the LLM four times to
predict all metrics). We focus on a single-metric
template because most of the open-source models

3The numbers identify each exact model checkpoint by the
number of parameters.
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Figure 2: The histogram of predicted and human-
annotated scores for appropriateness of a reply, on
the test set (above) and on our manually annotated
development set (below). Predicted scores are from
ChatGPT with dynamic few-shot examples (see Sec-
tion 4.3). Note that the rehearsal set is not representa-
tive of the test set — compare the blue bars representing
the human-annotated scores. Interestingly, ChatGPT-
predicted scores on the test set are not concentrated at
the extremes, unlike on the rehearsal set.
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Figure 3: The architecture of the FFN trained on top of
embeddings of LLM responses.

have trouble sticking to the desired output format
when asked to generate a structured response with
all four quality scores. Our templates included
two hardcoded examples from the DailyDialog set
(Li et al., 2017), one of the provided development
datasets.

We developed the prompt templates iteratively.
Every time we rephrased the prompt templates, we
evaluated them on the DailyDialog dev set, which
is part of the challenge dev set.

4.2 Method 2: Feed-Forward Regressor on
Top of LLMs

Our second method attempts to solve the problem
that the prompted LL.Ms sometimes produce mal-
formed output. We assumed that LL.Ms extract
relevant features even when the decoder produces
a malformed one-best hypothesis. Therefore, we
aimed to use LLM contextual embeddings as fea-
tures for a simple regressor. However, instead of
using the LL.M’s output directly, we implemented
a simple embedding extractor on top of the LLM,
and we trained a regression model to predict all
four scores based on the embeddings. We use
global max and average pooling over decoder lay-
ers and time steps of the decoded output to obtain
the prompted response embedding.

We designed the prompts so the LLMs’ replies
contain information about all four metrics, so a sin-
gle call to the LLMs is sufficient to obtain all four
scores. At the same time, we designed the prompt
so the LLM replies are as short as possible. To train
the regressor, we used our heuristically mapped de-
velopment data (see Section 3). We trained four
simple feed-forward networks (FFNs), each model-
ing one of the target metrics using the same input
embeddings. See Figure 3 for the architecture of
the FNN.

4.3 Method 3: Dynamic Few-Shot Examples
from a Vector Store

The previous two approaches used fixed few-shot
examples. However, the performance of the in-
context LLM learning can be improved by provid-
ing examples that are contextually similar to the
instance being evaluated (Brown et al., 2020). We,
therefore, implement a vector store with a dynamic
few-shot example selection. First, we take dia-
logues from the development set relevant to a given
metric (based on our mapping described in Sec-
tion 3), and compute turn-level embeddings. These
are then used as keys in a vector store optimized for
similarity search. At runtime, we retrieve a set of
examples based on their similarity to the input and
include them in the LLM prompt. See Figure 1 for
a detailed overview of the vector store architecture.

S Experiments

We experimented with the three methods described
in Section 4. First, we we experimented with the
Simple Prompting method using the open-source
LLMs (Section 4.1). Based on the results, we
started two independent experiments. Section 5.2
describes the FFN training and Section 5.3 de-
scribes the development of vector storage which we
used with ChatGPT API. For all three methods, we
used the rehearsal set to select the best-performing
model-template combination and hyperparameters.

5.1 Simple Prompting Submision

For our baseline submission, we selected the best-
performing model-template combinations for each
quality separately and then combined the results.
Appropriateness and Relevance were generated by
OPT-30b (Zhang et al., 2022b). Content Richness
was generated by TK-Instruct (Wang et al., 2022).
As the outputs for “Grammatical Correctness” were
malformed in most cases, we replaced the outputs
with randomly generated scores.

5.2 FFN Fine-Tuning setup

We trained the FFN using two layers with 1024
hidden units and ReL.U activation with batch size
2048 and learning rate 5e-5. We used the log-
cosh (Saleh and Saleh, 2022) loss function. We
split the original development set into training and
validation sets. We trained until early stopping
based on the validation set using SCC for appro-
priateness as a stopping criterion. We extracted
the embeddings from the prompted LLMs on the
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Following is a dialogue context and the response to it.
Express how the response is appropriate given the context
with a continuous number between 1 and 5.

