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Preface

Welcome to the 3rd Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2023).

DISRPT is a shared task on discourse processing across formalisms, for a variety of languages and gen-
res, with three subtasks this year: Task 1: discourse segmentation, Task 2: connective detection, and
Task 3: relation classification.

We provided training, development, and test datasets from all available languages in RST, SDRT, PDTB
and DEP (discourse dependencies), using a uniform format. Because different corpora, languages, and
frameworks use different guidelines, the shared task aims at promoting the design of flexible methods
for dealing with various guidelines, to propose a joint evaluation of discourse parsing approaches and to
push forward the discussion on converging standards for discourse units and relations.

DISRPT 2023 is part of the CODI 2023 workshop, a venue that brings together researchers working on
all aspects of discourse in Computational Linguistics and NLP. We hope that the next CODI workshops
will also feature shared tasks on discourse analysis, as the domain needs more research promoting tho-
rough and diversified evaluation as well as more consistent standards and expansions to languages and
text types not yet covered in the field.

We thank the CODI organizers, and the reviewers who helped improve the papers and reproduce the
participating systems. Finally we would like to thank the ACL 2023 workshop chairs Eduardo Blanco,
Yang Feng, and Annie Louis who organized the ACL workshops program.

The DISRPT 2023 Organizers,

Chloé Braud, Yang Janet Liu, Eleni Metheniti, Philippe Muller, Laura Rivière, Attapol Te Rutherford
and Amir Zeldes
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Abstract

In 2023, the third iteration of the DISRPT
Shared Task (Discourse Relation Parsing and
Treebanking) was held, dedicated to the un-
derlying units used in discourse parsing across
formalisms. Following the success of the 2019
and 2021 tasks on Elementary Discourse Unit
Segmentation, Connective Detection, and Re-
lation Classification, this iteration has added
10 new corpora, including 2 new languages
(Thai and Italian) and 3 discourse treebanks
annotated in the discourse dependency repre-
sentation in addition to the previously included
frameworks: RST, SDRT, and PDTB. In this
paper, we review the data included in DISRPT
2023, which covers 26 datasets across 13 lan-
guages, survey and compare submitted systems,
and report on system performance on each task
for both treebanked and plain-tokenized ver-
sions of the data.

1 Introduction

Discourse parsing aims to uncover the underlying
structure of monologues or dialogues, where spans
of texts are linked together by semantic-pragmatic
discourse relations such as EXPLANATION, CON-
TRAST, TEMPORAL-ASYNCHRONOUS, or GOAL.
Examples of such structures in different represen-
tations are given in Figures 1 and 2. Several the-
oretical frameworks have been proposed for dis-
course analysis and have subsequently been used
in many annotation projects. Common ones in-
clude the Rhetorical Structure Theory (RST, Mann
and Thompson 1988), where discourse structures
are hierarchical constituent trees (Figure 1), and re-
lation definitions are based on authors’ or speakers’
intents; the Segmented Discourse Representation
Theory (SDRT, Asher and Lascarides 2003), where
structures are graphs with non-terminal nodes, and

∗Discourse Relation Parsing and Treebanking (DISRPT
2023) was held in conjunction with CODI at ACL 2023 in
Toronto, Canada and Online (https://sites.google.com/
view/disrpt2023/).

Figure 1: An RST Tree Example (Iruskieta et al., 2015).

Figure 2: A Dependency Example (Yang and Li, 2018).

relations are defined using formal logics; and the
Penn Discourse Treebank (PDTB, Prasad et al.
2005) with relations between isolated pairs of ar-
gument spans, possibly marked by a connective
(e.g. but, because) which is then annotated a sense
label. In addition, building upon several studies
proposing to encode discourse structures as depen-
dencies (Hirao et al., 2013; Muller et al., 2012),
it has been proposed to annotate discourse graphs
using pure dependency structures, with no non-
terminal nodes (Figure 2), while keeping relations
and segmentation rules from RST—which is abbre-
viated here as the DEP framework (Yang and Li,
2018).

Within each framework, numerous corpora of a
variety of languages and domains have been anno-
tated. However, the differences between the anno-
tation projects hinder the evaluation of the progress
made and to develop systems that should ideally
perform well on the broadest possible range of data.
Zeldes et al. (2019) proposed the first iteration of
the shared task of Discourse Relation Parsing and
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Treebanking (DISRPT)1 in order to broaden the
scope of discourse studies by including datasets
and inviting researchers from different discourse
theories, to facilitate cross-framework studies.

The first edition of the DISRPT shared task
was limited to Task 1: discourse segmentation—
identifying the elementary discourse units (EDUs)
that may be linked by discourse relations; and Task
2: discourse connective detection—identifying
specific lexical items, called connectives, that can
signal a discourse relation (e.g. while, because,
since, as long as etc.). In 2021, for the second edi-
tion, Zeldes et al. (2021) added a third task, Task
3: discourse relation classification—identifying a
relation label between a pair of attached discourse
units.2 This year, for the third edition, we main-
tained the three tasks but expanded the benchmark
with 10 new corpora, including datasets from the
DEP framework: in total, 26 corpora were made
available across 4 frameworks and 13 languages in
a unified format. In the last phase of the shared task,
we released 6 surprise datasets including data for
a new language (Thai), as well as 4 out-of-domain
(OOD) corpora for which only dev and test parti-
tions were available.

Three teams participated in the shared task, with
one team including half of the organizers of the
shared task. Overall, two systems were proposed
for Tasks 1 and 2, and three systems for Task 3.
Two systems are based on fine-tuning Transformer
masked language model encoders, while the third
one relies on a generative transformer model for
relation classification. Only one team presented
results for all tasks and tracks (MELODI), and an-
other team (HITS) reported results for all tasks but
were limited to the Treebanked track (i.e. parsed
and gold sentence-split data) for Tasks 1 and 2. The
third team (DiscoFLAN) focused on relation classi-
fication only. For the Treebanked track, MELODI
ranked first on the EDU segmentation task, and
HITS ranked first on the connective detection task
with very similar mean scores. For relation classifi-
cation, HITS ranked first.

2 Related Work

Automatic discourse analysis is an active domain
of research, with increasing interests for the past
few years as tools become increasingly capable

1https://sites.google.com/view/disrpt2019
2https://sites.google.com/georgetown.edu/

disrpt2021

of handling such tasks, and discourse information
can be helpful for many applications, for example
for authorship attribution (Ferracane et al., 2017;
Feng, 2015), fake news or political bias detection
(Karimi and Tang, 2019; Devatine et al., 2022),
sentiment analysis (Bhatia et al., 2015; Huber and
Carenini, 2020), or for generation, with uses in
machine translation (Tu et al., 2013; Joty et al.,
2017; Webber et al., 2013) or summarization (Louis
et al., 2010; Hirao et al., 2013; Yoshida et al., 2014;
Liu et al., 2019; Chen and Yang, 2021; Hewett and
Stede, 2022; Pu et al., 2023).

Discourse parsing is the full task of recovering
a discourse structure of a document, either con-
stituent trees in the RST-based framework, depen-
dency trees for DEP, or graphs for SDRT. Perfor-
mance is still far from perfect for full discourse
parsing, and systems are mostly developed for En-
glish, monologues, and the newswire domain, us-
ing the largest news corpus available, the RST-DT
(Carlson et al., 2001), with an F1 score of 55.4 at
best for full trees (Kobayashi et al., 2022).

Recent studies also sometimes report results on
other datasets, especially on GUM (e.g. Atwell et al.
2022; Yu et al. 2022b), the largest RST English cor-
pus to date, which is composed of multiple spoken
and written genres (Zeldes, 2017). Very recently,
Liu and Zeldes (2023) showed the lack of gener-
alization of existing SOTA RST discourse parsers
through a series of experiments, with a significant
performance drop when applied to unseen genres,
and also demonstrated the importance of heteroge-
neous training data for robust discourse parsing.

A few attempts have also been made to develop
systems for dialogues, especially using the SDRT
STAC corpus (Asher et al., 2016) with either su-
pervised methods (Liu and Chen, 2021; Chi and
Rudnicky, 2022; Yu et al., 2022a) or transfer learn-
ing strategies given the small size of the dataset
(e.g. Fan et al. 2022).

Finally, multilingual RST discourse parsing has
been the topic of a few work (Braud et al., 2017a;
Liu et al., 2020, 2021) involving transfer to tackle
data scarcity. Liu et al. (2021) in particular demon-
strated that cross-lingual strategies could even help
for English, and also that good segmentation is cru-
cial for full discourse parsing, with a loss of up to
8% when using predicted EDUs.

As a matter of fact, an option to better understand
the difficulty and low performance of discourse
parsing is to examine its constituent subtasks, such
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as discourse segmentation, but also relation clas-
sification, and attachment (‘naked’ or unlabeled
tree building). Many studies have been dedicated
to these subtasks, with a specific focus on the first
two. The aim of the DISRPT shared task is pre-
cisely to provide benchmarks for these critical steps
toward full discourse parsing, to the extent possible
in a formalism-neutral way, allowing participants
to demonstrate the generalizability of their systems
across languages, domains, and frameworks.

Discourse segmentation in particular has been
seen as a solved task with performance as high
as 94% on RST-DT as early as over 10 years ago
(Xuan Bach et al., 2012). However, systems at
the time were trained only on English newswires
data with gold information about sentence bound-
aries and morpho-syntactic features. When facing
realistic data in other languages and even in En-
glish, with systems based on predicted information,
performance drops very substantially (Braud et al.,
2017b). Disparities across languages and datasets
were later emphasized within the DISRPT shared
tasks (Zeldes et al., 2019, 2021) under realistic set-
tings (with predicted sentence splits), with perfor-
mance above 95% for some corpora, but scores in
the 80s for the Spanish SCTB (82.5% at best), the
Chinese SCTB (83.3), or the Russian RRT (86.2%).
The best-performing system in 2019 (Muller et al.,
2019) used a single multilingual BERT (Devlin
et al., 2019) based model for every corpus, while
in the second edition of DISRPT (Zeldes et al.,
2021), the winning system (Gessler et al., 2021)
achieved the best performance with an accuracy of
around 91.5% on average, which relied on varied
language models, either mono- or multilingual, as
well as hand-crafted features. A loss of about 2%
was observed when gold sentence boundaries are
not given.

For Task 3, discourse relation classification is
often further decomposed into different types of re-
lations: explicit relations—ones that are triggered
by a discourse connective (e.g. while, because),
and implicit relations —ones that do not contain a
discourse marker. The latter is considered a harder
task, since no explicit cues are present, and has
thus been studied more extensively (e.g. Kim et al.
2020; Liang et al. 2020; Long and Webber 2022).

For explicit relations, the task generally reduces
to identifying the connectives, that is deciding
whether a token such as ‘and’ is being used as
a discourse marker, and then identifying the rela-

tion, with the connective constraining the possible
labels (e.g. ‘and’ can signal EXPANSION or RE-
SULT, but not PURPOSE). Connective detection
and explicit discourse relation classification have
been considered easy tasks, with high performance
(Pitler et al., 2008), but it was later shown that per-
formance drops drastically on non-news domains,
or in languages with small datasets (Xue et al.,
2016; Scholman et al., 2021; Johannsen and Sø-
gaard, 2013).

For the first two editions of DISRPT, rather high
performance was reported for connective detection:
between an F1 score of 92-94 for the English and
Turkish corpora, and an F1 score of 87 for the
Chinese one, with only a small drop when gold
sentence splits are not provided. However, this may
be due to the relatively large and homogeneous
datasets used in the evaluation. This year’s new
edition introduces 6 new corpora for Task 2, as
well as OOD datasets for which no training data is
available: this has made the task more challenging,
with the mean scores now under 80% (see Section
5 below for details). We also report scores for
implicit vs explicit relation classification for some
corpora, which were not available in DISRPT 2021,
and demonstrate low scores for implicit relations
as well when data is scarce.

The DISRPT Shared Task is among the very few
studies to report scores for both implicit and ex-
plicit (also including other types such as AltLex
markers, see Prasad et al. 2014) relation classifica-
tion, thus making it more practical for models to
be able to recognize any types of relations. Task
3 was introduced in 2021, and the winning system
was Transformers-based language-specific models
for each target language and a set of hand-crafted
features: overall the average performance was nev-
ertheless still rather low (61.8%), showing room
for substantial improvement.

3 Tasks and Tracks

Three tasks were proposed for DISRPT 2023:

[1] Discourse Unit Segmentation—the task con-
sists of identifying each token as the start of an
EDU or not (BO scheme at the token level).

[2] Discourse Connective Detection—the task
consists of identifying each token as starting,
being inside, or outside a discourse connective
(i.e. BIO scheme at the token level).

[3] Discourse Relation Classification—the task
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consists of assigning a label to a pair of textual
segments, given that a relation holds between
the two units (i.e. multi-class classification).

While all corpora have data annotated for Task 3,
note that they are not all relevant for Tasks 1 and 2:

• For corpora within the PDTB framework: the
connectives are annotated, but no discourse seg-
ments are identified (i.e. Task 2 but not Task 1).

• Corpora within RST, SDRT, and DEP: the EDUs
are identified, but not connectives (Task 1 but not
Task 2).

The shared task also proposes two tracks for
Tasks 1 and 2:

• Treebanked: data is tokenized, split into sen-
tences, and parsed (morpho-syntactic informa-
tion is given). When gold information was avail-
able in the original corpus, it is provided as is.
Otherwise, we provided predicted annotations
done with Stanza (Qi et al., 2020).

• Plain: data is tokenized and split into documents.

4 Shared Task Data

4.1 DISRPT Format
The goal of the Shared Task is to provide a uni-
fied format across corpora annotated in different
frameworks.

Data Format Three types of formats are pro-
vided for each partition (train / dev / test) of each
corpus. The .conllu and .tok files are the data
for Tasks 1 and 2, and they correspond to the
Treebanked and Plain tracks respectively. Meta-
information is provided for documents in both for-
mats. The .conllu files also have sentence anno-
tation,3 part-of-speech (POS), and syntactic parse
information, obtained either from Stanza or from
gold standard treebanking. Some corpora have
multi-word annotations: that is, both the contracted
forms (indicated with specific IDs such as ‘2-3
can’t’) and the sub-forms (‘2 can’ and ‘3 not’)
appear in the files. Segmentation is indicated with
a single label at the beginning of an EDU, at the
position of the first token. The connective labels
correspond to 2 labels: one indicating the begin-
ning (‘B’) of a connective, and the other for tokens

3For the ita.pdtb.luna, containing dialogue transcription,
we rather use an ‘utterance’ unit that corresponds to a sequence
of speech between two silences.

inside (‘I’) a connective. Note that discontinuous
connectives (e.g. ‘either ... or’) are annotated as
separate single connectives.4

The .rels files are for Task 3: each line corre-
sponds to a pair of attached discourse units, with
the annotation of the original relation from the
corpus, and the label used for the shared task:
in particular, PDTB-style relations are truncated
at level 2 (e.g. CONTINGENCY.CAUSE.RESULT >
CONTINGENCY.CAUSE, and RST-DT relations are
grouped into 17 classes as done in Carlson and
Marcu (2001). In addition, for the 2023 edition,
some mappings were performed in order to make
the data more homogeneous: only minimal modifi-
cations were done including correcting misspelling
and non-significant merging such as E-ELAB > E-
ELABORATION, SOLUTION-HOOD > SOLUTION-
HOOD, and TOPICOMMENT > TOPIC-COMMENT.
The full mapping is given in Table 7 in Appendix
A. The files also contain sentence contexts for each
span, indicate discontinuities in the spans, and pro-
vide the direction of the relation (unit 1 to unit 2:
1>2; or the reverse 1<2).

Changes since DISRPT 2021 The major change
is the newly added 10 corpora, including datasets
without training data with the aim of better testing
models’ generalizability. In addition to the minimal
relations mappings described above, we also add
the annotation of multi-word expressions in more
corpora, for consistency.

4.2 Summary of the Datasets

In total, this year’s DISRPT shared task included
26 corpora annotated across 4 frameworks and 13
languages. We provide general statistics of each
dataset in Table 8 in Appendix B. For more in-
formation, please consult the relevant publications
provided in the last column of the table.

