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Abstract

Though Dialogue State Tracking (DST) is a
core component of spoken dialogue systems,
recent work on this task mostly deals with
chat corpora, disregarding the discrepancies
between spoken and written language. In this
paper, we propose OLISIA, a cascade system
which integrates an Automatic Speech Recog-
nition (ASR) model and a DST model. We
introduce several adaptations in the ASR and
DST modules to improve integration and ro-
bustness to spoken conversations. With these
adaptations, our system ranked first in DSTC11
Track 3, a benchmark to evaluate spoken DST.
We conduct an in-depth analysis of the results
and find that normalizing the ASR outputs and
adapting the DST inputs through data augmen-
tation, along with increasing the pre-trained
models size all play an important role in re-
ducing the performance discrepancy between
written and spoken conversations.1

1 Introduction

A majority of recent research on task-oriented dia-
logue (TOD) systems has focused on chat corpora
such as MultiWOZ (Budzianowski et al., 2018).
With voice assistants becoming more prominent
in our daily lives, there has been a renewed in-
terest in spoken dialogue systems (Faruqui and
Hakkani-Tür, 2022). However, state-of-the-art sys-
tems trained on chats face robustness issues when
dealing with spoken inputs (Kim et al., 2021).

In a TOD system, the role of DST is to predict
at each turn and based on the dialogue history the
current belief state, i.e. a condensed and updated
representation of the user needs. DST plays a cen-
tral role as the system relies on the belief state to
decide which action to take next. The belief state
is typically frame-based and represented as a list of
<slot, value> pairs.

1Our code is made available at https://github.com/
Orange-OpenSource/olisia-dstc11.

∗ Equal contribution.

Figure 1: DSTC11 Track 3 introduced a spoken version
of MultiWOZ 2.1 (Eric et al., 2019) with user utterances
voiced by crowdworkers.

While both cascade and end-to-end approaches
have been well studied for Spoken Language Un-
derstanding (SLU, Serdyuk et al. (2018)), there
has been little recent work on spoken DST. Con-
sidering the entire dialogue context, as opposed to
only the current turn, requires tricky strategies for
end-to-end systems (Tomashenko et al., 2020). In
order to leverage state-of-the-art models, a cascade
approach with separate ASR and DST components
is thus preferred. However, these two components
do not benefit from joint optimization and often
lack integration.

To address these shortcomings, we propose
OLISIA, a cascade system composed of an ASR
model and a DST model. OLISIA integrates
these two components through adaptations in the
ASR outputs and the DST inputs. With this de-
sign, our system ranked first in the Speech-Aware
Dialog Systems Technology Challenge (DSTC11
Track 3),2 a benchmark to evaluate spoken DST
models. In this paper, we describe our cascade
spoken DST system along with the proposed adap-
tations. Additionally, we conduct an analysis of
these adaptations based on the results from various
evaluation setups.

2https://storage.googleapis.com/gresearch/
dstc11/dstc11_20221102a.html
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Our contributions can be summarized as follows.
In the context of the Speech-Aware Dialog Systems
Technology Challenge, we show

• the need for post-processing the ASR output
in a pipeline;

• the relevance of different data augmentation
techniques for DST;

• the importance of scaling up the foundation
model size – both for ASR and DST.

2 Related work

Much of the research in task-oriented dialogue
(TOD) systems initially focused on spoken dia-
logue, for instance leveraging probabilistic model-
ing to account for the uncertainty associated with
noisy utterances (Roy et al., 2000; Williams and
Young, 2007; Thomson and Young, 2010). The first
editions of the Dialogue State Tracking Challenge3

(DSTC1 & DSTC2, Williams et al. (2013); Hender-
son et al. (2014)) introduced the first standardized
benchmark for DST, releasing annotated spoken
dialogue corpora.

However, the focus of research in TOD gradually
shifted to chats, assuming that the upstream ASR
model would be able to provide accurate transcrip-
tions. Recently, there has been a renewed interest
in spoken dialogue to address the lack of attention
on the differences between spoken and textual in-
puts (Faruqui and Hakkani-Tür, 2022). DSTC10
Track 2 proposed a DST task on spoken conversa-
tions which stimulated work on this aspect, though
only the n-best ASR hypotheses were provided
without audio data.