The higher the score, the more appropriate the sentences are.
Here are a few examples:

Now complete the following with just a single float number:
Context: {dialogue_context}

Response: {response}

Appropriateness Score:

Figure 4: Prompt template used with the few-shot dy-
namic examples retrieval with ChatGPT has a place-
holder for the examples. Each example contains the
turn response together with its dialogue context and the
ground truth appropriateness score. The other methods
used a similar template, with only a slight rewording.

training and validation sets and cached them. We
used the same LLM checkpoints as in the simple
prompting method. We only used dev datasets
whose annotations mapped to all four target met-
rics (see Section 3).; DailyDialog (Li et al., 2017),
Fed-Turn (Mehri and Eskenazi, 2020a), Persona-
See (See et al., 2019), and Persona-Usr (Mehri and
Eskenazi, 2020b).

5.3 Vector Store Implementation

We use FAISS (Johnson et al., 2019) to implement
vector storage that can perform effective similarity-
based retrieval. To convert the dialogues into em-
beddings that are saved to the vector store, we
used the MPNet (Song et al., 2020) pretrained sen-
tence representation model (Reimers and Gurevych,
2019). We store the same development datasets in
the vector store that we used for FFN training (Sec-
tion 5.2), with the heuristically mapped scores for
all four metrics.

We used the prompt template in Figure 4 with dy-
namically retrieved examples using vector store for
the prompt and ChatGPT as the prompted LLM.*

6 Results & Discussion

We report positive findings related to Method 3
(Section 4.3), but we also report lessons learned
from implementing the other two methods and, in
general, using the data provided for the challenge.
First, we summarize observations from our use of
the data (Section 6.1). Then we report negative
results from the simple prompting and FFN fine-
tuning (Sections 6.2 and 6.3, respectively). We
also report our best results from the vector store
(Section 6.4) and discuss what our best model in

“We used the gpt-3.5-turbo-0301 API version.

the challenge is capable of evaluating. Finally, we
add an ablation study in Section 6.5 performed after
the challenge was complete, comparing few-shot
capabilities of ChatGPT with the newly released
Llama 2 model.

We are aware that LLMs are trained on large
datasets, some of which (e.g., ChatGPT) are not
public. However, due to the novelty of the test
set (Rodriguez-Cantelar et al., 2023), we believe
that the test set has not leaked to their training set.

6.1 Dataset Analysis

The test set contains dialogue samples from various
datasets unseen in the development and rehearsal
sets: BlenderBot3, ChatGPT, DSTCI10Persona,
DSTC10Topical, ESL, GPT3, NCM. The distribu-
tion of the test set was unknown to the partici-
pants, and most of the data comes from the un-
seen BlenderBot3 and ChatGPT datasets. We ob-
served that scores for individual metrics were not
normalized across the datasets as the ESL and NCM
datasets had a range of 0-1, while the other datasets
had a range of 1-5.

This discrepancy in data distributions most likely
resulted in our model selection and hyperparameter
search on the rehearsal dataset being detrimental
to the final performance of our systems. See the
mismatch in the distribution of our own manual an-
notations on the rehearsal set and human annotation
on the test set in Figure 2. Furthermore, we argue
that we could have achieved better results if we ran
our model selection not only on the appropriateness
metric but optimized for all four metrics.

6.2 Simple Prompting is Fragile

In our informal experiments with simple prompting,
we noticed that instruction-tuned LLM checkpoints
produce results with intended formats more reliably.
We also experimented with templates evaluating
all four metrics using a single prompt. However,
single-quality templates were generally more reli-
able and yielded outputs adhering to the expected
formats more often. We consistently observed that
adding examples to the templates improved the
reliability of the outputs.