The corpora vary not only in terms of languages
and sizes, but also their genres and domains, includ-
ing news, wiki, scientific documents, conversations,
and so on. Corpora vary tremendously in extent:
as shown in the upper part of Table 8 (RST, SDRT
and DEP frameworks), the largest corpora contain
more than 300 documents and 200k tokens, while

4We found that the annotation was faulty in the Thai
corpus, where discontinuous connectives were annotated as
one single chain of ‘B/I’ labels, thus allowing ‘I’ labels to
appear with no immediately preceding ‘B’. This annotation
will be corrected in the GitHub repository (https://github.
com/disrpt/sharedtask2023/) for future use, and we will
indicate the possible impact on the scores.
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Corpus Train Dev Test
#Docs #EDUs #Conn #Labels #Rels #Docs #EDUs #Conn #Labels #Rels #Docs #EDUs #Conn #Labels #Rels

Tasks 1 and 3: Segmentation and Relations

deu.rst.pcc 142 2449 - 26 2164 17 275 - 24 241 17 294 - 24 260
∗eng.dep.covdtb - - - - - 150 2754 - 12 2399 150 2951 - 12 2586
eng.dep.scidtb 492 6740 - 24 6060 154 2130 - 24 1933 152 2116 - 24 1911
eng.rst.gum 165 20722 - 14 19496 24 2790 - 14 2617 24 2740 - 14 2575
eng.rst.rstdt 309 17646 - 17 16002 38 1797 - 17 1621 38 2346 - 17 2155
eng.sdrt.stac 33 9887 - 16 9580 6 1154 - 16 1145 6 1547 - 16 1510
eus.rst.ert 116 2785 - 29 2533 24 677 - 26 614 24 740 - 26 678
fas.rst.prstc 120 4607 - 17 4100 15 576 - 15 499 15 670 - 16 592
fra.sdrt.annodis 64 2255 - 18 2185 11 556 - 18 528 11 618 - 18 625
nld.rst.nldt 56 1662 - 32 1608 12 343 - 27 331 12 338 - 28 325
por.rst.cstn 114 4601 - 32 4148 14 630 - 22 573 12 306 - 21 272
rus.rst.rrt 272 34682 - 22 28868 30 3352 - 19 2855 30 3508 - 20 2843
spa.rst.rststb 203 2472 - 28 2240 32 419 - 23 383 32 460 - 25 426
spa.rst.sctb 32 473 - 24 439 9 103 - 17 94 9 168 - 19 159
zho.dep.scidtb 69 871 - 23 802 20 301 - 18 281 20 235 - 17 215
zho.rst.gcdt 40 7470 - 31 6454 5 1144 - 30 1006 5 1092 - 30 953
zho.rst.sctb 32 473 - 26 439 9 103 - 19 94 9 168 - 20 159

Tasks 2 and 3: Connective and Relations

eng.pdtb.pdtb 1992 - 23850 23 43920 79 - 953 20 1674 91 - 1245 23 2257
∗eng.pdtb.tedm - - - - - 2 - 110 20 178 4 - 231 18 351
ita.pdtb.luna 42 - 671 15 956 6 - 139 14 210 12 - 261 14 381
por.pdtb.crpc 243 - 3994 22 8797 28 - 621 20 1285 31 - 544 19 1248
∗por.pdtb.tedm - - - - - 2 - 102 20 190 4 - 203 18 364
∗tha.pdtb.tdtb 139 - 8277 20 8278 19 - 1243 18 1243 22 - 1344 18 1344
tur.pdtb.tdb 159 - 7063 23 2451 19 - 831 22 312 19 - 854 22 422
∗tur.pdtb.tedm - - - - - 2 - 135 21 213 4 - 247 22 364
zho.pdtb.cdtb 125 - 1034 9 3657 21 - 314 9 855 18 - 312 9 758

Table 1: Train / Dev / Test Statistics of DISRPT 2023 Datasets: boldface indicates a new corpus compared to
DISRPT 2021, ∗ indicates a surprise or an OOD dataset. ‘#Docs’ and ‘#EDUs’ correspond to the total number of
documents and EDUs respectively. #Conn is the number of tokens starting a connective. ‘#Labels’ corresponds to
the size of the respective label set and ‘#Rels’ to the total number of pairs annotated.

the smallest have about 50 documents and 15k to-
kens. We note that the Russian corpus has twice
the amount of tokens compared to corpora of the
same size in terms of documents, which indicates
longer documents (scientific papers). The English
SciDTB, on the other hand, is very large in docu-
ment count, with almost 800 documents that seem
very short: it is composed of scientific abstracts. In
the lower part of Table 8 (PDTB framework), the
difference is even more obvious: the English PDTB
dataset contains 2, 162 documents, while the En-
glish portion of the TED-Multilingual corpus only
contains 6 documents (Zeyrek et al., 2018, 2019).
In general, performance is lower for small datasets,
and one way to improve performance when facing
data scarcity is to take advantage of larger datasets,
as attempted by some participants, notably for Task
3, relation classification.

The statistics also give insights into the differ-
ences between genres or languages and annotation
guidelines across different corpora. The number
of EDUs varies a lot: for example, the English
STAC corpus contains a lot of EDUs relative to
its size, likely due to the ‘conversational’ and ab-
breviated nature of online chatting. We can also
see that the size of the label set differs between
corpora, even within the same framework: between
9 and 23 for PDTB, 14 and 32 for RST, and 12

or 24 for DEP (SDRT has only 2 corpora with a
more stable set of 16-18 labels). Label sets are
not identical, even within the same framework, due
to different relation definitions or granularity as
well as variations in naming formats, e.g. with a
single or a 2-level convention, as in CONCESSION

vs COMPARISON.CONCESSION, or even more mi-
nor change such as the use of capital letters or not.
Some datasets provide much more fine-grained re-
lations (for example over 70 originally for RST-DT,
or over 30 for GUM), but we follow the common
practice of collapsing these to fewer coarse classes
used in most parsing research (however, original
fine-grained labels were retained in an additional
column in the .rels files where available).

We count a total of 163 different relation names
in the targeted level of granularity, which led one
team to propose some mappings to reduce the
label space. This situation is an important chal-
lenge when trying to experiment with joint learn-
ing across corpora, and points to an open research
direction in increasing convergence of discourse
relation labels in the field.

Finally, Table 1 provides the statistics for the
splits of training, validation, and evaluation sets
for each corpus. We indicate the size of the label
set in each partition: unfortunately, in some cor-
pora, some relations present in the training set are
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Treebanked: Gold / Stanza Plain: Trankit
Corpus %Error F1 %Error F1

dev test dev test dev test dev test

deu.rst.pccG 0.97 0.00 85.06 84.02 0.53 0.00 81.03 79.51
eng.dep.covdtb 0.00 0.00 59.35 57.16 0.27 0.35 58.03 55.71
eng.dep.scidtb 0.00 0.00 55.35 55.71 0.12 0.24 55.43 55.92
eng.rst.gumG 0.00 0.00 60.88 60.95 0.25 1.19 60.11 59.31
eng.rst.rstdtG 0.14 0.00 56.96 56.73 1.08 1.12 57.65 58.23
eng.sdrt.stacG 0.30 0.30 92.12 92.63 3.95 3.36 62.54 57.49
eus.rst.ert 3.01 4.58 68.07 68.57 7.75 7.37 69.91 69.87
fas.rst.prstc 0.00 0.00 51.93 56.53 1.40 2.51 53.60 57.32
fra.sdrt.annodis 6.12 12.81 57.43 49.07 1.32 1.41 57.40 50.54
nld.rst.nldt 0.00 0.00 85.28 83.04 2.22 4.91 86.13 83.58
por.rst.cstn 0.39 0.00 57.72 62.47 0.39 0.72 57.88 61.71
rus.rst.rrt 21.53 19.74 59.11 59.89 27.97 25.44 57.46 58.30
spa.rst.rststb 0.00 0.70 75.48 76.31 0.00 0.37 72.64 73.35
spa.rst.sctb 3.95 3.51 81.56 78.01 4.29 3.92 77.46 72.59
zho.dep.scidtb 0.00 0.00 50.99 54.94 0.00 0.00 50.99 54.94
zho.rst.gcdt 0.00 0.00 44.88 46.95 0.35 0.35 39.52 41.48
zho.rst.sctb 6.98 7.52 84.66 81.73 8.33 9.82 75.43 72.14

Table 2: Sentence Segmentation Performance: each
sentence beginning is annotated as an EDU bound-
ary, baseline for segmentation (Task 1) computed on
treebanked data (left) and .tok automatically split with
Trankit (right), F1 scores on the dev and test partitions.
Errors are the percentage of sentence beginnings not
annotated as the beginning of an EDU (so an error of
the sentence splitting). Corpora with gold sentences for
the treebanked track are marked with a G.

not available in the evaluation set (e.g. 2 relations
missing in deu.rst.pcc, 3 in eus.rst.ert, and
4 in nld.rst.nldt); even more crucially, in a few
corpora, some relations are present in the test set
but not in the dev set, preventing a good learning of
these labels (fas.rst.prstc, nld.rst.nldt, and
por.rst.cstn). This is another motivation for
joint learning over different corpora; it could also
be interesting to think about new splits of the data
that would better preserve the label distribution.

4.3 Sentence and EDU Segmentation

Sentences are the basic unit for grouping words in
NLP. They correspond to EDU boundaries: in most
RST, SDRT, and DEP datasets each sentence starts
a new EDU. With sentences given, the segmen-
tation task corresponds to finding intra-sentential
EDU boundaries, and corpora in general include
these boundaries to some extent, depending pos-
sibly on the genre or the annotation scheme: for
some corpora with a low rate of intra-sentential
EDU boundaries, the task could thus be easier if
the sentence splitter already gives good results. As
a baseline and an indication of the complexity of
the task, we thus report results for a sentence-based
baseline, where each sentence is predicted to cor-
respond to one EDU (see Table 2). We also report
performance using another tool for sentence split-
ting, namely Trankit (Nguyen et al., 2021), used by
the team MELODI for the Plain track.

Sentence boundaries are gold for some corpora

(English RST-DT and GUM, and German PCC),
for the others, Stanza (Qi et al., 2020) was used
to provide sentence splits in the .conllu format
(the Treebanked track). A .tok format is also pro-
vided, without information about sentences (the
Plain track). Our baseline results are computed on
the Treebanked data and shown in Table 2.

Error Rate: bad performance of sentence split-
ters We compute the error rate by looking at the
tokens that are supposed to start a sentence but are
not annotated as beginning an EDU: they thus cor-
respond to errors in sentence segmentation. The
error rate is not 0 for RST-DT (gold sentences), be-
cause of alignments errors with the Penn Treebank
(Marcus et al., 1993). In addition, error rate is very
high for the Russian corpus: 15% of the sentences
do not correspond to a new EDU and thus are con-
sidered errors. The Russian RRT is composed of
scientific papers containing lists of references an-
notated as one (very) large EDU while the tools
tend to segment each reference as a separate sen-
tence. We also have ‘non-standard’ sentences of
the form “sci.comp_49-61” which might be figures.
The error rate is also rather high for the e.g. French,
Basque, Chinese, and Spanish corpora. The sen-
tence splitter is clearly suboptimal for the French
corpus, with errors due to e.g. lists or other uses
of punctuations within sentences and also specific
quotations marks, as shown in the examples below
where curly brackets indicate predicted sentence
boundaries:

• {Mais avec un Leica M7 , il est encore possible
de dire : « Je fais de la photo !} {»} - But with a
Leica M7, it is still possible to say “I’m taking
pictures!”

• {En 1866 , le cartographe britannique Charles
W.} {Wilson identifia les ruines de la synagogue
(...)} - In 1866, British cartographer Charles W.
Wilson identified the ruins of the synagogue (...)

High error rates could affect performance since
sentences are generally the units fed to the systems,
especially when the documents are too long for
even large contextualized language models.

Baseline F-Score An F1 score gives an idea of
one aspect of the complexity of the task: if F1 is
high, it means that the corpus does not contain
many intra-sentential EDU boundaries, which are
arguably harder to detect. The STAC corpus mostly
contains EDUs corresponding to a ‘sentence’, even
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if the definition of this unit is less clear for dia-
logues. The task should also be easier, with a good
sentence splitter, for several RST corpora (nld,
deu, zho, and spa). On the other hand, many cor-
pora contain a high rate of intra-sentential EDUs,
making the task harder, e.g. the Chinese SciDTB,
the Farsi PRSTC, or the Chinese RST GCDT.

5 Participating Systems

Three teams submitted systems in time for partic-
ipation: overall there were two systems for Tasks
1-2 and three systems for Task 3. All scores re-
ported below come from our reproduction of these
systems.

5.1 System Descriptions
HITS The HITS team participated in Tasks
1-2 and Tasks 3, with two separate systems.
Their approach for Tasks 1 and 2 was language-
specific, by fine-tuning monolingual or multilin-
gual transformer-based models per corpus—for
corpora with a training set. Their classifier ar-
chitecture was based on pretrained models (var-
ious BERT or RoBERTa based for the monolingual
models, XLM-RoBERTa-base for the multilingual),
fine-tuned with a bidirectional LSTM network with
a CRF layer (BiLSTM-CRF, Huang et al. 2015).
They implemented an adversarial training strategy,
which introduced small perturbations to the origi-
nal inputs in order to help the trained model gen-
eralize better. For corpora without a training set
(the surprise and OOD ones), they used their previ-
ously fine-tuned models of the same language and
framework.

For Task 3, the team submitted a system com-
posed of two fine-tuned transformer-based models
(as in Tasks 1-2, BERT or RoBERTa based for the
monolingual models, XLM-RoBERTa-base/large
for the multilingual). For large corpora, a corpus-
specific fine-tuned classifier was used, based on
monolingual or multilingual models. However,
they aggregated smaller corpora in a joint train-
ing approach based on their frameworks, and then
fine-tuned a multilingual model for classification—
and also used those for corpora without a training
set. They also implemented the adversarial training
strategy for this task, for specific datasets.

MELODI: DisCut and DiscReT The MELODI
team submitted two systems to handle Tasks 1-2
and Task 3 respectively: DisCut and DiscReT. The
former system is a revised version of the team’s

2021 submission (Kamaladdini Ezzabady et al.,
2021). The main modifications to DisCut included
a shift to a single multilingual language model to
accommodate all languages (XLM-RoBERTa-large
was chosen, Conneau et al. 2020), and the use of a
simple linear layer for classification, replacing the
character-level CNN and token-level LSTM used
in the 2021 version. Additionally, the team ex-
perimented with layer freezing, finding an overall
optimum for the large language model when layers
0–5 of 24 were frozen. Both Tasks 1 and 2 were
handled as BIO-encoded sequence labeling, and
no additional features beyond sentence splits were
used (for the plain text scenario, Trankit was used
to preprocess the data, see Nguyen et al. 2021).

For Task 3, MELODI submitted DiscReT, which
was unique in not only using a multilingual lan-
guage model for all languages (this time choosing
mBERT-base-cased) but also training jointly on all
datasets after performing label lower-casing and
selective merging to reduce the total of possible la-
bels from 163 to 135 across datasets. Their models
are fine-tuned and fitted with a fine-tuned Adapter.
Adapters (Houlsby et al., 2019) offer a lightweight
alternative built on transformers that expose only a
subset of parameters to fine-tuning, reaching com-
parable results to fully fine-tuned transformers. The
system did not use additional features, except for
encoding the relation direction information by per-
muting the order of input sequences to always begin
with the source argument of the relation (meaning
sequences were transposed from their natural order
for relations of the form 1<2).

DiscoFLAN DiscoFlan is based on the Flan-T5
generative language model, itself a fine-tuning of
the T5 model on a large set of additional tasks
(Chung et al., 2022). The basic principle of this
family of models is to encode an instruction in nat-
ural language input to resolve a given NLP task,
and to learn to decode it as the answer. In the
case of discourse relation classification within DIS-
RPT, this is implemented in DiscoFlan by fine-
tuning Flan-T5 and encoding the instruction “what
discourse relation holds between sent1 and sent2:
sent1 <text> sent2 <text>” in various languages,
and learning to decode the discourse relation label.
A post-processing step tried to match an output to-
ken to an existing label, or select the majority class
if the output cannot be mapped. The majority class
is computed on the training set, or the dev set for
the OOD corpora that do not have training sets.

7



track: Treebanked track: Plain
corpus DisCut* HITS DisCut*

P R F1 P R F1 P R F1

deu.rst.pcc 97.88 94.22 96.01 97.58 95.92 96.74 96.77 91.84 94.24
**eng.dep.covdtb 94.04 90.31 92.13 90.22 90.38 90.30 94.04 90.31 92.13
eng.dep.scidtb 94.96 95.18 95.07 94.77 95.09 94.93 94.94 94.05 94.49
eng.rst.gum 94.59 96.42 95.50 95.08 95.29 95.19 94.95 93.98 94.46
eng.rst.rstdt 97.21 98.04 97.62 96.46 97.66 97.06 96.70 98.81 97.74
eng.sdrt.stac 95.75 94.70 95.22 96.71 95.09 95.89 87.92 93.60 90.67
eus.rst.ert 88.18 91.76 89.93 90.14 90.14 90.14 89.66 92.57 91.09
fas.rst.prstc 94.92 91.94 93.40 92.95 92.54 92.74 93.29 93.43 93.36
fra.sdrt.annodis 88.06 88.35 88.21 88.82 87.38 88.09 91.34 90.45 90.89
nld.rst.nldt 98.17 94.97 96.54 93.62 91.12 92.35 97.05 97.34 97.19
por.rst.cstn 93.53 94.44 93.98 93.73 92.81 93.27 93.02 95.75 94.36
rus.rst.rrt 84.02 87.20 85.58 83.08 87.88 85.41 83.23 87.71 85.41
spa.rst.rststb 92.74 94.35 93.53 91.14 91.74 91.44 92.03 95.43 93.70
spa.rst.sctb 86.14 85.12 85.63 84.38 80.36 82.32 82.76 85.71 84.21
zho.dep.scidtb 83.58 95.32 89.07 84.00 98.3 90.59 84.64 96.17 90.04
zho.rst.gcdt 91.80 93.32 92.55 89.09 92.77 90.89 90.47 93.04 91.74
zho.rst.sctb 79.33 84.52 81.84 78.95 80.36 79.65 73.82 83.93 78.55

mean 91.46 92.36 91.87 90.63 91.46 91.00 90.39 92.60 91.43

Table 3: EDU Segmentation Results on Treebanked and
Plain tracks: boldface indicates a new corpus compared
to DISRPT 2021, and ∗∗ a surprise and OOD dataset.
Disclosure: System marked with * was submitted by
a team containing organizers and annotators of shared
task datasets.

5.2 Results

Task 1: EDU Segmentation Table 3 shows the
EDU Segmentation scores of the two submitted
systems. The comparison between the two systems
for the Treebanked track indicates very similar re-
sults, with the winner being DisCut (a mean F1
score of 91.87) from the MELODI team. Both sys-
tems used rather similar architectures, and the main
difference was the language model used as back-
bone: always XLM-RoBERTa large for MELODI,
and for HITS a language model was specifically
chosen for the target language. As illustrated here,
it seems that the hyper-parameter tuning including
freezing layers and/or the use of a large version of
RoBERTa allows performance to be on par with the
specific base models. Major improvements were
observed for nld.rst.nldt (MELODI +4 points),
spa.rst.rststb (+2), spa.rst.sctb (+3), and
zho.rst.sctb (+2). However, these variations
should be taken with precaution as we noticed an
important variance of the scores when reproducing
the results, especially for small-sized corpora.