When audio-only data is available, End-to-End
Spoken Language Understanding (SLU) systems
(Serdyuk et al., 2018) are often preferred because
they benefit from joint optimization. Although cas-
cade approaches suffer from error propagation be-
cause the textual Natural Language Understanding
(NLU) model does not consider the uncertainty of
the ASR transcriptions, they remain competitive.
In fact several adaptation techniques can boost the
cascade’s performance.

Performing hypothesis rescoring with a language
model specifically trained on the targeted domain
proves to be effective when data is available in
high quality and large quantity (Chung et al., 2012).

3Rebranded as the Dialog Systems Technology Challenge
since DSTC6.

We rather adopt a post-processing approach such as
spelling correction which can also help aligning the
transcriptions with the targeted domain (Hrinchuk
et al., 2020), especially when focusing on domain-
specific words.

With the recent advances in Text-to-Speech
(TTS) technologies, adapting ASR models by fine-
tuning them on synthetic speech of the target do-
main (Li et al., 2018; Rosenberg et al., 2019; Zheng
et al., 2021) is now common. However, with only
synthetic speech in the training set, such a fine-
tuning might degrade the performances on human
speech (Laptev et al., 2020). Simulating ASR
hidden representations from text in order to train
an end-to-end SLU model reaches higher Named-
Entity Recognition (NER) performances than train-
ing it on the synthesised speech (Mdhaffar et al.,
2022). Therefore, relying on the text NLU model to
tolerate and correct some errors of the ASR model
seems more adapted in our setting.

Recent approaches have focused on data aug-
mentation techniques to simulate spoken data
(Wang et al., 2020; Liu et al., 2021; Tian et al.,
2021) in order to make the language understanding
components of TOD systems more robust to spoken
inputs. Other approaches have sought to leverage
the multiple hypotheses provided by the upstream
ASR model in the hope that these different hypothe-
ses complement each other to help language under-
standing (Rojas-Barahona et al., 2016; Li et al.,
2020; Ganesan et al., 2021). Similarly, others used
a more compact representation of these hypotheses,
such as word confusion networks (Henderson et al.,
2012; Pal et al., 2020).

3 Speech-Aware Dialog Systems
Technology Challenge

The lack of recent work on spoken dialogue can be
attributed in part to the lack of available datasets.
Track 3 of the Dialog Systems Technology Chal-
lenge 114 seeks to promote work on spoken di-
alogue by releasing a spoken version of Multi-
WOZ. This Multi-domain (restaurant, hotel, attrac-
tion, taxi, train, hospital and police) Wizard-of-Oz
dataset is a large-scale human-human task-oriented
conversational corpus commonly used for training
and evaluating dialogue state tracking (DST), pol-
icy optimization and end-to-end dialogue modeling
systems. The goal of this track is to characterize
the performance of DST models in the presence

4https://dstc11.dstc.community/
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Figure 2: Illustration of OLISIA, our cascade system with adaptations of ASR and DST models to handle their
respective errors.

of ASR errors and speech phenomena such as dis-
fluencies. The organizers released a new version
of MultiWOZ 2.1 (Eric et al., 2019) with user ut-
terances voiced by crowdworkers, as illustrated in
Figure 1.

Despite being widely used by the research com-
munity, MultiWOZ has been shown to exhibit
an entity bias and a large overlap in the distribu-
tion of slot-values between the training and the
evaluation sets which can lead to memorization
in generative models (Qian et al., 2021). To en-
courage generalization, the organizers introduced
modifications in the dev and test sets: the val-
ues for the slots hotel-name, restaurant-name,
train-departure and train-destination were
replaced with unseen entities, and time mentions
were offset by a constant amount.

User utterances in the dev and test sets are vo-
calized by crowdworkers. A speech synthesized
version of the training data is also provided in the
aim of assessing the validity of such data to miti-
gate the lack of real spoken conversations.

Two verbatim versions of the dev set are pro-
vided to the participants, i.e. user utterances are
vocalized as is by a TTS system (TTS-v) and hu-
man crowdworkers (Human-v). The test set in-
cludes the same setup along with a third version
containing paraphrased user utterances vocalized
by humans to sound more natural (Human-p).5

System submissions are evaluated using Joint
Goal Accuracy (JGA) and Slot Error Rate (SER),
defined as follows:

JGA =
C

Nt
=

No. of correct state pred.