Manual development of prompts, which relies on
observing a small set of examples, was impractical
for a diverse development dataset. We frequently
developed a promising prompt only to discover that
the model produces malformed outputs when run
on conversations from a different system. The typi-
cal problem was that LLMs would interpret part of
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System Avg. Spearman
Baseline (Zhang et al., 2020) 0.3387
Winning submision (team4) 0.4890
Simple Prompting 0.0807
Ours:  FFN Regressor 0.1742
ChatGPT + Vector Store 0.4190

Table 2: The overall performance of the baseline, the
challenge winning submission and our three submis-
sions.

the input conversation as instruction. Consequently,
instead of replying with the metric score, the model
replied with a next turn fitting the conversation pre-
fix. Whenever the model did not respond in the
desired format, we used an uninformed response
score of 3. The number of informed responses was
the largest factor in the overall lower score for the
simple prompting method.

6.3 FFN is Fast but Lacks Normalization

The training of the FFN is very efficient because we
ran the LLMs only once in inference mode. Note
that the training was faster than extracting the em-
beddings from the LLMs, and a single FFN layer
adds negligible computational and memory costs at
inference time. The FNN regression model solved
the problem of LLMs producing malformed out-
puts. However, our submission suffered from un-
normalized scores in different development dataset
splits, and the model performed poorly on the test
set. The results of our FFN training in Method 2
thus were influenced by incorrectly scaling the tar-
get metric values: For example, the FedTurn scores
lie in the range [0, 2.2] instead of [1, 5].

6.4 Are we Comparing Systems or Turns?

Method 3 (Section 4.3) was the most successful in
our experiments. We argue that we could achieve
even better results if we did model selection not
only on the appropriateness metric but optimized
for all four metrics. We also argue that data mis-
match between the rehearsal and test sets was detri-
mental to the performance of the systems. Despite
that, we placed second as a team, improved upon a
baseline, and are relatively close to the best system
in terms of the overall ranking. See Table 2 for the
comparison of the systems based on the average of
the SCC over the four metrics. See Figure 2.

Our third method, ChatGPT with vector store
examples (Section 4.3), was the most successful in
our experiments. We observed that it easily con-

trasts between responses from different datasets
but does not distinguish well among turns com-
ing from the same dialogue system and the same
dataset. The SCC scores in Table 3 shows that the
score for the whole test set is better than most of
the individual subsets based on different source
datasets.

Dataset Appl’opriatcncss Relevance Content richness
TEST-ALL 0.488 0.361 0.452
BLENDERBOT3 0.383 0.287 0.303
CHATGPT 0.122 0.060 0.181
DSTCI10PERSONA 0.803 0.968 0.216
DSTCI10TOPICAL 0.300 0.401 0.200

ESL 0.199 - -

GPT3 0.091 0.007 0.242
NCM 0.061 - -

Table 3: The performance of our best system as Spear-
man correlation coefficients scores on the test set split
for the metrics Appropriateness, content richness, and
relevance. The first row TEST-ALL reports the results
on the whole dataset. For brevity, we do not report
grammatical correctness per splits which is 0.402 for
the whole test set. The test set contains conversations
from different systems, including ChatGPT and GPT3.

6.5 Revisiting Few-Shot Prompts in Ablation

We present an additional ablation study, which we
ran after the challenge was completed and evalu-
ated on the Appropriateness quality. Using both
ChatGPT and the newly released Llama 2 models
(Touvron et al., 2023), we investigate the influence
of the few-shot examples on the performance of the
models.> In order to do so, we made two changes
to the prompts: (1) we designed a single prompt
template that can be used both with and without
few-shot examples, (2) we normalized the use of
newlines at the end of the prompt and in the few-
shot examples, which improved performance. We
also (3) further improved the prompt by iterative
experiments on the DailyDialog development set.
We label the improved prompt (with changes
1+2+3) as Pimpr; we compare to a prompt closer
to the original (with only changes 1+2 applied)
as Pnorm. We then compared both ChatGPT and
Llama 2 using both prompts Pimpr and Pnorm in
three variants: (a) base without few-shot examples,
(b) with two static examples (labeled -fix-2egs),
SWe used the Llama2-7b-chat-hf checkpoint (https://
huggingface.co/meta-1lama/Llama-2-7b-chat-hf) and
the gpt-3.5-turbo-0613 version of the ChatGPT API. The