In general, scores are high, and the performance
of DisCut is better than the ones obtained by the
winning system DisCoDisCo in 2021 (Gessler et al.,
2021), with a mean score of 91.77 when only con-
sidering the corpora used in 2021 against 91.48
for DisCoDisCo (for the Treebanked track). See
the paper describing the MELODI results for a
full comparison. Additionally, this year’s mean
scores are not far from the 2021 ones, despite the
addition of the new corpora and one OOD dataset
(eng.dep.covdtb). This demonstrates some ro-

bustness of the approaches as well as the consis-
tencies of the new annotations. We note that a few
corpora are still challenging, with performance be-
low 90, in particular rus.rst.rrt, which is likely
due to the issue with the bibliographic parts; and
spa.rst.sctb and zho.rst.sct, which are paral-
lel corpora and correspond to a rather high rate of
sentence segmentation errors (4-7%), which should
be investigated further.

The Plain track gives the opportunity to test EDU
segmentation in a more realistic setting, i.e. no
sentence splits are provided. However, since LLMs
have severe limitations on input size, the DisCut
system relies on another sentence segmentation,
done with Trankit (Nguyen et al., 2021), but using
the same tokenization as required for the evaluation
for the shared task (which means that the results
do not exactly reflect the performance of Trankit).
Results show the mean performance is similar to
the Treebanked track while, this time, no corpus
contains gold sentence splits which is encouraging
for future use of this kind of system on new data.

track: Treebanked track: Plain
corpus DisCut* HITS DisCut*

P R F1 P R F1 P R F1

eng.pdtb.pdtb 95.49 91.89 93.66 93.61 94.06 93.83 94.08 89.32 91.64
**eng.pdtb.tedm 82.69 74.46 78.36 81.74 77.49 79.56 83.77 69.26 75.83
ita.pdtb.luna 60.65 72.03 65.85 62.23 66.28 64.19 66.34 77.78 71.60
por.pdtb.crpc 80.81 80.51 80.66 80.59 80.88 80.73 78.49 80.51 79.49
**por.pdtb.tedm 77.52 83.25 80.29 73.71 84.24 78.62 74.78 84.73 79.45
tha.pdtb.tdtb 84.24 87.13 85.66 85.74 87.2 86.46 85.32 59.23 69.92
tur.pdtb.tdb 92.34 93.21 92.77 92.3 95.43 93.84 90.33 91.92 91.12
**tur.pdtb.tedm 87.41 50.61 64.10 91.49 52.23 66.49 51.01 88.73 64.78
zho.pdtb.cdtb 91.25 86.86 89.00 89.26 85.26 87.21 92.03 88.78 90.38

mean 82.64 79.14 80.17 82.68 79.73 80.47 79.57 81.14 79.36

Table 4: Connective Detection Results.

Task 2: Connective Detection Table 4 shows the
connective detection results of the two submitted
systems, which remain the same as for Task 1. We
also observe similar scores between MELODI and
HITS, but this time HITS is the winner (a mean F1
score of 80.47). Contrary to EDU segmentation,
the new corpora added for this task are very chal-
lenging, especially the OOD ones coming from the
TED multilingual corpus and the LUNA corpus,
that are small and consist of documents from very
specific genres (TED talks and speech transcrip-
tions of dialogues). As a comparison, mean score
of DisCoDisCo in 2021 was 91.22, while now the
mean is around 80’s. For this task, sentence seg-
mentation seems less a crucial factor; however, the
comparison between the two tracks demonstrate
huge differences for some corpora, e.g. −5.75 for
Luna and −15.74 for the Thai corpus when us-
ing Trankit vs Stanza. These differences should
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be investigated further to better assess the role of
sentence splitting in connective detection.

Task 3: Relation Classification For the relation
classification task, three systems were submitted:
DiscReT, HITS, and DiscoFlan. The winning sys-
tem is HITS, with a mean accuracy score of 62.36.
The proposed strategy, with single models for large
corpora and merging for small ones within each
framework, seems more effective than the joint
learning over all corpora proposed in DiscReT. In-
terestingly, the second system is still on par with or
even better for a few corpora, meaning that merging
across corpora to some extent could also help.

The scores indicate that some corpora are very
challenging: the German PCC, the Turkish TDB,
and the Dutch NLDT, with the accuracy score lower
than 52. The new corpora do not seem more chal-
lenging than the others, except for the Turkish
TEDm. We note that scores are very high for the
Thai corpus (95.83), which could be due to the
fact that only explicit relations are annotated in
the current version. Compared to 2021, HITS has
lower performance, with a mean accuracy score
of 58.18 when only considering the corpora avail-
able in 2021 against 61.82 for DisCoDisCo, which
indicates that the merging strategy including the
new corpora could lead to drop in performance
compared to single models, but more analysis is
needed to investigate the impact of the hand-crafted
features used in DisCoDisCo.

In order to provide more insights into the results,
we also provide scores for implicit/explicit rela-
tions for some corpora, as shown in Table 6. Un-
expectedly, we observe large differences in perfor-
mance between explicit and implicit relations, with
the latter having scores in the 40s against around 85
for the former. Some exceptions are high scores for
implicit in the Portuguese CRPC and low scores
for explicit in the Turkish TEDm. We also pro-
vide scores for each relation label for all corpora in
Appendix C.

6 Conclusion

The DISRPT 2023 shared task was very chal-
lenging, with the addition of datasets from a new
framework, in new languages, and 4 OOD surprise
datasets without training partitions. The submitted
systems still demonstrated rather high performance
for EDU segmentation, with room for improvement
for some corpora / languages / domains. However,
further research and error analysis are needed to

corpus DiscRet HITS DiscoFlan

deu.rst.pcc 26.92 31.92 13.08
**eng.dep.covdtb 41.30 69.33 50.15
eng.dep.scidtb 67.56 74.15 34.12
eng.pdtb.pdtb 69.25 74.30 24.41
**eng.pdtb.tedm 19.94 64.96 33.05
eng.rst.gum 55.34 68.19 22.33
eng.rst.rstdt 49.98 65.71 36.94
eng.sdrt.stac 56.89 60.79 22.65
eus.rst.ert 51.77 56.19 28.02
fas.rst.prstc 50.34 56.08 25.84
fra.sdrt.annodis 44.96 51.84 19.36
ita.pdtb.luna 58.42 65.00 22.37
nld.rst.nldt 43.69 51.69 29.23
por.pdtb.crpc 72.76 78.53 43.83
**por.pdtb.tedm 54.95 64.84 29.95
por.rst.cstn 62.87 68.75 38.60
rus.rst.rrt 61.52 60.99 23.60
spa.rst.rststb 58.22 57.28 26.76
spa.rst.sctb 33.33 61.64 44.65
tha.pdtb.tdtb 95.24 95.83 34.67
tur.pdtb.tdb 49.05 45.50 25.83
**tur.pdtb.tedm 49.73 54.12 25.83
zho.dep.scidtb 67.44 67.44 33.49
zho.pdtb.cdtb 69.13 59.63 59.37
zho.rst.gcdt 55.72 56.35 20.46
zho.rst.sctb 49.06 60.38 43.40

mean 54.44 62.36 31.21

Table 5: Relation Classification Results on the Test Set.

corpus DiscReT HITS #impl #expl
impl expl impl expl

eng.pdtb.pdtb 42.66 75.32 57.94 87.23 1008 1159
eng.pdtb.tedm 4.80 28.06 39.20 83.16 125 196
ita.pdtb.luna 17.21 62.02 49.18 72.48 122 258
por.pdtb.crpc 18.00 72.92 71.87 88.20 711 517
por.pdtb.tedm 15.85 69.95 42.68 85.25 164 183
tur.pdtb.tedm 22.95 52.40 44.26 59.62 122 208

Table 6: Implicit/Explicit Classification Results.

better understand not only what could be missing
in the current models, but also what could be im-
proved in some annotation projects, especially for
example when EDU boundaries do not match sen-
tence segmentation. Connective detection has been
shown to be far from a solved task, with specific
challenges for speech or dialogue data and gener-
alizability to new domains. Finally, challenges are
still significant for discourse relation classification.
Competitors proposed original and attractive strate-
gies to combine corpora due to data scarcity, but
the label set explosion is a major obstacle as well
as for analyzing the results. We hope that this work
will bring new research and discussion in increas-
ing convergence and cohesion of frameworks and
annotation projects. We encourage researchers in
the field to use the DISRPT data as a benchmark
to evaluate their systems in the future in order to
provide a realistic view of the robustness and gen-
eralization ability of their approaches.
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A Relation Mapping Details

Table 7 provides the mapping done for the relation
labels in addition to translation to English when
needed. A few cases of labels were also removed
when they did not correspond to a discourse rela-
tion.

Corpus Original label Mapped label

eus.rst.ert anthitesis antithesis
motibation motivation
solution-hood solutionhood

spa.rst.rststb backgroun background
fas.rst.prstc topicomment topic-comment

topichange topic-change
topidrift topic-drift

por.rst.cstn non-volitional-cause nonvolitional-cause
non-volitional-cause-e nonvolitional-cause-e
non-volitional-result nonvolitional-result
non-volitional-result-e nonvolitional-result-e

deu.rst.pcc e-elab e-elaboration
fra.sdrt.annodis e-elab e-elaboration

nld.rst.nldt span relation removed
eng.dep.scidtb null relation removed
ita.pdtb.luna null relation removed

Table 7: Relation Mapping used in DISRPT 2023.

B DISRPT 2023 Corpora Statistics

Table 8 provides detailed statistics on all DISRPT
2023 corpora regarding their sizes and properties.
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Corpus Domain mwt #Docs #Sents #Tokens Vocab #EDUs #Conn #Labels #Rels References

Tasks 1 and 3: EDU Segmentation and Relation Classification

deu.rst.pcc newspaper commentaries n 176 2, 193 33, 222 8, 359 3, 018 - 26 2, 665 Potsdam Commentary Corpus
(Stede and Neumann, 2014)

**eng.dep.covdtb scholarly paper abstracts on COVID-19
and related coronaviruses y 300 2, 343 60, 849 8, 293 5, 705 - 12 4, 985 COVID-19 Discourse Depen-

dency Treebank (COVID19-
DTB) (Nishida and Matsumoto,
2022)

eng.dep.scidtb scientific articles y 798 4, 202 102, 493 8, 700 10, 986 - 24 9, 904 Discourse Dependency TreeBank
for Scientific Abstracts (SciDTB)
(Yang and Li, 2018)

eng.rst.gum multi-genre y 213 11, 656 203, 879 19, 404 26, 252 - 14 24, 688 Georgetown University Multi-
layer corpus V9 (Zeldes, 2017)

eng.rst.rstdt news y 385 8, 318 205, 829 19, 160 21, 789 - 17 19, 778 RST Discourse Treebank (Carl-
son et al., 2001)

eng.sdrt.stac dialogues y 45 11, 087 52, 354 3, 967 12, 588 - 16 12, 235 Strategic Conversations corpus
(Asher et al., 2016)

eus.rst.ert medical, terminological and scientific n 164 2, 380 45, 780 13, 662 4, 202 - 29 3, 825 Basque RST Treebank (Iruskieta
et al., 2013)

fas.rst.prstc journalistic texts y 150 2, 179 66, 694 7, 880 5, 853 - 17 5, 191 Persian RST Corpus (Shahmo-
hammadi et al., 2021)

fra.sdrt.annodis news, wiki n 86 1, 507 32, 699 7, 513 3, 429 - 18 3, 338 ANNOtation DIScursive (Afan-
tenos et al., 2012).

nld.rst.nldt expository texts and persuasive genres n 80 1, 651 24, 898 4, 935 2, 343 - 32 2, 264 Dutch Discourse Treebank (Re-
deker et al., 2012)

por.rst.cstn news y 140 2, 221 58, 793 7, 786 5, 537 - 32 4, 993 Cross-document Structure The-
ory News Corpus (Cardoso et al.,
2011)

rus.rst.rrt blog and news n 332 23, 044 473, 005 75, 285 41, 542 - 22 34, 566 Russian RST Treebank (Toldova
et al., 2017)

spa.rst.rststb multi-genre n 267 2, 089 58, 717 9, 444 3, 351 - 28 3, 049 RST Spanish Treebank
(da Cunha et al., 2011)

spa.rst.sctb multi-genre n 50 516 16, 515 3, 735 744 - 25 692 RST Spanish-Chinese Treebank
(Spanish) (Cao et al., 2018)

zho.dep.scidtb scientific n 109 609 18, 761 2, 427 1, 407 - 23 1, 298 Discourse Dependency TreeBank
for Scientific Abstracts (SciDTB)
(Yi et al., 2021; Cheng and Li,
2019)

zho.rst.gcdt multi-genre n 50 2, 692 62, 905 9, 818 9, 706 - 31 8, 413 Georgetown Chinese Discourse
Treebank (GCDT) (Peng et al.,
2022b,a)

zho.rst.sctb multi-genre n 50 580 15, 496 2, 973 744 - 26 692 RST Spanish-Chinese Treebank
(Chinese) (Cao et al., 2018)

Tasks 2 and 3: Connective Detection and Relation Classification

eng.pdtb.pdtb news y 2, 162 48, 630 1, 156, 657 48, 937 - 26, 048 23 47, 851 Penn Discourse Treebank
(Prasad et al., 2014)

**eng.pdtb.tedm TED talks y 6 381 8, 048 1, 881 - 341 20 529 TED-Multilingual Discourse
Bank (English) (Zeyrek et al.,
2018, 2019)

ita.pdtb.luna speech y 60 3, 753 26, 114 2, 392 - 1, 071 16 1, 547 LUNA Corpus Discourse Data
Set (Tonelli et al., 2010; Riccardi
et al., 2016)

por.pdtb.crpc5 news, fiction, and didactic/scientific texts n 302 5, 194 186, 849 22, 208 - 5, 159 22 11, 330 Portuguese Discourse Bank
(CRPC) (Mendes and Lejeune,
2022; Généreux et al., 2012)

**por.pdtb.tedm TED talks n 6 394 8, 190 2, 162 - 305 20 554 TED-Multilingual Discourse
Bank (Portuguese) (Zeyrek et al.,
2018, 2019)

*tha.pdtb.tdtb news n 180 6, 534 256, 523 11, 789 - 10, 864 21 10, 865 Thai Discourse Treebank
(TDTB)

tur.pdtb.tdb multi-genre y 197 31, 196 487, 389 88, 923 - 8, 748 23 3, 185 Turkish Discourse Bank (Zeyrek
and Webber, 2008; Zeyrek and
Kurfalı, 2017)

**tur.pdtb.tedm TED talks y 6 410 6, 143 2, 771 - 382 23 577 TED-Multilingual Discourse
Bank (Turkish) (Zeyrek et al.,
2018, 2019)

zho.pdtb.cdtb news n 164 2, 891 73, 314 9, 085 - 1, 660 9 5, 270 Chinese Discourse Treebank
(Zhou et al., 2014)

Table 8: General Statistics of DISRPT 2023 Datasets: boldface indicates a new corpus compared to DISRPT 2021,
∗ indicates a surprise dataset and ∗∗ a surprise and OOD dataset. ‘mwt’ corresponds to the annotation (‘y’) or
not (‘n’) of multi-word expressions. ‘#Docs’, ‘#Sents’, ‘#Tokens’ and ‘#EDUs’ correspond to the total number
of documents, sentences (the Treebanked track), tokens, and EDUs respectively. #Conn is the number of tokens
starting a connective. ‘Vocab’ is the number of unique tokens. ‘#Labels’ corresponds to the size of the respective
label set and ‘#Rels’ to the total number of pairs annotated.
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C Relation Scores Per Label

Tables below provide a detailed breakdown of the
accuracy scores for each corpus and each label for
the discourse relation classification task (i.e. Task
3). The results of the HITS and the DiscReT sys-
tems are presented.

HITS DiscReT

deu.rst.pcc P R F1 P R F1 Num.

antithesis 36.36 22.22 27.59 16.67 5.56 8.33 1800
background 16.67 11.76 13.79 0.00 0.00 0.00 1700
cause 25.00 100 40.00 0.00 0.00 0.00 200
circumstance 33.33 6.67 11.11 42.86 20.00 27.27 1500
concession 31.25 38.46 34.48 30.77 30.77 30.77 1300
condition 58.33 77.78 66.67 0.00 0.00 0.00 900
conjunction 33.33 57.14 42.11 0.00 0.00 0.00 700
contrast 16.67 12.50 14.29 0.00 0.00 0.00 800
e-elaboration 69.23 81.82 75.00 60.00 54.55 57.14 1100
elaboration 24.00 60.00 34.29 8.33 20.00 11.76 1000
evaluation-n 0.00 0.00 0.00 0.00 0.00 0.00 300
evaluation-s 0.00 0.00 0.00 0.00 0.00 0.00 1700
evidence 50.00 20.00 28.57 0.00 0.00 0.00 1000
interpretation 0.00 0.00 0.00 11.11 41.67 17.54 1200
joint 14.29 13.79 14.04 8.33 6.90 7.55 2900
list 42.42 53.85 47.46 59.09 50.00 54.17 2600
means 100 50.00 66.67 0.00 0.00 0.00 200
preparation 28.57 50.00 36.36 14.29 25.00 18.18 400
purpose 100 100 100 50.00 66.67 57.14 300
reason 52.00 38.24 44.07 43.33 38.24 40.62 3400
restatement 0.00 0.00 0.00 0.00 0.00 0.00 100
sequence 75.00 42.86 54.55 0.00 0.00 0.00 700
solutionhood 0.00 0.00 0.00 0.00 0.00 0.00 100
summary 0.00 0.00 0.00 0.00 0.00 0.00 100

macro avg 33.60 34.88 31.29 14.37 14.97 13.77 26000
weighted avg 33.51 31.92 30.72 21.84 20.00 19.88 26000

HITS DiscReT

eng.dep.covdtb P R F1 P R F1 Num.