No. of turns

SER =
S +D + I

Ns
=

No. of slot errors

No. of slots in ref.

5No further details were provided regarding the value re-
placement and paraphrasing processes.

where S, D and I respectively denote substitu-
tions, deletions and insertions of <slot, value> pairs.
Regarding the challenge constraints, any type of
model can be used but only MultiWOZ is allowed
as training data for the dialogue component.

4 Method

In this section, we present our cascade approach
with an ASR component which converts the user
spoken inputs into text and a DST component
which predicts the current dialogue state from the
transcript of the previous turns. The overall archi-
tecture of the system is shown in Figure 2

On the ASR side, given that the turns are per-
fectly segmented, we can easily transcribe the
user’s turns with Open AI Whisper (Radford et al.,
2022) transformer model with a forced English de-
coding. On the DST side, we use a generative DST
model based on a pre-trained T5 model (Raffel
et al., 2020), which proved to be more robust to
spoken inputs than an extractive model in prelimi-
nary experiments.

The input to the DST model consists of the entire
dialogue history at a given turn, with agent and user
utterances separated by delimiter tokens. At each
turn, the model outputs the current dialogue state
from scratch in the form of <slot-name, slot-value>
pairs. Formally, let Ui and Ai respectively be user
and agent utterances at turn i. The input at turn T
is linearized by concatenating the utterances (U0,
A1, ..., AT−1, UT ) and prepending the delimiters
"user:" and "agent:". The output dialogue state
is linearized as a semicolon-separated list of strings
"slot-name=slot-value".

Our contribution lies in the adaption of the tran-
scriptions outputted from the ASR for DST and the
adaptation of the DST component to handle speech
specificities, which are discussed in the next two
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Figure 3: Overall test set results (JGA↑ / SER↓) of the challenge for all submissions. Our primary and secondary
submissions respectively correspond to F-p and F-s.

sections.

4.1 ASR normalization

The first adaptation we apply to Whisper’s tran-
scriptions is time normalization. Given the data
sources on which Whisper was trained, the out-
putted time formats vary a lot. We use several
regular expressions to identify the most salient pat-
terns (e.g. "5 o’ 8 am", "2 to 3 pm", "midnight",
"quarter past 10 am") and map them to the stan-
dard "[hour]:[minutes] [am|pm]" format found in
Multi-Woz.

The second adaptation we apply is proper
noun correction which impacts the values
of the slots hotel-name, restaurant-name,
taxi-destination, train-destination,
taxi-departure and train-departure. Many
proper nouns are either misspelled by the user (e.g.
the American city Itta Bena is pronounced "I-T-T-A
bena") or incorrectly recognized by Whisper (e.g.
Itta Bena transcribed as "Itta Benna"). In both
cases, we use a Named Entity Recognition (NER)
model6 from Nvidia NeMo (Kuchaiev et al., 2019)
to identify lists of proper nouns from both agent
and user turns. We then score each pair of user
and agent identified named entities with Character
Error Rate (CER) and tune a threshold in order to
replace the user turns’ misspelled proper nouns

6https://docs.nvidia.com/deeplearning/
nemo/user-guide/docs/en/v1.0.0/nlp/token_
classification.html

with their matching ones from the agent turns.
More formally, given a list of user proper nouns

lu, a list of agent proper nouns la and a threshold δ,
we have:

∀u ∈ lu, a ∈ la u =

{
u if CER(u, a) > δ

a otherwise

Where u and a refer respectively to user and agent
proper nouns.

4.2 DST data augmentation
To improve robustness and reduce the discrepancy
between training and testing data, our DST model
is fine-tuned on an augmented version of the pro-
vided train set. We apply value replacement, para-
phrasing and speech simulation, in this order.

In a similar way to how the dev and test sets were
modified by the track organizers, our value replace-
ment concerns named entities (town, restaurant and
hotel names) and time slots. To replace entity val-
ues, we create a new ontology based on data from
OpenStreetMap7. We then sample entities with a
uniform distribution over our ontology. Values with
time mentions are replaced with a random time.