gpt-3.5-turbo-0301 was used for the Porig experiments
with the original prompts from our submission.
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Figure 5: The two scatterplots show the correlation of ground truth turn-level scores for appropriateness and the
prediction of our best system, on the whole test set (left) and for the test set turns generated by ChatGPT (right).
Our system shows a relatively good correlation over the whole test set and evaluates the ChatGPT results correctly
as high-quality, but it fails at distinguishing the quality of individual ChatGPT turns.

and (c¢) with two dynamically retrieved examples
using the vector store (labeled dyn-2egs, cf. Sec-
tion 4.3. We also include a comparison to the orig-
inal ChatGPT with the prompt used in our model
submitted to the challenge (labeled as Porig, see
Section 5.3). Finally, we ran an experiment with
variants of Porig/Pnorm where we prompted the
model to evaluate all the four qualities in a single
prompt (labeled as -All).

Our results in Table 4 suggest that it pays off to
design the prompt carefully, and it is beneficial to
use few-shot examples in the prompts. However,
using dynamic examples form the vector store in-
stead of fixed ones does not bring further improve-
ments. We can see on ChatGPT results that our
prompt improvements had an effect, and we were
able to improve substantially over our challenge
submission. There is a notable gap between Chat-
GPT and Llama 2; on the other hand, the Llama 2
results are much better than any of our previous
results with open models (see Sections 6.2 and 6.3).
We observe that predicting four qualities at once
is not as good as predicting appropriateness only.
However, it still seems an attractive alternative
since such template use is roughly four times more
effective when predicting four qualities individu-
ally. The percentage of failures for all reported
systems is lower than 1% and thus does not play a
significant role in the evaluation.

7 Related Work

Recent works in chat evaluation focus on refer-
enceless approaches, as these do not suffer from
penalizing appropriate responses based on surface

System Prompt Spearman Appr. (%fail)
Pimpr 0.3310 (0.04%)

Llama 2 Pimpr-fix-2egs 0.3756 (0.56%)

7B Chat Pimpr-dyn-2egs 0.3683 (0.36%)
Pimpr 0.4536 (0.01%)

ChatGPT  Pimpr-fix-2egs 0.6136 (0.00%)

3.5-turbo-0613  Pimpr-dyn-2egs 0.5962 (0.00%)
Pnorm 0.3914 (0.98%)

Llama 2 Prnorm-fix-2egs 0.3551 (0.06%)

7B Chat Pnorm-dyn-2egs 0.3756 (0.65%)
Pnorm-All 0.3710 (0.01%)

ChatGPT  Pnorm-dyn-2egs 0.5462

3.5-turbo-0613  Pnorm-fix-All 0.5334

ChatGPT  Porig-dyn-2egs 0.4880

3.5-turbo-0301 Porig-fix-All 0.3616

Table 4: Ablation study with the ChatGPT and Llama 2
7B Chat models for the Appropriateness quality (see
Section 6.5 for prompt variants explanation). “%fail”
indicates the percentage of LLM outputs that failed to
parse due to incorrect format.

dissimilarity to a single human-written reference
response (Liu et al., 2017; Lowe et al., 2017). Here,
Lowe et al. (2017) trained a neural network from
scratch on relatively large annotated data to predict
a single score, but this approach was later found to
generalize poorly, even to basic data perturbations,
let alone other datasets (Sai et al., 2019; Lowe,
2019).

Later works leveraged pretrained language mod-
els for better generalization abilities, such as BERT
Zhang et al. (2020); Gao et al. (2020), RoBERTa
(Mehri and Eskenazi, 2020c), GPT-2 (Sinha et al.,
2020) or DialoGPT Mehri and Eskenazi (2020a).
These metrics are trained on human-labeled sets
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of system outputs based on popular open-domain
datasets, similar to the ChatEval development
data. Some of them use additional data augmenta-
tion techniques, such as self-training Zhang et al.
(2022a). While they do achieve good correlations
on some datasets, generalization with respect to
unseen datasets is still not guaranteed (Yeh et al.,
2021).