ATTRIBUTION 92.52 96.12 94.29 95.28 98.06 96.65 10300
BACKGROUND 61.02 82.44 70.13 0.00 0.00 0.00 13100
CAUSE-
RESULT 57.73 41.48 48.28 0.00 0.00 0.00 13500

COMPARISON 83.33 13.07 22.60 84.00 13.73 23.60 15300
CONDITION 65.00 59.09 61.90 0.00 0.00 0.00 2200
ELABORATION 80.27 81.26 80.77 85.25 46.34 60.04 129700
ENABLEMENT 93.17 86.43 89.67 97.03 44.34 60.87 22100
FINDINGS 0.00 0.00 0.00 0.00 0.00 0.00 15400
JOINT 58.96 90.29 71.33 33.15 67.43 44.44 17500
MANNER-
MEANS 80.43 64.35 71.50 83.64 40.00 54.12 11500

TEMPORAL 64.52 80.00 71.43 75.00 12.00 20.69 2500
TEXTUAL-
ORGANIZATION 0.00 0.00 0.00 0.00 0.00 0.00 5500

macro avg 61.41 57.88 56.82 46.11 26.82 30.03 258600
weighted avg 71.69 69.33 68.56 66.50 38.21 46.17 258600

HITS DiscReT

eng.dep.scidtb P R F1 P R F1 Num.

attribution 94.78 96.95 95.85 95.38 94.66 95.02 13100
bg-compare 82.35 60.87 70.00 60.00 39.13 47.37 4600
bg-general 71.74 89.19 79.52 87.18 91.89 89.47 3700
bg-goal 52.11 66.07 58.27 33.33 62.50 43.48 5600
cause 33.33 36.36 34.78 0.00 0.00 0.00 1100
comparison 57.89 52.38 55.00 92.86 61.90 74.29 2100
condition 83.33 60.61 70.18 0.00 0.00 0.00 3300
contrast 72.29 84.51 77.92 0.00 0.00 0.00 7100
elab-addition 77.65 75.15 76.38 78.76 69.94 74.09 65200
elab-aspect 18.67 31.11 23.33 11.20 31.11 16.47 4500
elab-definition 20.00 25.00 22.22 0.00 0.00 0.00 400
elab-enumember 85.71 62.07 72.00 71.43 68.97 70.18 2900
elab-example 78.26 52.94 63.16 88.89 47.06 61.54 3400
elab-process_step 52.00 44.83 48.15 40.00 48.28 43.75 2900
enablement 77.04 81.89 79.39 79.67 77.17 78.40 12700
evaluation 81.62 84.83 83.20 71.26 69.66 70.45 17800
exp-evidence 70.00 53.85 60.87 0.00 0.00 0.00 1300
exp-reason 91.67 78.57 84.62 77.78 50.00 60.87 1400
joint 83.77 82.69 83.23 74.05 87.82 80.35 15600
manner-means 86.61 80.17 83.26 90.57 79.34 84.58 12100
progression 42.11 33.33 37.21 12.50 2.08 3.57 4800
result 30.77 25.81 28.07 0.00 0.00 0.00 3100
summary 0.00 0.00 0.00 0.00 0.00 0.00 100
temporal 55.56 86.96 67.80 60.87 60.87 60.87 2300

weighted avg 75.22 74.15 74.35 67.40 63.89 64.92 191100
macro avg 62.47 60.26 60.60 46.91 43.43 43.95 191100

HITS DiscReT

eng.pdtb.pdtb P R F1 P R F1 Num.

Comparison.
Concession 85.71 75.22 80.13 74.78 76.12 75.44 33500

Comparison.
Concession+
SpeechAct

0.00 0.00 0.00 0.00 0.00 0.00 200

Comparison.
Contrast 65.62 62.69 64.12 68.48 47.01 55.75 13400

Comparison.
Similarity 90.00 81.82 85.71 66.67 72.73 69.57 1100

Contingency.Cause 76.96 68.27 72.36 67.59 70.19 68.87 41600
Contingency.Cause+
Belief 11.11 13.33 12.12 0.00 0.00 0.00 1500

Contingency.Cause+
SpeechAct 0.00 0.00 0.00 0.00 0.00 0.00 300

Contingency.
Condition 81.93 89.47 85.53 84.85 73.68 78.87 7600

Contingency.
Condition+
SpeechAct

25.00 12.50 16.67 0.00 0.00 0.00 800

Contingency.
Negative-cause 100 100 100 0.00 0.00 0.00 100

Contingency.
Negative-condition 100 100 100 100 50.00 66.67 200

Contingency.Purpose 73.33 71.74 72.53 78.95 65.22 71.43 4600
Expansion.
Conjunction 74.50 88.57 80.93 79.96 78.95 79.45 55100

Expansion.
Disjunction 64.29 100 78.26 0.00 0.00 0.00 900

Expansion.
Equivalence 30.77 16.67 21.62 0.00 0.00 0.00 2400

Expansion.Exception 0.00 0.00 0.00 0.00 0.00 0.00 100
Expansion.
Instantiation 71.84 74.75 73.27 72.92 70.71 71.79 9900

Expansion.Level-of-
detail 63.33 56.72 59.84 0.00 0.00 0.00 20100

Expansion.Manner 69.23 90.00 78.26 71.15 92.50 80.43 4000
Expansion.
Substitution 86.67 66.67 75.36 85.71 46.15 60.00 3900

Hypophora 72.73 100 84.21 0.00 0.00 0.00 800
Temporal.
Asynchronous 81.89 74.29 77.90 81.51 69.29 74.90 14000

Temporal.
Synchronous 67.24 81.25 73.58 0.00 0.00 0.00 9600

weighted avg 74.28 74.30 73.88 63.02 60.35 61.37 225700
macro avg 60.53 61.91 60.54 40.55 35.33 37.09 225700

HITS DiscReT

eng.pdtb.tedm P R F1 P R F1 Num.

Comparison.
Concession 62.16 88.46 73.02 52.38 42.31 46.81 2600

Comparison.
Contrast 80.00 30.77 44.44 50.00 15.38 23.53 1300

Comparison.
Similarity 50.00 28.57 36.36 0.00 0.00 0.00 700

Contingency.Cause 65.71 43.40 52.27 46.67 13.21 20.59 5300
Contingency.Cause+
Belief 0.00 0.00 0.00 0.00 0.00 0.00 600

Contingency.Cause+
SpeechAct 0.00 0.00 0.00 0.00 0.00 0.00 200

Contingency.
Condition 76.47 81.25 78.79 100 12.50 22.22 1600

Contingency.Purpose 46.15 75.00 57.14 100 12.50 22.22 800
Expansion.
Conjunction 65.96 80.17 72.37 76.00 32.76 45.78 11600

Expansion.
Disjunction 100 100 100 0.00 0.00 0.00 200

Expansion.
Equivalence 0.00 0.00 0.00 0.00 0.00 0.00 600

Expansion.
Instantiation 100 33.33 50.00 0.00 0.00 0.00 900

Expansion.Level-of-
detail 47.37 62.07 53.73 0.00 0.00 0.00 2900

Expansion.Manner 100 66.67 80.00 100 33.33 50.00 600
Expansion.
Substitution 75.00 90.00 81.82 100 10.00 18.18 1000

Hypophora 100 66.67 80.00 0.00 0.00 0.00 600
Temporal.
Asynchronous 66.67 63.64 65.12 33.33 4.55 8.00 2200

Temporal.
Synchronous 83.33 71.43 76.92 0.00 0.00 0.00 1400

weighted avg 64.93 64.96 62.99 51.38 18.52 25.97 35100
macro avg 62.16 54.52 55.67 36.58 9.81 14.30 35100

5In this version of the corpus, 15 documents are missing
compared to the original dataset due to pre-processing issues.
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HITS DiscReT

eng.rst.gum P R F1 P R F1 Num.

adversative 66.67 65.09 65.87 0.00 0.00 0.00 16900
attribution 85.14 89.36 87.20 82.58 90.78 86.49 14100
causal 51.46 54.64 53.00 40.51 32.99 36.36 9700
context 49.80 55.22 52.37 56.83 45.22 50.36 23000
contingency 79.31 92.00 85.19 82.05 64.00 71.91 5000
elaboration 72.05 74.71 73.36 66.00 71.86 68.81 59700
evaluation 46.02 46.43 46.22 44.05 33.04 37.76 11200
explanation 56.38 50.91 53.50 48.06 37.58 42.18 16500
joint 71.03 66.09 68.47 67.26 58.96 62.84 57500
mode 75.47 76.92 76.19 82.61 36.54 50.67 5200
organization 74.59 73.37 73.97 0.00 0.00 0.00 18400
purpose 92.38 89.81 91.08 88.89 51.85 65.50 10800
restatement 60.87 52.83 56.57 63.64 52.83 57.73 5300
topic 71.11 76.19 73.56 60.00 71.43 65.22 4200

weighted avg 68.28 68.19 68.17 55.72 50.33 52.35 257500
macro avg 68.02 68.83 68.32 55.89 46.22 49.70 257500

HITS DiscReT

eng.rst.rstdt P R F1 P R F1 Num.

attribution 82.73 97.38 89.46 91.67 97.38 94.44 30500
background 44.44 34.95 39.13 0.00 0.00 0.00 10300
cause 40.00 18.82 25.60 0.00 0.00 0.00 8500
comparison 46.88 53.57 50.00 55.56 17.86 27.03 2800
condition 77.78 74.47 76.09 0.00 0.00 0.00 4700
contrast 61.90 62.33 62.12 0.00 0.00 0.00 14600
elaboration 70.68 79.65 74.90 71.28 67.34 69.25 79600
enablement 68.75 73.33 70.97 90.91 22.22 35.71 4500
evaluation 29.79 17.28 21.88 21.05 9.88 13.45 8100
explanation 33.33 33.64 33.48 27.27 21.82 24.24 11000
joint 64.06 60.43 62.19 56.91 46.52 51.20 23000
manner-means 72.22 48.15 57.78 50.00 3.70 6.90 2700
summary 56.00 43.75 49.12 100 37.50 54.55 3200
temporal 51.79 39.19 44.62 50.00 6.76 11.90 7400
textual-
organization 46.15 66.67 54.55 25.00 55.56 34.48 900

topic-change 60.00 23.08 33.33 50.00 7.69 13.33 1300
topic-comment 28.57 16.67 21.05 0.00 0.00 0.00 2400

weighted avg 63.50 65.71 64.02 54.41 46.91 48.78 215500
macro avg 55.00 49.61 50.96 40.57 23.19 25.67 215500

HITS DiscReT

eng.sdrt.stac P R F1 P R F1 Num.

Acknowledge-
ment 69.19 58.05 63.13 62.56 59.51 61.00 20500

Alternation 66.67 71.43 68.97 0.00 0.00 0.00 1400
Background 0.00 0.00 0.00 0.00 0.00 0.00 1400
Clarifica-
tion_question 60.34 60.34 60.34 67.86 65.52 66.67 5800

Comment 54.08 65.70 59.33 50.80 65.70 57.30 24200
Conditional 58.82 66.67 62.50 0.00 0.00 0.00 1500
Continuation 41.98 43.31 42.63 43.81 29.30 35.11 15700
Contrast 48.75 54.93 51.66 0.00 0.00 0.00 7100
Correction 42.42 40.00 41.18 0.00 0.00 0.00 3500
Elaboration 49.18 40.00 44.12 47.22 34.00 39.53 15000
Explanation 38.10 33.33 35.56 25.00 30.56 27.50 7200
Narration 14.29 14.29 14.29 0.00 0.00 0.00 700
Parallel 72.22 72.22 72.22 62.96 47.22 53.97 3600
Q_Elab 52.38 62.26 56.90 55.38 67.92 61.02 5300
Ques-
tion_answer_pair 88.37 88.89 88.63 0.00 0.00 0.00 34200

Result 38.10 41.03 39.51 0.00 0.00 0.00 3900

weighted avg 60.55 60.79 60.43 33.12 32.52 32.34 151000
macro avg 49.68 50.78 50.06 25.97 24.98 25.13 151000

HITS DiscReT

eus.rst.ert P R F1 P R F1 Num.

antithesis 9.09 20.00 12.50 50.00 20.00 28.57 500
background 32.14 31.03 31.58 0.00 0.00 0.00 2900
cause 50.00 35.14 41.27 0.00 0.00 0.00 3700
circumstance 65.22 62.50 63.83 57.14 58.33 57.73 4800
concession 58.82 58.82 58.82 34.78 47.06 40.00 1700
condition 80.00 44.44 57.14 0.00 0.00 0.00 900
conjunction 30.56 44.00 36.07 0.00 0.00 0.00 2500
contrast 35.71 47.62 40.82 0.00 0.00 0.00 2100
disjunction 100 100 100 0.00 0.00 0.00 300
elaboration 53.40 72.86 61.63 48.92 65.00 55.83 14000
evaluation 61.54 50.00 55.17 19.05 25.00 21.62 1600
evidence 66.67 25.00 36.36 0.00 0.00 0.00 800
interpretation 45.45 38.46 41.67 40.00 15.38 22.22 1300
joint 0.00 0.00 0.00 0.00 0.00 0.00 100
justify 16.67 12.50 14.29 33.33 25.00 28.57 800
list 60.98 46.30 52.63 55.56 55.56 55.56 5400
means 63.89 62.16 63.01 58.33 56.76 57.53 3700
motivation 0.00 0.00 0.00 0.00 0.00 0.00 200
preparation 91.07 69.86 79.07 83.87 71.23 77.04 7300
purpose 86.67 78.00 82.11 74.00 74.00 74.00 5000
restatement 55.56 38.46 45.45 57.14 30.77 40.00 1300
result 44.19 55.88 49.35 0.00 0.00 0.00 3400
sequence 56.25 39.13 46.15 43.48 43.48 43.48 2300
solutionhood 20.00 12.50 15.38 14.29 12.50 13.33 800
summary 0.00 0.00 0.00 0.00 0.00 0.00 300
unconditional 0.00 0.00 0.00 0.00 0.00 0.00 100

macro avg 45.53 40.18 41.70 25.77 23.08 23.67 67800
weighted avg 58.30 56.19 56.20 41.83 42.92 41.82 67800

HITS DiscReT

fas.rst.prstc P R F1 P R F1 Num.

attribution 60.47 66.67 63.41 61.54 61.54 61.54 3900
background 39.39 41.94 40.62 0.00 0.00 0.00 3100
cause 38.64 48.57 43.04 0.00 0.00 0.00 3500
comparison 66.67 40.00 50.00 0.00 0.00 0.00 500
condition 92.31 80.00 85.71 0.00 0.00 0.00 1500
contrast 58.93 61.11 60.00 0.00 0.00 0.00 5400
elaboration 66.27 73.20 69.57 62.99 63.40 63.19 15300
enablement 60.00 81.82 69.23 88.89 72.73 80.00 1100
evaluation 29.03 36.00 32.14 13.04 12.00 12.50 2500
explanation 38.24 28.89 32.91 20.37 24.44 22.22 4500
joint 61.40 60.34 60.87 43.39 70.69 53.77 11600
manner-means 66.67 28.57 40.00 100 28.57 44.44 700
summary 50.00 31.25 38.46 0.00 0.00 0.00 1600
temporal 55.56 25.00 34.48 100 5.00 9.52 2000
topic-change 0.00 0.00 0.00 0.00 0.00 0.00 900
topic-comment 26.67 36.36 30.77 0.00 0.00 0.00 1100

weighted avg 55.53 56.08 55.22 37.15 38.51 35.47 59200
macro avg 50.64 46.23 46.95 30.64 21.15 21.70 59200

HITS DiscReT

fra.sdrt.annodis P R F1 P R F1 Num.

alternation 100 20.00 33.33 0.00 0.00 0.00 500
attribution 76.92 71.43 74.07 47.06 57.14 51.61 1400
background 27.59 19.51 22.86 0.00 0.00 0.00 4100
comment 13.33 15.38 14.29 0.00 0.00 0.00 1300
conditional 100 16.67 28.57 66.67 66.67 66.67 600
continuation 50.00 47.11 48.51 43.66 51.24 47.15 12100
contrast 44.19 65.52 52.78 0.00 0.00 0.00 2900
e-elaboration 59.41 62.50 60.91 53.54 70.83 60.99 9600
elaboration 46.53 52.81 49.47 35.92 41.57 38.54 8900
explanation 53.33 28.57 37.21 29.41 17.86 22.22 2800
explanation* 0.00 0.00 0.00 0.00 0.00 0.00 200
flashback 0.00 0.00 0.00 0.00 0.00 0.00 100
frame 87.76 87.76 87.76 87.80 73.47 80.00 4900
goal 88.24 75.00 81.08 73.68 70.00 71.79 2000
narration 44.09 56.94 49.70 41.18 48.61 44.59 7200
parallel 0.00 0.00 0.00 0.00 0.00 0.00 500
result 40.00 37.50 38.71 0.00 0.00 0.00 3200
temploc 0.00 0.00 0.00 0.00 0.00 0.00 200

weighted avg 52.27 51.84 51.09 38.79 43.04 40.48 62500
macro avg 46.19 36.48 37.74 26.61 27.63 26.86 62500
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HITS DiscReT

ita.pdtb.luna P R F1 P R F1 Num.