The value replacement process goes as follows:

1. Successively go through each dialogue state
in a dialogue, sample one value from our on-
tology for each distinct value and replace it in
the dialogue state;

7https://wiki.openstreetmap.org/wiki/Overpass_
API
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Dev Test

TTS-v Human-v TTS-v Human-v Human-p
JGA↑ SER↓ JGA↑ SER↓ JGA↑ SER↓ JGA↑ SER↓ JGA↑ SER↓

Baseline 26.3 27.5 22.6 31.6 n.a.
OLISIA1 47.2 15.7 43.2 17.9 44.0 17.1 39.5 20.0 37.9 20.4
OLISIA2 44.1 17.3 40.3 19.5 40.4 19.2 36.0 21.9 34.3 22.4

JGA↑ SER↓ JGA↑ SER↓
OLISIA1 (oracle) 57.2 12.5 53.2 13.9
OLISIA2 (oracle) 55.0 13.6 51.1 15.0

Table 1: Performance (JGA↑ / SER↓) of our submission compared with the challenge’s baseline and our system
with text oracle on both dev and test sets. The baseline results on the test set were not shared.

2. Track these replacements with a mapping be-
tween replaced value and new value;

3. Based on the obtained mapping, perform a
string replacement in the dialogue context.

This process ensures dialogue consistency: if a
value for a slot is updated during the dialogue, a
new value is sampled thanks to the first step, if a
value is shared between multiple slots, the same
replacement value is used thanks to the second
step, and finally, the string replacement in the third
step is performed by decreasing lengths in order to
avoid replacing sub-strings (e.g. city names can be
present in restaurant or hotel names).

Based on this new train set with replaced values,
we paraphrase the user utterances using SG-GPT
(Peng et al., 2020) which allows us to condition the
generation of the paraphrase on the previous turn
along with the desired dialogue state for the current
turn, preventing annotation inconsistencies due to
hallucinations or omissions.

Lastly, we obtain the ASR transcripts for the
speech simulation by synthesizing the augmented
user turns with a Tacotron2-based (Shen et al.,
2018) TTS system using SpeechBrain8 and tran-
scribing them with Whisper.

5 Results

We propose an overview of the challenge’s results
in section 5.1 and further analysis of the impact of
each adaptation on our system’s performance in the
following sections.

5.1 Overview
The challenge’s leaderboard is shown in Figure 3.
All submissions have a gap between their TTS per-

8https://speechbrain.github.io/

formance and human performance (14.32% aver-
age relative JGA decrease and 19.19% average
relative SER increase). The gap between the
human-verbatim and human-paraphrased is less
pronounced (3.36% average relative JGA decrease
and 0.08% average relative SER decrease).

Our primary submission (F-p in Figure 3) con-
sists in an ensemble of 5 instances of our system de-
scribed in section 4 with transcriptions provided by
Whisper-Large9 and a T5-Large model10 fine-tuned
on the variations of the training data presented in
Table 2. Replace-S refers to one version of the train
set with value replacement. With Replace-L, a dif-
ferent version of the train set is used at each epoch
until convergence,11 with newly sampled entities
for value replacement along with the TTS-ASR and
optional paraphrasing pipeline.

We used majority vote on each predicted slot
value as ensembling strategy. Our secondary sub-
mission (F-s in Figure 3) consists in the best in-
stance of the models in the ensemble (fine-tuning
on T2). For all models, we use a learning rate of
5e−4 and a batch size of 16. We compare their
performance on the dev and test set with the chal-
lenge baseline and our system with text oracle12 in
Table 1. Note that we exclude the ASR-TTS data
augmentation for the system evaluated on the text
oracle (+5 JGA increase).

While there is still room for improvement (10
JGA points between our system with and without
text oracle), both our submissions achieved over
40 JGA on the TTS-verbatim test set. Our per-

9https://github.com/openai/whisper
10https://huggingface.co/t5-large
11Four epochs for T5-Large.
12Text oracle considers the ground truth user turns’ tran-

scriptions. We provide these results in order to give an upper
bound of our system’s performances.
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formance decrease (4 JGA points) from the TTS-
verbatim to the Human-verbatim version is steady
across the dev and test sets. We observe a smaller
decrease (2 JGA points) from the Human-verbatim
to the Human-paraphrased version. Finally, the
difference between the dev and test sets (4 JGA
points) can be explained by overfitting, a difficulty
difference, or both.