Sai et al. (2021) stressed the importance of pre-
dicting multiple qualities, such as, fluency and ap-
propriateness, in dialogue evaluation. At the same
time, they asserted that metrics should be sensitive
enough to distinguish between similar responses.
Using simple text perturbations targeting the in-
dividual qualities, they show that most existing
metrics are not robust enough.

Two very recent works, closely related to ours,
propose the usage of instruction-tuned LLMs to
evaluate generated text in various tasks like sum-
marization and dialogue response generation (Liu
et al., 2023), or machine translation (Kocmi and
Federmann, 2023). Both approaches use in-context
learning and multiple prompting techniques to ob-
tain scalar metric predictions or candidate rankings.
They achieved good results and correlations with
human judgments. However, they used only closed
models for the evaluation and did not experiment
with few-shot prompting using relevant examples.

8 Conclusion

We presented three simple approaches to using
LLMs for turn-level chat evaluation. We achieved
promising results using ChatGPT prompting with
few-shot example retrieval from a vector score, and
ranked as the second-best team. Based on the re-
sults of our best system, we argue that chat turn
evaluation systems based on current state-of-the-art
LLMs are usable only for system-level evaluation
but not for segment-level evaluation, i.e., they can-
not distinguish between the quality of individual
turns, especially for outputs of high-quality lat-
est systems based on LL.Ms such as ChatGPT and
GPT3.

We observed that LLMs are fragile to the
prompts, few-shot examples and cannot be used
out-of-the-box for chat evaluation. We also report
implementing a simple regressor on top of embed-
dings obtained from the prompted LLLM decoder.
We attribute its poor performance to our incorrect
implementation of data preparation.

We also presented an ablation study that inves-

tigated the influence of the few-shot examples on
the performance of LLMs. We found that few-shot
examples help the LLMs to generalize better to
unseen data, especially with respect to fitting the
desired output format. However, using examples
dynamically obtained from the vector store instead
of hand-picked fixed examples did not bring any
additional improvements.

We reached a new best Spearman correlation
coefficient of 0.6136 for appropriateness with Chat-
GPT and fixed few-shot examples in our ablation
study. In addition, the Llama 2 open model used in
our ablation showed significant improvements over
the challenge baseline.

9 Acknowledgements

This research was supported by Charles Univer-
sity projects GAUK 40222 and SVV 260575 and
by the European Research Council (Grant agree-
ment No. 101039303 NG-NLGQG). It used resources
provided by the LINDAT/CLARIAH-CZ Research
Infrastructure (Czech Ministry of Education, Youth,
and Sports project No. LM2018101). The authors
thank the anonymous reviewers for their valuable
feedback, Milan Fucik and Mateusz Krubinski for
their suggestions and technical support.

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65-72.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. Gpt-neox-20b: An open-
source autoregressive language model.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot
Learners. ArXiv:2005.14165 [cs].

120


https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165

David Freedman, Robert Pisani, and Roger Purves.
2007.  Statistics (international student edition).
Pisani, R. Purves, 4th edn. WW Norton & Company,
New York.

Xiang Gao, Yizhe Zhang, Michel Galley, Chris Brock-
ett, and Bill Dolan. 2020. Dialogue response rank-
ing training with large-scale human feedback data.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 386-395, Online. Association for Computa-
tional Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. [EEE
Transactions on Big Data, 7(3):535-547.

Tom Kocmi and Christian Federmann. 2023. Large
Language Models Are State-of-the-Art Evaluators
of Translation Quality. ArXiv:2302.14520 [cs].

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Zigiang
Cao, and Shuzi Niu. 2017. DailyDialog: A
Manually Labelled Multi-turn Dialogue Dataset.
ArXiv:1710.03957 [cs] version: 1.