Comparison.
Concession 60.00 65.62 62.69 61.54 75.00 67.61 3200

Comparison.
Contrast 22.22 18.18 20.00 14.29 9.09 11.11 1100

Contingency.Cause 73.49 71.76 72.62 70.24 69.41 69.82 8500
Contingency.
Condition 82.14 69.70 75.41 67.74 63.64 65.62 3300

Contingency.Goal 82.14 88.46 85.19 67.86 73.08 70.37 2600
Expansion 0.00 0.00 0.00 0.00 0.00 0.00 100
Expan-
sion.Alternative 100 71.43 83.33 0.00 0.00 0.00 700

Expansion.
Conjunction 67.92 61.02 64.29 60.00 45.76 51.92 5900

Expansion.
Restatement 54.17 57.78 55.91 0.00 0.00 0.00 4500

Interrupted 100 25.00 40.00 100 50.00 66.67 800
Repetition 68.18 75.00 71.43 0.00 0.00 0.00 2000
Temporal.
Asynchronous 53.57 66.67 59.41 52.00 57.78 54.74 4500

Temporal.Synchrony 50.00 37.50 42.86 0.00 0.00 0.00 800

macro avg 62.60 54.47 56.39 37.97 34.14 35.22 38000
weighted avg 66.78 65.00 65.16 49.41 47.63 48.09 38000

HITS DiscReT

nld.rst.nldt P R F1 P R F1 Num.

antithesis 0.00 0.00 0.00 0.00 0.00 0.00 200
background 14.29 33.33 20.00 0.00 0.00 0.00 300
circumstance 31.58 37.50 34.29 22.22 12.50 16.00 1600
concession 61.54 66.67 64.00 42.11 66.67 51.61 1200
condition 66.67 75.00 70.59 0.00 0.00 0.00 800
conjunction 37.50 47.37 41.86 0.00 0.00 0.00 1900
contrast 40.00 28.57 33.33 0.00 0.00 0.00 700
disjunction 75.00 75.00 75.00 0.00 0.00 0.00 400
elaboration 70.45 65.26 67.76 61.82 71.58 66.34 9500
enablement 50.00 50.00 50.00 100 25.00 40.00 400
evaluation 40.00 100 57.14 14.29 50.00 22.22 200
evidence 0.00 0.00 0.00 0.00 0.00 0.00 600
interpretation 12.50 10.00 11.11 16.67 10.00 12.50 1000
joint 16.67 33.33 22.22 0.00 0.00 0.00 300
justify 50.00 60.00 54.55 66.67 20.00 30.77 1000
list 33.33 16.67 22.22 37.50 25.00 30.00 1200
means 25.00 25.00 25.00 100 25.00 40.00 400
motivation 69.57 55.17 61.54 43.33 44.83 44.07 2900
nonvolitional-cause 37.50 46.15 41.38 30.77 61.54 41.03 1300
nonvolitional-result 57.14 57.14 57.14 35.71 35.71 35.71 1400
otherwise 0.00 0.00 0.00 0.00 0.00 0.00 100
preparation 55.00 57.89 56.41 36.36 42.11 39.02 1900
purpose 100 83.33 90.91 100 83.33 90.91 600
restatement 0.00 0.00 0.00 0.00 0.00 0.00 200
sequence 57.14 40.00 47.06 33.33 50.00 40.00 1000
solutionhood 50.00 50.00 50.00 0.00 0.00 0.00 800
summary 50.00 25.00 33.33 0.00 0.00 0.00 400
volitional-cause 20.00 50.00 28.57 50.00 50.00 50.00 200

macro avg 40.03 42.44 39.84 28.24 24.05 23.22 32500
weighted avg 53.61 51.69 52.04 39.16 40.62 38.26 32500

HITS DiscReT

por.pdtb.crpc P R F1 P R F1 Num.

Comparison 0.00 0.00 0.00 0.00 0.00 0.00 200
Comparison.
Concession 80.37 81.90 81.13 74.75 70.48 72.55 10500

Comparison.
Contrast 50.00 40.00 44.44 40.00 40.00 40.00 500

Comparison.
Similarity 62.50 62.50 62.50 57.14 50.00 53.33 800

Contingency.Cause 72.94 62.63 67.39 60.92 53.54 56.99 9900
Contingency.
Condition 68.75 91.67 78.57 83.33 83.33 83.33 1200

Contingency.
Negative 0.00 0.00 0.00 0.00 0.00 0.00 100

Contingency.Purpose 86.05 94.87 90.24 88.37 97.44 92.68 3900
Expansion.
Conjunction 77.96 83.33 80.56 72.70 81.90 77.03 34800

Expansion.
Disjunction 100 100 100 0.00 0.00 0.00 300

Expansion.
Equivalence 50.00 28.57 36.36 100 14.29 25.00 700

Expansion.Exception 100 50.00 66.67 0.00 0.00 0.00 600
Expansion.
Instantiation 60.00 40.00 48.00 100 20.00 33.33 1500

Expansion.Level 81.56 83.93 82.73 0.00 0.00 0.00 44800
Expansion.Manner 33.33 66.67 44.44 25.00 66.67 36.36 300
Expansion.
Substitution 100 60.00 75.00 28.57 40.00 33.33 500

QAP 0.00 0.00 0.00 0.00 0.00 0.00 100
Temporal.
Asynchronous 77.19 61.97 68.75 67.74 59.15 63.16 7100

Temporal.
Synchronous 73.85 68.57 71.11 0.00 0.00 0.00 7000

macro avg 61.82 56.66 57.78 42.03 35.62 35.11 124800
weighted avg 78.25 78.53 78.14 41.28 41.35 40.66 124800

HITS DiscReT

por.pdtb.tedm P R F1 P R F1 Num.

Comparison.
Concession 52.27 88.46 65.71 43.14 84.62 57.14 2600

Comparison.
Contrast 50.00 5.26 9.52 0.00 0.00 0.00 1900

Comparison.
Similarity 33.33 50.00 40.00 33.33 50.00 40.00 200

Contingency.Cause 81.08 61.22 69.77 69.05 59.18 63.74 4900
Contingency.Cause+
Belief 0.00 0.00 0.00 0.00 0.00 0.00 300

Contingency.
Condition 80.00 80.00 80.00 90.91 66.67 76.92 1500

Contingency.
Condition+
SpeechAct

0.00 0.00 0.00 0.00 0.00 0.00 100

Contingency.Purpose 88.24 100 93.75 100 86.67 92.86 1500
Expansion.
Conjunction 67.54 70.64 69.06 59.84 69.72 64.41 10900

Expansion.
Disjunction 100 100 100 0.00 0.00 0.00 200

Expansion.
Equivalence 0.00 0.00 0.00 0.00 0.00 0.00 300

Expansion.
Instantiation 80.00 30.77 44.44 50.00 7.69 13.33 1300

Expansion.Level-of-
detail 51.32 75.00 60.94 0.00 0.00 0.00 5200

Expansion.Manner 100 66.67 80.00 50.00 33.33 40.00 300
Expansion.
Substitution 20.00 50.00 28.57 50.00 50.00 50.00 200

Hypophora 83.33 71.43 76.92 0.00 0.00 0.00 700
Temporal.
Asynchronous 63.64 30.43 41.18 71.43 21.74 33.33 2300

Temporal.
Synchronous 73.91 85.00 79.07 0.00 0.00 0.00 2000

weighted avg 65.96 64.84 62.73 45.33 43.68 42.35 36400
macro avg 56.93 53.61 52.16 34.32 29.42 29.54 36400

HITS DiscReT

por.rst.cstn P R F1 P R F1 Num.

attribution 100 100 100 100 100 100 1700
background 0.00 0.00 0.00 0.00 0.00 0.00 200
circumstance 75.00 90.00 81.82 66.67 80.00 72.73 1000
comparison 75.00 54.55 63.16 80.00 36.36 50.00 1100
concession 33.33 100 50.00 50.00 100 66.67 100
contrast 50.00 66.67 57.14 0.00 0.00 0.00 300
elaboration 73.33 81.05 77.00 62.70 83.16 71.49 9500
enablement 0.00 0.00 0.00 0.00 0.00 0.00 100
evidence 20.00 33.33 25.00 0.00 0.00 0.00 300
explanation 33.33 10.00 15.38 0.00 0.00 0.00 1000
justify 0.00 0.00 0.00 33.33 16.67 22.22 600
list 68.89 60.78 64.58 57.41 60.78 59.05 5100
means 50.00 100 66.67 100 100 100 100
nonvolitional-cause 16.67 25.00 20.00 0.00 0.00 0.00 400
nonvolitional-result 0.00 0.00 0.00 0.00 0.00 0.00 200
parenthetical 95.83 100 97.87 100 86.96 93.02 2300
purpose 91.67 84.62 88.00 100 61.54 76.19 1300
restatement 0.00 0.00 0.00 0.00 0.00 0.00 100
sequence 37.50 60.00 46.15 50.00 40.00 44.44 1000
volitional-cause 0.00 0.00 0.00 100 33.33 50.00 300
volitional-result 0.00 0.00 0.00 50.00 20.00 28.57 500

macro avg 39.07 46.00 40.61 45.24 38.99 39.73 27200
weighted avg 66.98 68.75 67.19 62.98 64.71 62.31 27200

HITS DiscReT

rus.rst.rrt P R F1 P R F1 Num.

antithesis 0.00 0.00 0.00 0.00 0.00 0.00 200
attribution 78.69 82.76 80.67 85.00 87.93 86.44 5800
background 25.86 22.06 23.81 0.00 0.00 0.00 6800
cause 56.34 57.69 57.01 0.00 0.00 0.00 20800
cause-effect 60.00 22.22 32.43 0.00 0.00 0.00 2700
comparison 30.95 31.71 31.33 23.53 19.51 21.33 4100
concession 76.92 74.07 75.47 68.97 74.07 71.43 2700
condition 79.29 77.46 78.36 0.00 0.00 0.00 17300
contrast 68.59 64.85 66.67 0.00 0.00 0.00 20200
effect 0.00 0.00 0.00 0.00 0.00 0.00 100
elaboration 60.36 67.33 63.65 58.69 71.33 64.39 70100
evaluation 48.00 44.44 46.15 48.96 34.81 40.69 13500
evidence 28.57 24.66 26.47 0.00 0.00 0.00 7300
interpretation-
evaluation 18.75 20.00 19.35 0.00 0.00 0.00 1500

joint 70.51 67.36 68.90 68.05 68.55 68.30 67100
preparation 40.78 48.99 44.51 55.56 57.05 56.29 14900
purpose 85.37 76.09 80.46 78.72 80.43 79.57 9200
restatement 66.67 66.67 66.67 77.27 70.83 73.91 2400
sequence 60.00 54.00 56.84 56.67 56.67 56.67 15000
solutionhood 8.70 7.69 8.16 4.55 3.85 4.17 2600

macro avg 48.22 45.50 46.35 31.30 31.25 31.16 284300
weighted avg 61.14 60.99 60.87 44.73 47.41 45.86 284300
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HITS DiscReT

spa.rst.rststb P R F1 P R F1 Num.

antithesis 60.00 56.25 58.06 71.43 62.50 66.67 1600
background 58.33 56.00 57.14 0.00 0.00 0.00 2500
cause 45.45 35.71 40.00 0.00 0.00 0.00 1400
circumstance 58.82 62.50 60.61 69.23 56.25 62.07 1600
concession 70.00 70.00 70.00 70.00 70.00 70.00 1000
condition 100 61.54 76.19 0.00 0.00 0.00 1300
conjunction 0.00 0.00 0.00 0.00 0.00 0.00 300
contrast 72.73 66.67 69.57 0.00 0.00 0.00 1200
elaboration 47.58 66.29 55.40 50.36 77.53 61.06 8900
evaluation 0.00 0.00 0.00 0.00 0.00 0.00 400
evidence 16.67 7.69 10.53 0.00 0.00 0.00 1300
interpretation 50.00 36.36 42.11 14.29 9.09 11.11 1100
joint 44.44 53.33 48.48 43.75 46.67 45.16 1500
justify 60.00 30.00 40.00 0.00 0.00 0.00 1000
list 50.00 35.71 41.67 42.55 35.71 38.83 5600
means 68.18 93.75 78.95 71.43 93.75 81.08 1600
motivation 50.00 33.33 40.00 0.00 0.00 0.00 300
preparation 88.89 85.11 86.96 91.49 91.49 91.49 4700
purpose 100 100 100 100 90.91 95.24 1100
restatement 0.00 0.00 0.00 0.00 0.00 0.00 100
result 48.48 72.73 58.18 0.00 0.00 0.00 2200
sequence 22.22 18.18 20.00 50.00 54.55 52.17 1100
solutionhood 75.00 50.00 60.00 0.00 0.00 0.00 600
summary 0.00 0.00 0.00 0.00 0.00 0.00 100
unless 0.00 0.00 0.00 0.00 0.00 0.00 100

macro avg 47.47 43.65 44.55 26.98 27.54 27.00 42600
weighted avg 56.85 57.28 55.95 41.60 46.24 43.16 42600

HITS DiscReT

spa.rst.sctb P R F1 P R F1 Num.

antithesis 0.00 0.00 0.00 0.00 0.00 0.00 300
background 28.57 50.00 36.36 0.00 0.00 0.00 400
circumstance 20.00 33.33 25.00 50.00 33.33 40.00 300
condition 100 100 100 0.00 0.00 0.00 100
conjunction 0.00 0.00 0.00 0.00 0.00 0.00 100
contrast 80.00 80.00 80.00 0.00 0.00 0.00 500
disjunction 100 50.00 66.67 0.00 0.00 0.00 200
elaboration 83.33 56.34 67.23 77.19 61.97 68.75 7100
enablement 0.00 0.00 0.00 0.00 0.00 0.00 100
evidence 0.00 0.00 0.00 0.00 0.00 0.00 100
interpretation 66.67 66.67 66.67 100 33.33 50.00 300
list 78.12 75.76 76.92 69.44 75.76 72.46 3300
means 50.00 100 66.67 50.00 100 66.67 200
motivation 0.00 0.00 0.00 0.00 0.00 0.00 100
preparation 47.62 100 64.52 64.29 90.00 75.00 1000
purpose 100 85.71 92.31 85.71 85.71 85.71 700
result 60.00 60.00 60.00 0.00 0.00 0.00 500
sequence 25.00 20.00 22.22 37.50 60.00 46.15 500
summary 0.00 0.00 0.00 0.00 0.00 0.00 100

macro avg 44.17 46.20 43.40 28.11 28.43 26.57 15900
weighted avg 70.88 61.64 64.16 61.34 57.23 58.22 15900

HITS DiscReT

tha.pdtb.tdtb P R F1 P R F1 Num.

Comparison.
Concession 93.88 93.24 93.56 92.95 97.97 95.39 14800

Comparison.
Contrast 83.33 86.21 84.75 87.21 86.21 86.71 8700

Comparison.
Similarity 100 100 100 100 100 100 100

Contingency.Cause 98.09 99.23 98.66 95.13 98.07 96.58 25900
Contingency.Cause+
Belief 0.00 0.00 0.00 0.00 0.00 0.00 300

Contingency.
Condition 93.41 91.40 92.39 92.31 90.32 91.30 9300

Contingency.
Condition+
SpeechAct

0.00 0.00 0.00 0.00 0.00 0.00 100

Contingency.
Negative-Condition 0.00 0.00 0.00 0.00 0.00 0.00 300

Contingency.Purpose 100 100 100 100 97.80 98.89 9100
Expansion.
Conjunction 99.61 97.69 98.64 96.15 96.15 96.15 26000

Expansion.
Disjunction 100 100 100 0.00 0.00 0.00 2800

Expansion.Exception 100 100 100 0.00 0.00 0.00 200
Expan-
sion.GenExpansion 99.52 100 99.76 0.00 0.00 0.00 20600

Expansion.
Instantiation 100 100 100 100 100 100 100

Expansion.Level-of-
detail 0.00 0.00 0.00 0.00 0.00 0.00 100

Expansion.
Substitution 66.67 100 80.00 0.00 0.00 0.00 200

Temporal.
Asynchronous 93.10 95.07 94.08 93.15 95.77 94.44 14200

Temporal.
Synchronous 65.00 81.25 72.22 0.00 0.00 0.00 1600

macro avg 71.81 74.67 73.00 47.61 47.91 47.75 134400
weighted avg 95.48 95.83 95.64 75.96 77.01 76.47 134400

HITS DiscReT

tur.pdtb.tdb P R F1 P R F1 Num.

Comparison.
Concession 53.66 66.67 59.46 59.26 48.48 53.33 3300

Comparison.
Concession+
SpeechAct

0.00 0.00 0.00 0.00 0.00 0.00 200

Comparison.
Contrast 71.43 23.81 35.71 41.67 23.81 30.30 2100

Comparison.
Similarity 66.67 66.67 66.67 50.00 33.33 40.00 300

Contingency.Cause 44.83 30.23 36.11 32.31 48.84 38.89 4300
Contingency.Cause+
Belief 0.00 0.00 0.00 0.00 0.00 0.00 400

Contingency.Cause+
SpeechAct 0.00 0.00 0.00 0.00 0.00 0.00 300

Contingency.
Condition 50.00 45.45 47.62 50.00 27.27 35.29 1100

Contingency.Negative-
condition

0.00 0.00 0.00 0.00 0.00 0.00 200

Contingency.Purpose 90.00 75.00 81.82 88.89 66.67 76.19 1200
Expansion.
Conjunction 51.06 66.06 57.60 44.77 70.64 54.80 10900

Expan-
sion.Correction 0.00 0.00 0.00 0.00 0.00 0.00 200

Expansion.
Disjunction 60.00 100 75.00 0.00 0.00 0.00 300

Expansion.
Equivalence 50.00 20.00 28.57 0.00 0.00 0.00 500

Expansion.Exception 0.00 0.00 0.00 0.00 0.00 0.00 100
Expansion.
Instantiation 20.00 12.50 15.38 100 12.50 22.22 800

Expansion.Level-of-
detail 0.00 0.00 0.00 0.00 0.00 0.00 4500

Expansion.Manner 50.00 25.00 33.33 40.00 33.33 36.36 1200
Expansion.
Substitution 0.00 0.00 0.00 0.00 0.00 0.00 200

Hypophora 0.00 0.00 0.00 0.00 0.00 0.00 300
Temporal.
Asynchronous 72.34 57.63 64.15 70.97 37.29 48.89 5900

Temporal.
Synchronous 52.38 56.41 54.32 0.00 0.00 0.00 3900

macro avg 33.29 29.34 29.81 26.27 18.28 19.83 42200
weighted avg 47.62 45.50 45.13 38.70 37.44 35.46 42200

HITS DiscReT

tur.pdtb.tedm P R F1 P R F1 Num.