Replace-S Replace-L TTS-ASR Paraphrase

T1 ✓
T2 ✓ ✓
T3 ✓ ✓
T4 ✓ ✓ ✓
T5 ✓∗ ✓∗

Table 2: Composition of the training sets used to fine-
tune the models in the ensemble for our primary submis-
sion (OLISIA1); * denotes the augmented data provided
by the track organizers.

5.2 ASR cascade adaptations
Given that only a few words in the users’ utter-
ances are really important to the dialogue state,
Word Error Rate (WER) is not a good measure
for the quality of the transcriptions (Wang et al.,
2003). Therefore we compute both JGA and WER
at each correction step with the same T5-Large
trained on the training set with value replacements.
We present the results in Table 3.

TTS-v Human-v Human-p

Whisper raw outputs 37.9 / 4.92 33.8 / 8.4 32.0 / _
+ Time normalization 40.0 / 4.49 35.6 / 7.89 33.5 / _
+ Noun correction 40.3 / 4.36 36.1 / 7.71 34.3 / _

Table 3: Impact of the ASR post-processing steps on
the test set performances (JGA↑ / WER↓).

Unsurprisingly, the TTS-verbatim version of the
test set is much cleaner than the Human-verbatim
version because of the higher diversity of the crowd-
workers pronunciations compared to the synthetic
voices. Hence we observe over 70% relative WER
increase on every correction’s step outputs. This
noisier version only impacts the JGA by around
10% relative JGA decrease, confirming that only a
few words matter to DST.13

Time normalization improves equally all three
versions of the test set (around 5% relative JGA

13Note that WER values are missing for the Human-
paraphrased test set as no ground truth transcripts were pro-
vided for this version.

increase).
Proper noun correction does not help much the

clean TTS-verbatim (0.75% relative JGA increase),
however, it seems to be much more valuable for the
noisier Human-verbatim and Human-paraphrased
versions (respectively 1.4% and 2.4% relative JGA
increase) again illustrating differences between syn-
thetic and natural speech.

5.3 Data augmentation strategies

In order to better understand how each data aug-
mentation technique we used contributes to the
overall performance, we conduct an ablation study
on different versions of the training data. We incre-
mentally add one augmentation technique at a time
to the default train set and fine-tune a T5-Large
model on each version. The results are shown in
Table 4.

TTS-v Human-v Human-p

Default train set 32.2 28.3 26.8
+ Value replacement 40.2 35.5 33.2
+ Speech simulation 40.3 36.0 34.3
+ Paraphrasing 37.3 33.9 31.5

Table 4: Contribution of the different data augmentation
techniques for DST in terms of JGA on the test set.

We observe that introducing new values
for the slots hotel-name, restaurant-name,
train-departure and train-destination
greatly alleviates the issue of memorization with
MulitWOZ and enables the model to generalize
more, with a 7% to 8% absolute increase in JGA.
The speech simulation provides an additional
slight improvement which is particularly marked
on the Human-paraphrased test set (+1%). This
shows that using speech synthesized training data
in the absence of real spoken data can help address
spoken dialogues at inference. On the other hand,
paraphrasing the user utterances leads to an overall
worse performance. One possible explanation
for this result is the noisy nature of the process,
using a generation model can lead to potential
inconsistencies both in the flow of the dialogue
and in the annotation.

5.4 Model size

When dealing with noisy data and robustness issues
we often observe that models with more parameters
perform better. However, there is a trade-off be-
tween the computation resources needed for large
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Figure 4: Impact of ASR model size (no. of parameters in parenthesis) in terms of JGA↑ in comparison with WER↓
on both dev and test sets.

models and the performance gains. In this section
we attempt to explore this trade-off by exposing the
performance gained by each model size increase.
For the ASR part, we consider Whisper-Small
(244M), Whisper-Medium (769M) and Whisper-
Large (1550M). For the DST part, we consider T5-
Small (60M), T5-Base (220M), T5-Large (738M)
and T5-XL (3B), fine-tuning each model on our
best training set (T2). We present the impact of the
size of the ASR and DST models respectively in
Figure 4 and 5.