Chia-Wei Liu, Ryan Lowe, Iulian V. Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2017. How NOT To Evaluate Your Dialogue Sys-
tem: An Empirical Study of Unsupervised Eval-
uation Metrics for Dialogue Response Generation.
ArXiv:1603.08023 [cs].

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-Eval:
NLG Evaluation using GPT-4 with Better Human
Alignment. ArXiv:2303.16634 [cs].

Ryan Lowe. 2019. Introducing Retrospectives: ’Real
Talk’ for your Past Papers. Library Catalog: thegra-
dient.pub.

Ryan Lowe, Michael Noseworthy, Iulian Vlad Ser-
ban, Nicolas Angelard-Gontier, Yoshua Bengio, and
Joelle Pineau. 2017. Towards an Automatic Tur-
ing Test: Learning to Evaluate Dialogue Responses.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1116-1126, Vancouver,
Canada. Association for Computational Linguistics.

Shikib Mehri and Maxine Eskenazi. 2020a. Unsu-
pervised Evaluation of Interactive Dialog with Di-
aloGPT. In Proceedings of the 21th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 225-235, 1st virtual meeting. Associa-
tion for Computational Linguistics.

Shikib Mehri and Maxine Eskenazi. 2020b. USR: An
Unsupervised and Reference Free Evaluation Met-
ric for Dialog Generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 681-707, Online. Associ-
ation for Computational Linguistics.

121

Shikib Mehri and Maxine Eskenazi. 2020c. USR: An
unsupervised and reference free evaluation metric
for dialog generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 681-707, Online. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. ArXiv:1910.10683 [cs, stat].

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Mario Rodriguez-Cantelar, Chen Zhang, Chengguang
Tang, Ke Shi, Sarik Ghazarian, Jodo Sedoc, Luis Fer-
nando D’Haro, and Alexander Rudnicky. 2023.
Overview of Robust and Multilingual Automatic
Evaluation Metrics for Open-Domain Dialogue Sys-
tems at DSTC 11 Track 4. ArXiv:2306.12794 [cs].

Ananya B. Sai, Tanay Dixit, Dev Yashpal Sheth, Sreyas
Mohan, and Mitesh M. Khapra. 2021. Perturbation
checklists for evaluating nlg evaluation metrics.

Ananya B. Sai, Mithun Das Gupta, Mitesh M. Khapra,
and Mukundhan Srinivasan. 2019. Re-Evaluating
ADEM: A Deeper Look at Scoring Dialogue Re-
sponses. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 6220-6227, Honolulu,
HI, USA. Number: 01.

Resve A. Saleh and A. K. Md Ehsanes Saleh. 2022.
Statistical Properties of the log-cosh Loss Function
Used in Machine Learning. ArXiv:2208.04564 [cs,
stat].

Abigail See, Stephen Roller, Douwe Kiela, and Ja-
son Weston. 2019. What makes a good conver-
sation? How controllable attributes affect human
judgments. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 1702—1723, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Koustuv Sinha, Prasanna Parthasarathi, Jasmine Wang,
Ryan Lowe, William L. Hamilton, and Joelle Pineau.
2020. Learning an unreferenced metric for online
dialogue evaluation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational


https://doi.org/10.18653/v1/2020.emnlp-main.28
https://doi.org/10.18653/v1/2020.emnlp-main.28
https://doi.org/10.48550/arXiv.2302.14520
https://doi.org/10.48550/arXiv.2302.14520
https://doi.org/10.48550/arXiv.2302.14520
http://arxiv.org/abs/1710.03957
http://arxiv.org/abs/1710.03957
http://arxiv.org/abs/1603.08023
http://arxiv.org/abs/1603.08023
http://arxiv.org/abs/1603.08023
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://thegradient.pub/introducing-retrospectives/
https://thegradient.pub/introducing-retrospectives/
https://doi.org/10.18653/v1/P17-1103
https://doi.org/10.18653/v1/P17-1103
https://aclanthology.org/2020.sigdial-1.28
https://aclanthology.org/2020.sigdial-1.28
https://aclanthology.org/2020.sigdial-1.28
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.1910.10683
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2306.12794
http://arxiv.org/abs/2306.12794
http://arxiv.org/abs/2306.12794
http://arxiv.org/abs/2109.05771
http://arxiv.org/abs/2109.05771
https://doi.org/10.1609/aaai.v33i01.33016220
https://doi.org/10.1609/aaai.v33i01.33016220
https://doi.org/10.1609/aaai.v33i01.33016220
http://arxiv.org/abs/2208.04564
http://arxiv.org/abs/2208.04564
https://doi.org/10.18653/v1/N19-1170
https://doi.org/10.18653/v1/N19-1170
https://doi.org/10.18653/v1/N19-1170
https://doi.org/10.18653/v1/2020.acl-main.220
https://doi.org/10.18653/v1/2020.acl-main.220