Comparison.
Concession 56.10 88.46 68.66 47.50 73.08 57.58 2600

Comparison.
Concession+
SpeechAct

0.00 0.00 0.00 0.00 0.00 0.00 100

Comparison.
Contrast 66.67 16.67 26.67 40.00 50.00 44.44 1200

Comparison.
Similarity 100 37.50 54.55 50.00 25.00 33.33 800

Contingency.Cause 48.94 46.00 47.42 52.27 46.00 48.94 5000
Contingency.Cause+
Belief 0.00 0.00 0.00 0.00 0.00 0.00 600

Contingency.Cause+
SpeechAct 0.00 0.00 0.00 0.00 0.00 0.00 100

Contingency.
Condition 62.50 78.95 69.77 68.75 57.89 62.86 1900

Contingency.Negative-
condition

0.00 0.00 0.00 0.00 0.00 0.00 100

Contingency.Purpose 88.24 71.43 78.95 94.44 80.95 87.18 2100
Expansion 0.00 0.00 0.00 0.00 0.00 0.00 100
Expansion.
Conjunction 50.89 61.96 55.88 43.61 63.04 51.56 9200

Expansion.
Disjunction 100 100 100 0.00 0.00 0.00 500

Expansion.
Equivalence 66.67 28.57 40.00 0.00 0.00 0.00 700

Expansion.Exception 0.00 0.00 0.00 0.00 0.00 0.00 200
Expansion.
Instantiation 25.00 9.09 13.33 66.67 18.18 28.57 1100

Expansion.Level-of-
detail 37.25 50.00 42.70 0.00 0.00 0.00 3800

Expansion.Manner 0.00 0.00 0.00 60.00 42.86 50.00 700
Expansion.
Substitution 88.89 72.73 80.00 60.00 54.55 57.14 1100

Hypophora 75.00 42.86 54.55 0.00 0.00 0.00 700
Temporal.
Asynchronous 53.33 40.00 45.71 20.00 15.00 17.14 2000

Temporal.
Synchronous 56.52 72.22 63.41 0.00 0.00 0.00 1800

macro avg 44.36 37.11 38.25 27.42 23.93 24.49 36400
weighted avg 53.49 54.12 51.93 39.13 41.21 38.87 36400
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HITS DiscReT

zho.dep.scidtb P R F1 P R F1 Num.

attribution 92.31 100 96.00 90.91 83.33 86.96 1200
bg-compare 0.00 0.00 0.00 0.00 0.00 0.00 300
bg-general 62.07 75.00 67.92 65.38 70.83 68.00 2400
bg-goal 0.00 0.00 0.00 0.00 0.00 0.00 400
comparison 66.67 100 80.00 66.67 100 80.00 200
condition 0.00 0.00 0.00 0.00 0.00 0.00 100
contrast 50.00 57.14 53.33 0.00 0.00 0.00 700
elab-addition 65.75 66.67 66.21 61.18 72.22 66.24 7200
elab-process_step 50.00 66.67 57.14 100 16.67 28.57 600
enablement 77.27 73.91 75.56 70.83 73.91 72.34 2300
evaluation 90.91 76.92 83.33 78.57 84.62 81.48 1300
exp-reason 0.00 0.00 0.00 0.00 0.00 0.00 100
joint 69.44 78.12 73.53 67.65 71.88 69.70 3200
manner-means 33.33 25.00 28.57 50.00 25.00 33.33 400
progression 0.00 0.00 0.00 0.00 0.00 0.00 400
result 75.00 50.00 60.00 0.00 0.00 0.00 600
temporal 50.00 100 66.67 0.00 0.00 0.00 100

macro avg 46.04 51.14 47.54 38.31 35.20 34.51 21500
weighted avg 64.79 67.44 65.77 59.60 62.33 59.83 21500

HITS DiscReT

zho.pdtb.cdtb P R F1 P R F1 Num.

Alternative 0.00 0.00 0.00 0.00 0.00 0.00 100
Causation 0.00 0.00 0.00 0.00 0.00 0.00 5300
Conditional 0.00 0.00 0.00 0.00 0.00 0.00 2200
Conjunction 59.52 100 74.63 0.00 0.00 0.00 45000
Contrast 0.00 0.00 0.00 0.00 0.00 0.00 4600
Expansion 100 1.64 3.23 0.00 0.00 0.00 12200
Progression 0.00 0.00 0.00 0.00 0.00 0.00 900
Purpose 0.00 0.00 0.00 87.50 50.00 63.64 1400
Temporal 0.00 0.00 0.00 77.50 75.61 76.54 4100

weighted avg 51.43 59.63 44.82 5.81 5.01 5.32 75800
macro avg 17.72 11.29 8.65 18.33 13.96 15.58 75800

HITS DiscReT

zho.rst.gcdt P R F1 P R F1 Num.

adversative-
antithesis 50.00 25.00 33.33 0.00 0.00 0.00 800

adversative-
concession 47.06 57.14 51.61 48.78 71.43 57.97 2800

adversative-
contrast 48.57 58.62 53.12 39.47 51.72 44.78 2900

attribution-
negative 100 100 100 100 100 100 100

attribution-
positive 93.02 93.02 93.02 83.67 95.35 89.13 4300

causal-cause 51.85 37.84 43.75 44.74 45.95 45.33 3700
causal-result 12.50 9.09 10.53 14.29 4.55 6.90 2200
context-
background 30.77 44.44 36.36 38.46 41.67 40.00 3600
context-
circumstance 91.18 73.81 81.58 83.87 61.90 71.23 4200

contingency-
condition 90.48 65.52 76.00 80.95 58.62 68.00 2900

elaboration-
additional 27.55 49.09 35.29 22.95 25.45 24.14 5500

elaboration-
attribute 91.51 79.51 85.09 94.39 82.79 88.21 12200

evaluation-
comment 23.53 36.36 28.57 30.77 36.36 33.33 1100

explanation-
evidence 41.18 36.84 38.89 0.00 0.00 0.00 3800

explanation-
justify 11.54 14.29 12.77 0.00 0.00 0.00 2100

explanation-
motivation 0.00 0.00 0.00 0.00 0.00 0.00 800

joint-disjunction 0.00 0.00 0.00 50.00 33.33 40.00 300
joint-list 63.82 65.13 64.47 0.00 0.00 0.00 19500
joint-other 13.16 15.62 14.29 25.00 15.62 19.23 3200
joint-sequence 71.05 44.26 54.55 0.00 0.00 0.00 6100
mode-manner 66.67 33.33 44.44 33.33 16.67 22.22 600
mode-means 50.00 53.85 51.85 45.45 38.46 41.67 1300
organization-
heading 86.21 73.53 79.37 73.33 64.71 68.75 3400

organization-
phatic 0.00 0.00 0.00 0.00 0.00 0.00 100

organization-
preparation 58.33 58.33 58.33 75.76 69.44 72.46 3600

purpose-attribute 0.00 0.00 0.00 0.00 0.00 0.00 200
purpose-goal 56.00 56.00 56.00 0.00 0.00 0.00 2500
restatement-
partial 7.69 11.11 9.09 13.33 22.22 16.67 900
restatement-
repetition 0.00 0.00 0.00 0.00 0.00 0.00 100

topic-question 83.33 100 90.91 55.56 100 71.43 500

weighted avg 59.70 56.35 57.25 37.68 35.47 36.10 95300
macro avg 45.57 43.06 43.44 35.14 34.54 34.05 95300

HITS DiscReT

zho.rst.sctb P R F1 P R F1 Num.

antithesis 50.00 33.33 40.00 0.00 0.00 0.00 300
background 100 25.00 40.00 0.00 0.00 0.00 400
circumstance 66.67 50.00 57.14 0.00 0.00 0.00 400
condition 100 100 100 0.00 0.00 0.00 100
conjunction 0.00 0.00 0.00 0.00 0.00 0.00 200
contrast 100 20.00 33.33 0.00 0.00 0.00 500
disjunction 100 50.00 66.67 0.00 0.00 0.00 200
elaboration 78.18 62.32 69.35 68.97 57.97 62.99 6900
enablement 0.00 0.00 0.00 0.00 0.00 0.00 100
evidence 100 100 100 0.00 0.00 0.00 100
interpretation 25.00 33.33 28.57 0.00 0.00 0.00 300
list 62.50 78.12 69.44 55.56 62.50 58.82 3200
means 33.33 50.00 40.00 0.00 0.00 0.00 200
motivation 0.00 0.00 0.00 0.00 0.00 0.00 100
preparation 50.00 100 66.67 66.67 83.33 74.07 1200
purpose 50.00 33.33 40.00 20.00 16.67 18.18 600
restatement 0.00 0.00 0.00 0.00 0.00 0.00 100
result 28.57 50.00 36.36 0.00 0.00 0.00 400
sequence 33.33 40.00 36.36 33.33 20.00 25.00 500
summary 0.00 0.00 0.00 0.00 0.00 0.00 100

macro avg 48.88 41.27 41.20 12.23 12.02 11.95 15900
weighted avg 65.62 60.38 60.06 47.94 45.28 46.24 15900
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Abstract

This paper introduces DiscoFlan, our system
for the DISRPT 2023 shared task on discourse
relation classification. We leverage recent ad-
vances in NLP finetuning and use Flan-T5 as a
multilingual discourse relation classifier. Our
model uses multilingual instructional prompts
to finetune on datasets from different languages
and generate relation labels as classification
outputs. The model’s hyperparameters are
tuned to enable efficient label generation by
finetuning on low-resource datasets. Moreover,
we introduce a post-processing step to tackle
the problem of label mismatches caused by the
generative nature of a seq2seq model by using
the label distribution. In contrast to the previ-
ous state-of-the-art model, our approach elimi-
nates the need for hand-crafted features in com-
puting the discourse relation classes. Overall,
DiscoFlan showcases how instruction finetun-
ing can perform multilingual discourse relation
classification for the DISRPT 2023 discourse
relation classification shared task.

1 Introduction

Discourse Relation Classification (DRC) is a
discourse-level task that requires the identifica-
tion of discourse relations between text segments
in a document. This low-resourced task contains
multiple subtasks with different languages and for-
malisms. The numbers of unique labels vary from
9 in zho.pdtb.cdtb to 33 in nld.rst.nldt.

We train DiscoFlan and compare it with the cur-
rent state-of-the-art model as well as a multilingual
classification baseline on the DISRPT datasets and
present our results for the 2023 DISRPT sharedtask
for Discourse Relation Classification.

Supervised Large language models (LLMs)
trained with human labels are truly a paradigm
shift due to their zero-shot and low-resource capa-
bilities. Improved language representation mech-
anisms and utilization of large pre-training cor-
pora of LLMs have led to significant advancements

in two key areas: zero-shot capabilities and low-
resource prompt learning. In this paper, we focus
on low-resource DRC. Such breakthroughs are a
testament to the power of large-scale pretraining.
With enhanced representations, language models
can generalize and transfer knowledge across dif-
ferent tasks and domains, enabling impressive zero-
shot capabilities where models can perform well
on tasks they were not explicitly trained on. These
improved zero-shot learners have the capability to
learn efficiently on low-resource complex tasks like
Relation Classification. The availability of even
limited amounts of training data allows for effec-
tive low-resource prompt learning. These advance-
ments highlight the immense potential of LLMs
and their ability to tackle the real-world problem
of DRC.

Our main contributions are: 1. We perform in-
struction finetuning of multilingual prompts with
DiscoFlan for DRC tasks of different formalisms
and languages to develop a seq2seq generative la-
bel classification system. 2. We use a simple post-
processing stage harnessing the label distributions
using majority label distributions for low resource
dataset.1

2 Related Work

2.1 Instruction Finetuning

LLMs, such as InstructGPT (Ouyang et al., 2022),
ChatGPT, FLAN-T5-XXL(13B) (Chung et al.,
2022), LLaMA (Touvron et al., 2023) have revolu-
tionized natural language processing. Fine-tuning,
a process of training these models on specific tasks
enhances their performance and is typically used
for low-resource classification where creating large
annotated datasets can be difficult resulting in small
dataset sizes. Instruction fine-tuning leverages the
models’ powerful representations and contextual

1We release our code here: https://github.com/
erzaliator/DiscoFlan
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understanding to achieve superior accuracy and effi-
ciency in a wide range of NLP tasks. This approach
enables adaptation of large language models to suit
specific applications, making them valuable tools
for natural language understanding and generation.

FlanT5 (Chung et al., 2022) is a generative LLM
that has gained significant attention in the field of
natural language processing (NLP). It is based on
the T5 (Text-To-Text Transfer Transformer) archi-
tecture (Kale and Rastogi, 2020) and is pre-trained
on a massive corpus of text data. FlanT5, demon-
strates strong multi task generalization capabili-
ties through the training paradigm of instruction
finetuning, a process that involves further training
the base model on specific NLP tasks with task-
specific data and instructions. By providing ex-
plicit instructions during the finetuning phase, the
model’s underlying representations and contextual
understanding can be harnessed to achieve superior
performance in various NLP applications.

Motivated by the strong NLU capabilities of
FlanT5 (Chung et al., 2022), similarly, we finetune
FlanT5 to learn discourse relation classification by
posing it as a seq2seq generative task. For the re-
spective DISRPT discourse relation datasets, the
model is tasked with generating sequences that cor-
respond to the discourse relations from that dataset.
We perform instruction finetuning on each individ-
ual dataset by using a suitable prompt template to
the sentence pairs to harness the structured prompt
input format that FlanT5 is pre-trained on for multi-
task reasoning.

Figure 1: Prompt template for DRC in different lan-
guages for instruction finetuning. We translate the
prompt across datasets.

2.2 Multilingual Discourse Classification

Discourse relations refer to the connections and
dependencies between different parts of a text
that contribute to its overall coherence and mean-
ing. Various annotation frameworks have been pro-
posed for the task of DRC such as RST(Carlson
et al., 2002), PDTB(Prasad et al., 2008) and
SDRT(Lascarides and Asher, 2007) among others.
The Discourse Relation Parsing and Treebanking
(DISRPT) provides DRC datasets across various
languages and formalisms in the form of a sentence
pair classification task (Zeldes et al., 2021).

Kurfalı and Östling (2019) applied cross-lingual
transfer learning on the DRC task but only eval-
uated in a zero-shot setting. Their results were
considerably below the state-of-the-art system. Dis-
coDisco (Gessler et al., 2021) obtains the state-of-
the-art performance by using hand-crafted features
to descibe the discourse segments and training with
individual checkpoints for each language.

3 Methodology

3.1 Modelling Classification as a Refined
Label Generation task

With instruction finetuning, the model learns to
generate discourse labels given a prompt encoding
the input sentence pair. The decoded output is
passed through a refinement stage which ensures
that mismatches are removed based on the dataset
label distribution.

3.1.1 Generating labels using seq2seq model

Classification is typically performed using Au-
toEncoder models which are pre-trained on data-
denoising objectives such as Mask Language Mod-
elling. These models are finetuned for classifica-
tion with a final prediction layer (Jin et al., 2020)
to learn label representations from the model’s hid-
den representations. FlanT5 (Chung et al., 2022)
is an EncoderDecoder model which was trained
with Instruction Finetuning objective. On the other
hand, current-state-of-the-art Discourse Relation
Classifiers are AutoEncoder based architectures
(Gessler et al., 2021; Jiang et al., 2022) which use
a prediction layer to encode the labels as discrete
categories.

Instruction-based prompts: The input is for-
mulated as an instruction-based prompt to utilize
the Instruction Finetuning capabilities of FlanT5.
It is modified as shown in Figure 1.
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DiscoFlan: The FlanT5 decoder is adopted to
generate discourse relation labels. The model is
called DiscoFlan as the decoder hyperparameters
are adjusted to generate short sequenced labels and
the model is finetuned on DRC datasets.

Finetuning: The model is trained with standard
loss for training EncoderDecoder models. During
training, through a conditional generation cross
entropy loss meant for sequence generation, the
model learns to generate a sequence corresponding
to the relation label rather than a typical classifi-
cation cross entropy loss used to learn categorical
representations.

Generating Discourse Relation labels: During
inference, the decoder’s output tokens are used for
generating discourse relation labels. This has the
added benefit of utilizing the task representations
of the FlanT5 to generate sequences grounded in
real-world knowledge to incorporate label meaning.
This grounds the meaning of the relation labels to
the model’s generative space which is significantly
richer than using one-hot representations. (Yung
et al., 2022) also note that using one-hot encod-
ing for label representation ignores the inherent
ambiguity of discourse relation labels.

We can investigate the effect of using special nu-
meric tokens for classification, however, we leave
that to future work.

3.1.2 Refinement logic
While working with discourse relation classifiers it
is empirically observed that relation classification
models are prone to a large number of false pre-
dictions of the majority label. Additionally, due to
a lack of training data which is generally the case
for DRC datasets, DiscoFlan generates substantial
mismatches. These mismatches can be partial or
complete. In order to alleviate the issue of mis-
matches and to construct a system submission for
the shared task we propose a processing step after
the label generation stage. This allows the model’s
generated outputs to be refined to suit the shared
task’s analysis criterion i.e. the outputs always
belong to the set of dataset labels.

Mismatches are strings that do not belong to the
label space. For example - The RST label elabo-
ration being incorrectly generated as elab by the
model. While developing DiscoFlan it was ob-
served that a significant portion of the mismatches
were of the form - elaboration of, elaborated, elab-
orating. Hence, a simple post-processing stage is
used to refine the decoder’s generated sequences

during evaluation. After removing the noisy affixes
(such as "-er", "-ed", etc.), the remaining lemma is
matched against the training set’s labels (for out-of-
domain datasets, the validation set labels are used).
The label matching with the lemma is used as the
final output.

When the prediction lemma does not belong to
the label space, it is replaced with the majority label
of the training dataset. Figure 2 provides such an
example.

This modification is denoted as DiscoFlan+Ref.

Figure 2: Refinement stage for the decoded output im-
plemented for DiscoFlan+Ref.

3.2 Baseline (Xlm-R classifier)
DiscoFlan is a multilingual model whereas previ-
ous models for DRC have been monolingual with
separate language models for each dataset. In order
to assess the impact of using multilingual represen-
tations, we also compare our results with Xlm-R
(Conneau et al., 2020) model for multilingual rep-
resentations which has been shown to perform well
on NLI tasks across a diverse set of languages.