Figure 5: Impact of DST model size (no. of parameters
in parenthesis) in terms of JGA on the dev and test sets.

Interestingly JGA does not increase much when
moving from T5-Small to T5-Base whereas it in-
creases by almost 6 points when using T5-Large
instead of T5-Base. The performance then drops
back 6 points when using T5-XL, although this
larger model seems to be more robust to the para-
phrased test set. This suggests that XL models tend
to overfit, while Large models provide a good com-
promise between the number of parameters and
generalization. For Whisper this trend is different:
using Whisper-Medium instead of Whisper-Small

increases JGA of at least 2 points on the Human-
verbatim dev set while using Whisper-Large in-
stead of Whisper-Medium only increases JGA of 1
point or less. It is noteworthy that the lower param-
eter ratio between the Large and Medium models
might explain this lower JGA increase.

While our whisper models were not fine-tuned
on any data, we can already observe that the de-
crease of WER obtained by using Whisper-Large
instead of Whisper-Medium on the TTS-verbatim
version is not found on the Human-verbatim ver-
sion.

5.5 Ensemble

We compare two different ensembling strategies
with a single model fine-tuned on T2 in Table 5 (all
models are based on T5-Large). Both ensembling
strategies consisted of a majority vote for each slot-
value. In one case, we used five models fine-tuned
on the same train set with different random seeds
and in the other, we fine-tuned five models on five
different variations of the train set (c.f. Table 2).

TTS-v Human-v

1 model (no ensemble) 44.1 40.2
5 models - same train set 44.4 40.4
5 models - different train sets 47.8 43.5
9 models - different train sets 48.5 43.9

Table 5: Comparison of different ensembling strategies
on the dev set in terms of JGA.

We find that the value of the ensemble from the
same train set is limited, only providing a slight
increase in JGA compared to the single model. The
advantage of ensembling appears with five models
fine-tuned on different train sets, providing a 3%
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absolute increase in JGA. This suggests that the en-
semble benefits from having contrasting views of
the same instance at evaluation, and by extension
that T5 models fail to learn invariant representa-
tions of proper nouns (or that our method does not
enable that). It is also noteworthy that performance
does not increase that much beyond 5 models, with
marginally better results at 9 models,14 likely show-
ing a performance ceiling.

6 Limitations

Overall, the dataset released in this challenge is a
good step towards bridging the gap between written
and spoken dialogue systems. However, as the
user utterances were read aloud by humans, this
spoken data lacks in spontaneity associated with
actual speech. It would be interesting to see if our
findings hold on spontaneous spoken dialogue.

One limitation of our system lies in the use
of Transformer-based models for both ASR and
DST. While these models provide attractive per-
formances they come with their own limitation
of quadratic memory and limited input size. Dia-
logues in MultiWOZ are relatively short and this
was not a concern in this work, but this could be-
come problematic when dealing with longer, more
realistic conversations. One alternative would be
to reduce the input context to the most recent turns
and include the linearized previous dialogue state
in the DST input.

Another concern is the use of large pre-trained
models to achieve competitive results. As pointed
out before (Strubell et al., 2019), training these
large models on abundant data requires a substan-
tial electrical consumption. In light of the human
impact on the environment, we should promote ef-
ficiency as the main performance factor rather than
metric scores.

7 Conclusion and future work

This work introduced OLISIA, a cascade system
for spoken DST that integrates an ASR and a DST
model through several adaptations. We used ASR
normalization and DST data augmentation to ad-
just each component to its counterpart. We have
shown the importance of these adaptations in im-
proving robustness to spoken inputs and our system
achieved first place in the Speech-Aware Dialog
Systems Technology Challenge.

14Post-evaluation experiments

While having user turns as speech and agent
turns as text is a natural setup for a spoken dia-
logue system, this mix of modalities makes it more
challenging to develop end-to-end systems. Recent
progress on speech and text multimodal models
could prove to be useful in addressing this problem
(Ao et al., 2022). Another possibility would be to
exploit agent turns using an audio only model, ei-
ther as synthesized speech or as intermediary ASR
representations (Mdhaffar et al., 2022).

This work focused on a cascade approach but
a thorough comparison of end-to-end and cascade
approaches could also be helpful in further research
on spoken dialogue systems.
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