Linguistics, pages 2430-2441, Online. Association
for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and
Tie-Yan Liu. 2020. MPNet: Masked and Per-
muted Pre-training for Language Understanding.
ArXiv:2004.09297 [cs].

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur,
Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. 2023. Llama
2: Open Foundation and Fine-Tuned Chat Models.
ArXiv:2307.09288 [cs].

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
A. Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Es-
haan Pathak, Giannis Karamanolakis, Haizhi Gary
Lai, Ishan Purohit, Ishani Mondal, Jacob Ander-
son, Kirby Kuznia, Krima Doshi, Maitreya Patel,
Kuntal Kumar Pal, M. Moradshahi, Mihir Parmar,
Mirali Purohit, Neeraj Varshney, Phani Rohitha
Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang
Karia, Shailaja Keyur Sampat, Savan Doshi, Sid-
dharth Deepak Mishra, Sujan C. Reddy, Sumanta
Patro, Tanay Dixit, Xu dong Shen, Chitta Baral,
Yejin Choi, Hannaneh Hajishirzi, Noah A. Smith,
and Daniel Khashabi. 2022. Benchmarking gen-
eralization via in-context instructions on 1,600+
language tasks.

Yi-Ting Yeh, Maxine Eskenazi, and Shikib Mebhri.
2021. A comprehensive assessment of dialog eval-
uation metrics. In The First Workshop on Evalua-
tions and Assessments of Neural Conversation Sys-
tems, pages 15-33, Online. Association for Compu-
tational Linguistics.

Jerrold H Zar. 2005. Spearman rank correlation. Ency-
clopedia of Biostatistics, 7.

Chen Zhang, Luis D’Haro, Rafael Banchs, Thomas
Friedrichs, and Haizhou Li. 2020. Deep am-fm:
Toolkit for automatic dialogue evaluation. Con-
versational Dialogue Systems for the Next Decade,

pages 53-69.

122

Chen Zhang, Luis D’Haro, Thomas Friedrichs, and
Haizhou Li. 2022a. Mdd-eval: Self-training on aug-
mented data for multi-domain dialogue evaluation.
Proceedings of the AAAI Conference on Artificial In-
telligence, 36:11657-11666.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing Dialogue Agents: I have a dog, do you
have pets too? ArXiv:1801.07243 [cs].

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022b. Opt: Open
pre-trained transformer language models.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 654-664, Vancou-
ver, Canada. Association for Computational Linguis-
tics.


https://doi.org/10.48550/arXiv.2004.09297
https://doi.org/10.48550/arXiv.2004.09297
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
http://arxiv.org/abs/2204.07705
http://arxiv.org/abs/2204.07705
http://arxiv.org/abs/2204.07705
https://doi.org/10.18653/v1/2021.eancs-1.3
https://doi.org/10.18653/v1/2021.eancs-1.3
https://doi.org/10.1007/978-981-15-8395-7_5
https://doi.org/10.1007/978-981-15-8395-7_5
https://doi.org/10.1609/aaai.v36i10.21420
https://doi.org/10.1609/aaai.v36i10.21420
https://doi.org/10.48550/arXiv.1801.07243
https://doi.org/10.48550/arXiv.1801.07243
https://doi.org/10.48550/arXiv.1801.07243
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061