3.2.1 Training Setup
The performances of DiscoFlan and other variants
are assessed for Discourse Relation Classification
using the weights provided by HuggingFace library
2. Due to practical considerations, FlanT5-small is
used (specifically, google/flan-t5-small is used as
the model type). The FlanT5-small model consists
of significantly lesser parameters as compared to
FlanT5-base.

For comparability, the same hyperparameters
are kept for all models across all language pairs. A
batch size of 16 is used for all runs. The models
are trained for 50 epochs with an Early Stopping
patience of 12 calls. 5 or 10 epochs are used to

2https://huggingface.co/docs/transformers/
model_doc/flan-t5
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train the larger datasets. Details of the epoch hyper-
parameter can be found in our code. The smaller
datasets are trained with a high learning rate, 1e−3
while the larger datasets use a smaller learning rate
of 1e− 5.

The huggingface Transformer and Pytorch li-
brary are used. Each instance of a model is run on
a 32 GB Nvidia Tesla V100 GPU card.

3.2.2 Model Setup
It is noted that raw generations are sensitive to
the model parameters - max generation length, min
generation length. Figure 4 shows the average label
length for the datasets. The average length varies
from 8 to 22 characters within the shared task.

The minimum generation length and maximum
generation length are set on a per-dataset basis.
Readers are suggested to refer to our code to obtain
these values for each dataset.

Reducing the beam width improves the quality
of generations. A smaller beam width means that
the model only considers a limited number of can-
didates at each decoding step. When generating
small text, such as labels for classification tasks,
small beam width is suitable. Additionally, smaller
beam width leads to faster model convergence as
the generation will favour a specific set of candi-
dates early on. A beam width of 4 is used.

4 Results

4.1 Learning seq2seq representations
We train DiscoFlan on the DISRPT datasets and
present our results for the 2023 DISRPT shared-
task for Discourse Relation Classification. Firstly,
we make predictions using raw generated tokens.
The results are presented in Table 1 (column Dis-
coFlan). Secondly, we apply simple refinement
logic to exploit the distribution of discourse labels.
The results are also presented in Table 1 (column
DiscoFlan+Ref).

5 Analysis

5.1 Refinement improves low resource
relation classification

Table 1 shows how the refinement logic helps the
model to infer better labels. We find that super-
vision alone is not enough to produce good la-
bels. Many of the labels that the model generates
are not in the label space. We fix this by replac-
ing them with the most common label prediction.
This improves the model performance for all the

datasets. The 2023 DISRPT sharedtask adds 11
more datasets to the 15 datasets that the previous
best models used. DiscoFlan+Ref does not use
hand crafted features, but it is close to the best
model for fas.rst.rpstc. We note that the model of-
ten overfits on one label. This means that we need
to improve the instruction fine-tuning, because just
using the text and a suitable loss function is not
sufficient.

Figure 3: Labels predicted by DiscoFlan for datasets
eng.pdtb.pdtb, fas.rst.prstc, zho.rst.sctb

Additionally, DiscoFlan+Ref outperforms the
DiscoFlan model for low-resource datasets as it
resolves mismatches. This is due to the fact that
language generation requires a large amount of
data for finetuning. Mismatches are also subse-
quently higher for generative models. Refinement
addresses the issue of complete and partial mis-
matching caused to generation issues.

This highlights that weak label learners can be
augmented with simple distributional logic to im-
prove model classification. The column "Probs"
denotes the accuracy achieved by always predicting
the majority label. This chance probability bounds
the gains that can achieved by DiscoFlan+Ref.

Figure 3 shows the labels produced for three
sample dataset for DiscoFlan. In the case for com-
plex labels like eng.pdtb.pdtb, the model is prone to
generating out-of-vocabulary labels. Where the la-
bels are not significantly complex, the model learns
to overfit on a single label.

Note that Xlm-R and DiscoDisco 3 are also
prone to majority label generation.

6 Conclusion and Future Work

In conclusion, our paper introduces DiscoFlan, a
multilingual discourse relation classifier submitted
for the DISRPT 2023 shared task. We addressed

3The numbers for DiscoDisco reported in Table 1 are taken
from the paper
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Corpus DD w/ feats. DD w/o feats. DiscoFlan DiscoFlan+Ref Baseline Probs
deu.rst.pcc 39.23 33.85 0.00 13.08 15.51 9.70
eng.dep.covdtb na na 0.00 50.15 na 50.25*
eng.dep.scidtb na na 0.00 34.12 na 34.59
eng.pdtb.pdtb 74.44 75.63 0.00 24.41 66.95 27.92
eng.pdtb.tedm na na 0.00 33.05 na 29.6*
eng.rst.gum 66.76 62.65 0.00 25.39 53.07 21.86
eng.rst.rstdt 67.1 66.45 0.00 36.94 62.47 40.33
eng.sdrt.stac 65.03 59.67 0.00 22.65 43.4 23.74
eus.rst.ert 60.62 59.59 7.96 28.61 22.74 21.4
fas.rst.prstc 52.53 51.18 19.59 45.44 34.01 23.78
fra.sdrt.annodis 46.4 48.32 19.36 19.36 33.12 20.50
ita.pdtb.luna na na 0.00 22.37 na 22.3
nld.rst.nldt 55.21 52.15 0.00 35.08 33.84 26.43
por.pdtb.crpc na na 7.93 43.83 na 32.1
por.pdtb.tedm na na 0.00 29.95 na 25.1*
por.rst.cstn 64.34 67.28 0.36 35.29 58.7 27.74
rus.rst.rrt 66.44 65.46 0.00 23.60 58.05 23.53
spa.rst.rststb 54.23 54.23 5.86 26.76 31.53 20.17
spa.rst.sctb 66.04 61.01 0.00 44.65 46.12 34.16
tha.pdtb.tdtb na na 0.00 19.35 na 23.03
tur.pdtb.tdb 60.09 57.58 36.49 36.49 35.23 25.05
tur.pdtb.tedm na na 35.71 35.71 na 27.10*
zho.dep.scidtb na na 29.00 33.49 48.72 30.92
zho.rst.gcdt na na 59.36 59.37 na 18.93
zho.rst.sctb 64.15 64.15 0.00 20.46 47.92 33.25
zho.pdtb.cdtb 86.49 87.34 0.00 43.40 na 66.01

Table 1: Comparing results of Relation Classification results against Xlm-R baseline and state-of-the-art Dis-
CoDisCo (DD) Gessler et al. (2021) in terms of accuracy. We report the accuracy from the DISRPT 2023 sharedtask
for DiscoFlan+Ref. Using the released test set and metric, we also report the accuracy for DiscoFlan. Improved
numbers are denoted in bold. Accuracy of the current year’s new shared task datasets are underlined where model
outperforms chance probability.
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Figure 4: Average unique Label sequence length

the challenge of mismatched in seq2seq models by
leveraging label distribution information for label
generation.

Our approach eliminates the need for hand-
crafted features and introduces a novel label genera-
tion mechanism that anchors the labels to a fixed set.
Emperical results demostrate promising results for
DiscoFlan+Ref as well as DiscoFlan compared to
the state-of-the-art model and a multilingual base-
line.

We analyzed the limitations of multilingual mod-
els as weak learners and showed that larger models
with richer pre-training objectives, in the form of
instruction fine-tuning, yield more meaningful rep-
resentations.

Post-processing refinement logic improves low-
resource relation classification, as evidenced by
the consistent outperformance of DiscoFlan+Ref
over the baseline model. It addresses issues of
mismatches caused by generation problems, lead-
ing to enhanced classification accuracy. Our find-
ings highlight the potential of augmenting weak
label learners with distributional logic to improve
model classification. DiscoFlan showcases instruc-
tion finetuning for multilingual discourse relation
classification for the DISRPT 2023 shared task and
provides valuable insights for future research in
this area.

We recognize the potential of larger models to
improve prediction quality; however, due to con-
straints in terms of resources and time, we were
unable to test the performance of Flan-T5-Large

in our study. Furthermore, we acknowledge that
further advancements in decoding strategies and
imporved prompts have the potential to enhance
label representations and generation. In our future
work, we intend to explore these topics to enhance
our current models.

Limitations

While using the majority label solves the prob-
lem of handing out-of-vocabulary labels during
fine-tuning, we acknowledge that label refinement
method relies on the majority label. This makes a
strong assumption about our dataset bias, namely,
that the majority label outnumbers the rest of the
labels significantly to impact accuracy. Hence, this
method may not be applicable to well-balanced
datasets.

We also note that simply predicting the majority
label is simple method of label prediction which
does not generalized to new unseen datasets. Im-
proving label prediction by enriching datasets man-
ually or automatically might make the task more
representative of natural data.

Using larger models can improve model predic-
tion however due to time and machine constraints
we leave the evaluation using FlanT5-large for fu-
ture work.

Ethics Statement

We note that low resource classifiers are prone to
overfitting. We encourage users to thoroughly anal-
yse the predicted labels before using our provided
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Abstract

This paper presents the results obtained by the
MELODI team for the three tasks proposed
within the DISRPT 2023 shared task on dis-
course: segmentation, connective identification,
and relation classification. The competition
involves corpora in various languages in sev-
eral underlying frameworks, and proposes two
tracks depending on the presence or not of an-
notations of sentence boundaries and syntactic
information. For these three tasks, we rely on a
transformer-based architecture, and investigate
several optimizations of the models, including
hyper-parameter search and layer freezing. For
discourse relations, we also explore the use
of adapters—a lightweight solution for model
fine-tuning—and introduce relation mappings
to partially deal with the label set explosion we
are facing within the setting of the shared task
in a multi-corpus perspective. In the end, we
propose one single architecture for segmenta-
tion and connectives, based on XLM-RoBERTa
large, freezed at lower layers, with new state-
of-the-art results for segmentation, and we pro-
pose 3 different models for relations, since the
task makes it harder to generalize across all
corpora.

1 Introduction

Discourse analysis consists in building a discourse
structure representing the organization of a docu-
ment – a monologue or dialogue –, as the discourse
tree in Figure 1. First, the document is split into
minimal sub-units, called Elementary Discourse
Units (EDU): the text in the example, consisting of
two sentences, is divided into 5 EDUs (from 2 to
6). The EDUs are then attached together, forming
larger discourse units – such as the pair (EDU2,
EDU3) – that are recursively linked to form a tree
or a graph, depending on the underlying frame-
work. The links between the discourse units are
semantic-pragmatic relations, such as CONCES-
SION, EVIDENCE, SEQUENCE etc. These relations

can be triggered by an explicit lexical item, a con-
nective such as BECAUSE, WHILE, or WHEN for
CONDITION in the example. Relations can also be
"implicit", when no such marker is present, such as
the CONCESSION between EDU2 and EDU3.

There are mainly three frameworks for discourse:
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) – from which the example in
Figure 1 is derived –, Segmented Discourse The-
ory (SDRT) (Asher and Lascarides, 2003) – where
structures are graphs –, and the Penn Discourse
Treebank (PDTB) (Prasad et al., 2005), where dis-
course relations are sparsely annotated without con-
straints on the overall structure. Alternatively, there
have been proposals to transform discourse struc-
ture into simpler dependency structures (dep), e.g.
in RST (Hirao et al., 2013; Hayashi et al., 2016)
or SDRT (Muller et al., 2012). Recently, this view
has been taken to annotate directly new data in the
SciDTB corpus (Yang and Li, 2018), proposing a
set of relations and segmentation rules inspired by
RST but producing trees of dependency relations
between EDUs.

Several corpora have been annotated under each
framework for different languages: however, even
within the same framework, annotation guidelines
and relation sets might be different for each cor-
pus. The DISRPT shared task intends to provide

Figure 1: Example of an RST tree (Source: RST website
- Common Case Analysis)
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a unified format for researchers to evaluate their
systems against varied languages, domains, and
frameworks. Three tasks were proposed: (1) dis-
course segmentation into EDUs, (2) identification
of discourse connectives, and (3) classification of
discourse relations based on attached units. The
first two tasks are encoded with a BIO scheme
over tokens, the latter corresponds to a multi-class
classification between pairs of textual segments.
The benchmark provided within DISRPT allows
us to verify the robustness of our approach through
13 languages, 4 frameworks, and varied domains,
including multi-party dialogues and speech tran-
scriptions.

In this paper, we address the three tasks through
two systems: DisCut1 for tasks (1) and (2) and
DiscReT2 for task (3). These systems both rely
on Transformer architectures and we thoroughly
investigate different variations of the pre-trained
model and the hyper-parameters values, while also
varying the level of frozen layers. This latter param-
eter allows for lighter models, and also improve-
ments in most cases. For task (3), we also investi-
gate adapters (Houlsby et al., 2019) that provide a
lightweight solution for transferring to new tasks.
For all tasks, we favor multilingual pretrained mod-
els, in order to better generalize and experiment
with corpus merging for relations, with the aim of
providing a generic model that can be used for any
corpus.

In the end, we ranked first on discourse segmen-
tation on the treebanked track (+0.87 on the av-
erage, compared to the other system) but second
for connectives (−0.47), and we are the only sys-
tem with results on the plain track, with higher
performance than the winner of DISRPT 2021. For
relations, our system is the only one trying to mix
all corpora, thus even if the performance are lower
than other proposed approaches, it is possibly better
at generalization.

2 Related work

Discourse parsing is the task of building the full
trees/graphs. Most work focuses on attachment or
discourse relation identification, and on English.
Recently, a multilingual RST discourse parser has
been proposed (Liu et al., 2021), building on pre-
vious work (Braud et al., 2017a; Liu et al., 2020)

1Code at https://github.com/phimit/jiant/
2Code at https://gitlab.irit.fr/melodi/andiamo/

discret_ST3

but proposing to jointly learn attachment and EDU
segmentation and adding a cross-lingual strategy,
rather than English only. It shows that multilingual-
ism is a key component to improve performance,
since data scarcity affects even English, and that
good segmentation is crucial, with a loss of up to
8% with predicted EDUs for full parsing.

Discourse segmentation was considered a solved
task, with scores as high as 94% (Xuan Bach et al.,
2012), but it was later shown that performance
drops for languages other than English, – linked to
smaller corpora and lesser resources –, and when
gold sentences are not given, due to sentence seg-
menters far from being perfect (Braud et al., 2017b).
The first edition of the DISRPT shared task (Zeldes
et al., 2019) also revealed the same trend with per-
formance above 95% for some corpora, but also is-
sues with others such as the Spanish SCDT (82.5%
at best) or the Russian RRT (86.2%). The best-
performing system in 2019 (Muller et al., 2019)
was using a single model based on multilingual
BERT for every corpus (Devlin et al., 2019), while
in the second edition (Zeldes et al., 2021), the best
system (Gessler et al., 2021) relied on varied lan-
guage models, either mono- or multilingual, asso-
ciated to hand-crafted features: best overall perfor-
mance was around 91.5% on average, with a loss
of about 2% when the sentences are not given.

Connective identification was first seen as a word
disambiguation task, where the goal was, starting
with a list of candidates, to decide whether each oc-
currence is used in a discourse reading or not (Pitler
et al., 2008). It has been then recast as a sequence
labeling one, where we need to decide whether a
token starts, is within, or is outside a discourse
connective (Stepanov and Riccardi, 2016). As for
segmentation, performance drops when existing
systems are trained on new domains or languages
(Xue et al., 2016; Scholman et al., 2021), but fewer
studies investigated this task since implicit relations
are more an issue for discourse parsing. The first
two editions of DISRPT demonstrated rather high
performance: between 92− 94 for the English and
Turkish corpora, and 87 for the Chinese one, with
only a small drop when sentences are not given.

Discourse relations are the main object of study
within the domain, with a specific focus on im-
plicit ones since the connective is considered a
very strong clue for guessing the relation (Pitler
et al., 2008). However, again, performance drops,
even for explicit relations when data are scarce (Jo-
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hannsen and Søgaard, 2013). Moreover, a real-life
scenario has to deal with both implicit and explicit
relations, it is thus interesting to see results combin-
ing all types of relations, and for several languages.
Only two systems were presented in 2021, and the
winning model was based on Transformers, with a
specific pretrained model depending on the target
language and additional hand-crafted features: best
overall performance is still low, with 61.8%.

3 Data

The 2023 DISRPT shared task, including suprise
datasets, provides 26 corpora for 13 languages
and 4 theoretical frameworks: 9 correspond to
the PDTB framework (thus connective and rela-
tions), the others are either RST (12), dependency
(3) or SDRT (2) (thus segmentation and relations).
Among these, 10 new corpora are introduced in the
2023 edition: 6 are released as surprise datasets,
with one new language (Thaï), and out-of-domain
(OOD) data for English (COVID-DTB and TED),
Portuguese (CRPC and TED) and Turkish (TED).

All statistics are given in Table 1. The largest
corpora are the English PDTB (1, 992 training doc-
uments), dep SciDTB (492 documents), and RST
DT (309 training documents), and, for SDRT, the
French Annodis (64 documents). In total, 8 cor-
pora have less than 100 documents and are thus
considered very small. The OOD corpora have no
training set: the English COVDTB is rather large,
with 150 in the dev set, but the other ones, based on
TED talks for English, Portuguese, and Turkish are
very small, their dev sets contain only 2 documents,
around 100 connectives, and 200 relations to pre-
dict. For relations, label sets contain between 9 and
32 different relations, and we note that almost no
corpus has the same set as another one.

We have 6 corpora for English (Prasad et al.,
2019; Zeldes, 2017; Carlson et al., 2001; Asher
et al., 2016; Yang and Li, 2018; Nishida and Mat-
sumoto, 2022), 4 for Chinese (Zhou et al., 2014;
Cao et al., 2018; Cheng and Li, 2019; Yi et al.,
2021), 2 for Spanish (da Cunha et al., 2011; Cao
et al., 2018), 2 for Portuguese (Cardoso et al., 2011;
Mendes and Lejeune, 2022), 1 for German (Stede
and Neumann, 2014), 1 for Basque (Iruskieta et al.,
2013), 1 for Farsi (Shahmohammadi et al., 2021),
1 for French (Afantenos et al., 2012), 1 for Dutch
(Redeker et al., 2012), 1 for Russian (Toldova et al.,
2017), 1 for Turkish (Zeyrek and Webber, 2008;
Zeyrek and Kurfalı, 2017), 1 for Italian (Tonelli

et al., 2010; Riccardi et al., 2016) and 1 for Thai.
In addition, OOD datasets come from the multilin-
gual TED Discourse Bank with data for English,
Portuguese and Turkish (Zeyrek et al., 2018, 2020).

4 DisCut: segmentation and connectives

4.1 DisCut: Model architecture

Identifying EDU boundaries and connectives
(Tasks 1 and 2) corresponds to different corpora:
PDTB-based datasets have connectives annotated,
but not segmentation, while the others have no con-
nectives. However, they can be both modeled as
sequence labeling tasks (only "Beginning" labels
for segmentation, "Beginning" and also "Inside" for
connectives, to take into account multi-words mark-
ers). Our systems for these tasks are thus based on
the same architecture with transformers pretrained
models, fine-tuned on the task at hand.

The model is based on a pretrained language
model (LM), with an additional linear layer for
token classification. The LM is multilingual, al-
lowing it to be used for all corpora. Contrary to
systems proposed in 2019 and 2021 based on a
similar architecture, we removed the CNN at the
character level, and the LSTM outer layer, as addi-
tional experiments demonstrated no improvements.

The LM is based on a Transformer architecture
with several layers within the encoder. It has been
shown that, broadly speaking, lower layers mostly
encode morpho-syntactic information, while upper
contain more semantic ones (Rogers et al., 2020;
Kovaleva et al., 2019; Bender and Koller, 2020).
We thus experiment with freezing some lower lay-
ers while continuing the fine-tuning on higher lev-
els, in order to have lighter models. “Freezing
a layer” is the process of disallowing the update
of weights for the target layer during the fine-
tuning process, meaning that the layer preserves its
learned information from pretraining.

Models are fed with sentences, the documents
being too long for the LMs. We detail below our
setting when sentences are not given (’Plain’ track).

4.2 Settings

We chose to focus on multilingual LMs and ex-
perimented with mBERT (Devlin et al., 2019)
and XLM-RoBERTa (Conneau et al., 2020). We
present results using XLM-RoBERTa, as prelimi-
nary experiments demonstrated improvements over
mBERT. We experimented with both base and
large versions, and tested the freezing of lower
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Corpus Train Dev Test
#Doc #Tok #EDU/Conn #Rel #Doc #Tok #EDU/Conn #Rel #Doc #Tok #EDU/Conn #Rel

RST

eng.rst.rstdt 309 166854 17646 17/16002 38 17309 1797 17/1621 38 21666 2346 17/2155
rus.rst.rrt 272 390375 34682 22/28868 30 40779 3352 19/2855 30 41851 3508 20/2843
spa.rst.rststb 203 43055 2472 28/2240 32 7551 419 23/383 32 8111 460 25/426
eng.rst.gum 165 160700 20722 14/19496 24 21409 2790 14/2617 24 21770 2740 14/2575
deu.rst.pcc 142 26831 2449 26/2164 17 3152 275 24/241 17 3239 294 24/260
fas.rst.prstc 120 52309 4607 17/4100 15 7016 576 15/499 15 7369 670 16/592
eus.rst.ert 116 30690 2785 29/2533 24 7219 677 26/614 24 7871 740 26/678
por.rst.cstn 114 48469 4601 32/4148 14 6509 630 22/573 12 3815 306 21/272
nld.rst.nldt 56 17562 1662 32/1608 12 3783 343 27/331 12 3553 338 28/325
zho.rst.gcdt 40 47639 7470 31/6454 5 7619 1144 30/1006 5 7647 1092 30/953
spa.rst.sctb 32 10253 473 24/439 9 2448 103 17/94 9 3814 168 19/159
zho.rst.sctb 32 9655 473 26/439 9 2264 103 19/94 9 3577 168 20/159

SDRT

fra.sdrt.annodis 64 22515 2255 18/2185 11 5013 556 18/528 11 5171 618 18/625
eng.sdrt.stac 33 41060 9887 16/9580 6 4747 1154 16/1145 6 6547 1547 16/1510

DEP

eng.dep.scidtb 492 62461 6740 24/6060 154 20288 2130 24/1933 152 19744 2116 24/1911
∗eng.dep.covdtb - - - - 150 29369 2754 12/2399 150 31480 2951 12/2586
zho.dep.scidtb 69 11288 898 23/802 20 3852 309 18/281 20 3621 235 17/215

PDTB

eng.pdtb.pdtb 1992 1061229 23850 23/43920 79 39768 953 20/1674 91 55660 1245 23/2257
por.pdtb.crpc 243 147594 3994 22/8797 28 20102 621 20/1285 31 19153 544 19/1248
tur.pdtb.tdb 159 391304 7063 23/2451 19 49097 831 22/312 19 46988 854 22/422
∗tha.pdtb.tdtb 139 199135 8277 20/8278 19 27326 1243 18/1243 22 30062 1344 18/1344
zho.pdtb.cdtb 125 52061 1034 9/3657 21 11178 314 9/855 18 10075 312 9/758
ita.pdtb.luna 42 16776 671 15/956 6 3081 139 14/210 12 6257 261 14/381
∗eng.pdtb.tedm - - - - 2 2574 110 20/178 4 5474 231 18/351
∗por.pdtb.tedm - - - - 2 2785 102 20/190 4 5405 203 18/364
∗tur.pdtb.tedm - - - - 2 2113 135 21/213 4 4030 247 22/364

Table 1: Statistics on the datasets: bold indicates a new corpus compared to DISRPT 2021, ∗ indicates a surprise
corpus, ’-’ is for OOD corpora, without training sets. #EDU/CONN is the number of EDUs for RST, SDRT, and
DEP corpora, the number of connectives for PDTB corpora; #REL corresponds to the size of label sets / total
number of pairs annotated.

layers, aiming at possibly improved performance,
with a lighter training.

With XLM-RoBERTa base, we tested no freez-
ing, or freezing of either the first 3 or 8 layers (out
of 12); for the large version, we increased to 6 and
12 layers (out of 24). We tested several values for
the learning rate ∈ [10−5, 2·10−5, 10−4] and chose
10−5. We tested different batch sizes ∈ [1, 4, 8, 16]
– only the value 1 fitted our GPU for the large ver-
sion –, with a gradient accumulation of 4 and a
maximum of 30 epochs with patience of 10 over
the performance on the development set. The input
size is limited to 180. Our implementation relies on
and extends the Jiant library3 (Phang et al., 2020).

After evaluation on the dev set, we found that
most models perform better with RoBERTa-large
and with freezing the first 6 layers. Small improve-
ments could be observed for some corpora with
either the base version or other freezing values, but
the increase was limited to less than 1.2%, and in

3https://jiant.info/

general less than .5%, and we thus decided to favor
one single model in order to make it easier to use,
and better at generalizing to new data.

Dealing with raw data: The DISRPT shared
task proposes two tracks for tasks 1 and 2: you
can either use data segmented into sentences and
syntactically parsed (Treebanked) – either gold or
obtained with Stanza –, or raw tokenized docu-
ments (Plain). As the LMs have limitations on the
size of their input, we can not give directly the doc-
uments as input: we thus decided to split the raw
documents into sentences.

However, having observed issues with Stanza
segmentation, we tried alternatives: Ersatz (Wicks
and Post, 2021) and Trankit (Nguyen et al., 2021),
and chose the latter based on better performance.
Note that, with the evaluation being based on to-
kens, we had to realign tokens when the tool was
modifying the tokenization. We were unable to ob-
tain a correct sentence segmentation for the Italian
ita.pdtb.luna, composed of speech transcripts, and
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thus cut every 120 tokens for this corpus.

Dealing with surprise and OOD data: Deal-
ing with the surprise Thai (tha.pdtb.tdtb) and En-
glish (eng.dep.covdtb) datasets were straightfor-
ward: since our model configuration is the same
across all corpora, we retrain new models using the
training data made available. This year, the orga-
nizers also include out-of-domain (OOD) data as
surprise datasets, for which data are only available
for evaluation (dev and test sets only). The corpora
have, however, corresponding datasets within the
same framework and language: we use our model
trained on these available data to make predictions
on the OOD ones (e.g. training on eng.pdtb.pdtb to
test on eng.pdtb.tedm).

4.3 Experiments and results

We present our results in Table 2 for segmentation
and connective identification. Current comparison
with 2021, considering only the corpora available
in 2021, demonstrate general improvements for all
tasks except connective for the Plain track were
results are on par: for segmentation, the average
on test sets for Treebanked is 91.77% (vs 91.48 for
DiscoDisco 2021) and for Plain 91.22% (vs 89.79);
for connective: 91.81% (vs 91.22) for Treebanked
and 91.05% (vs 91.49) for Plain. Note that our
approach uses a similar architecture with much
simpler inputs (only tokens), and different opti-
mizations. When comparing the reproduced results
with the ones we produced, we observed a large
variance between the scores, especially for small
corpora, with for example a difference of about 2
to 5 points for the TEDm corpora, and about 2 to
3 points also for other small datasets such as the
spa.rst.sctb, the zho.rst.sctb, demonstrating the im-
portance for future work to make multiple runs and
indicate variance. Interested readers can find our
own results on the test sets in Appendix A.

As shown in Table 2, compared to 2021, we ob-
serve a large drop in mean performance of about
10% for connective detection, for which many
new corpora were added, including several OOD
datasets making the task more challenging.

For segmentation, the results for the two set-
tings, Treebanked and Plain are in general very
similar, except for the Chinese zho.rst.sctb and En-
glish eng.sdrt.stac for which the Treebanked setting
is clearly better (+3 to 5%). On the other hand, we
have an important improvement for the French cor-
pus fra.sdrt.annodis (almost +3%) using our new

Corpus Treebanked Plain
F1 dev F1 test DD21 F1 dev F1 test DD21

Segmentation

deu.rst.pcc 96.79 96.01 95.58 96.60 94.24 93.94
eng.rst.gum 95.54 95.50 94.15 95.78 94.46 92.61
eng.rst.rstdt 97.33 97.62 96.64 97.60 97.74 96.35
eus.rst.ert 91.69 89.93 90.46 91.83 91.09 90.47
fas.rst.prstc 93.79 93.40 92.94 94.05 93.36 92.86
nld.rst.nldt 97.51 96.54 95.97 97.09 97.19 94.69
por.rst.cstn 94.06 93.98 94.35 93.50 94.36 94.11
rus.rst.rrt 86.80 85.58 86.21 84.75 85.41 85.74
spa.rst.rststb 96.19 93.53 92.22 96.32 93.70 91.76
spa.rst.sctb 86.88 85.63 82.48 85.44 84.21 80.86
zho.rst.gcdt 92.69 92.55 - 92.20 91.74 -
zho.rst.sctb 79.05 81.84 83.34 77.53 78.55 76.21

eng.sdrt.stac 94.77 95.22 94.91 91.57 90.67 91.91
fra.sdrt.annodis 90.27 88.21 90.02 90.17 90.89 85.78

∗eng.dep.covdtb 91.32 92.13 - 91.65 92.13 -
eng.dep.scidtb 96.18 95.07 - 95.63 94.49 -
zho.dep.scidtb 93.33 89.07 - 93.01 90.04 -

Mean 92.60 91.87 - 92.04 91.43 -
Mean corpora 2021 - 91.77 91.48 - 91.22 89.79

Connective identification

eng.pdtb.pdtb 94.41 93.66 92.02 93.94 91.64 92.56
∗eng.pdtb.tedm 75.86 78.36 - 80.00 75.83 -
ita.pdtb.luna 79.72 65.85 - 74.19 71.60 -
por.pdtb.crpc 85.16 80.66 - 84.65 79.49 -
∗por.pdtb.tedm 73.08 80.29 - 71.22 79.45 -
∗tha.pdtb.tdtb 87.43 85.66 - 74.32 69.92 -
tur.pdtb.tdb 89.73 92.77 94.11 89.69 91.12 93.56
∗tur.pdtb.tedm 65.42 64.10 - 64.15 64.78 -
zho.pdtb.cdtb 87.66 89.00 87.52 87.77 90.38 88.35

Mean 82.05 81.15 - 79.99 79.36 -
Mean corpora 2021 - 91.81 91.22 - 91.05 91.49

Table 2: DisCut: Results (F1) on the dev and test sets
for segmentation and discourse connective identification.
Models with XLM-RoBERTa-large, freezing layers 0-5.
Test scores come from the reproduction done by the
organizers. ’DD21’ stands for DiscoDisco 2021, the
system ranked first in DISRPT 2021. ’Mean corpora
2021’ is the mean F1 without considering the corpora
added in DISRPT 2023.

segmented files (Plain): these results are in line
with the bad performance observed for Stanza. For
the Russian corpus, we found that the segmentation
of some parts of the documents was strange: bibli-
ography entries were merged into very large EDUs
that were split by all sentence segmenters, thus
modifying the tool did not bring any improvement.

For connective detection, results are rather high
for large corpora already present in the previous
campaigns, even if the Chinese corpus is still chal-
lenging. As expected, the Italian Luna is associated
with low performance, because it is composed of
speech transcriptions of dialogues. Note that the
performance for the new Thai corpus is on par,
but they drop on the out-of-domain TEDm corpora
for which we used the model trained on a corpus
with the same language and framework, but that
corresponds to a domain shift. Interestingly, the
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use of Trankit for sentence segmentation (Plain
track) leads to large improvements for Luna (al-
most +6%) and also allows a small increase for the
Chinese zho.pdtb.cdtb (+1.4), with, on the other
hand, a loss of about 2% for the English PDTB,
and an impressive drop of about 16% for Thai for
which the model of sentence segmentation is prob-
ably faulty. Overall, the Plain setting would lead to
average results on par with the treebanked ones for
connective identification, without the Thai dataset
(80.54 on average for Plain against 80.59 for Tree-
banked, without Thai). These results indicate that
the good performance of the sentence segmenter is
a key component of a well performing discourse
segmenter or connective identifier.

5 DiscReT: Discourse Relation Tagging

5.1 Introduction

For the third proposed task, Discourse Relation
Classification across Formalisms, we submit a mul-
tilingual approach to discourse relation tagging that
spans across frameworks, powered by transformer-
based architectures. Our goal is to test the capac-
ities and weaknesses of these models, given the
large variety of languages and relation labels, with-
out sacrificing the multilingual setting or the unique
information captured in coarse-/fine-grained labels.
Our results vary vastly between languages and
frameworks but present interesting pointers for fu-
ture work and model improvements.

5.2 Dataset

In order to stay faithful to the multilingual nature
of the task, we decided to use all the datasets in
parallel for training. Extensive earlier experiments
with translations of the datasets to English, train-
ing with groups of corpora per language family,
or training per annotation framework were not as
successful or did not significantly outperform the
accumulative approach.

We aimed to reduce label space and maximize la-
bel coverage, i.e. not having a label that only exists
in one corpus if it can be rewritten as a more general
one. First, we lower-cased all labels in all datasets
(but preserved our modifications, in order to reverse
them for the final results in accordance with the
Shared Task data). Second, we manually merged la-
bels that were either spelling variants or simplified
versions of existing labels. For example, the label
“qap” means “question-answer pair”, which already
exists as the label “question_answer_pair”. Mean-

Original Label Conversion

alternation expansion.alternative
alternative expansion.alternative
bg-general background
causation cause
cause-result cause-effect
conditional condition
conjunction expansion.conjunction
correction expansion.correction
disjunction expansion.disjunction
evidence explanation-evidence
exp-evidence explanation-evidence
expansion.genexpansion expansion
expansion.level expansion.level-of-detail
findings result
goal purpose-goal
joint-disjunction expansion.disjunction
justify explanation-justify
list joint-list
motivation explanation-motivation
otherwise adversative
qap question_answer_pair
qap.hypophora hypophora
repetition restatement-repetition
restatement expansion.restatement
sequence joint-sequence
temporal.synchrony temporal.synchronous
textual-organization organization
unconditional expansion.disjunction
unless contrast

Table 3: List of label conversions that we implemented
(apart from lower-casing). Underlined labels were
found exclusively in the surprise datasets.

while, the label “conjunction” is a simplified ver-
sion of the label “expansion.conjunction” found in
RST corpora in both forms, therefore by changing
the label to its more verbose form, we are preserv-
ing its information and making the labels more uni-
form. However, we decided against the large-scale
conversion of labels based on their meaning, e.g.
merging the “conjunction” and “joint” labels.These
conversions reduced the number of unique labels
from 163 to 135; while the number was not signifi-
cantly reduced, we wanted to make the results more
interpretable without sacrificing important informa-
tion. We present the implemented conversions in
Table 3.

We make use of the directional information of
the relations, available in the datasets in the column
“dir”. We do not change the input in sentences with
the direction “1>2”, but we switch the input posi-
tion of sentences with the direction “1<2” to “2>1”.
An example can be found in Table 4. Even though
the models we use in this task are bidirectional,
we observed an increase in performance when the
direction of relations was unified.

We do not further process the text input, as the
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Corpus: spa.rst.rststb

unit1_txt La diferenciación como un modelo para el
análisis de las relaciones de pareja

unit2_txt El presente artículo hace una revisión sobre este
concepto

dir 1>2
label preparation

input

[CLS] La diferenciación como un modelo para
el análisis de las relaciones de pareja [SEP] El
presente artículo hace una revisión sobre este
concepto

Corpus: deu.rst.pcc

unit1_txt Und die Zeit drängt .

unit2_txt
Der große Einbruch der Schülerzahlen an den
weiterführenden Schulen beginnt bereits im
Herbst 2003 .

dir 1<2
label reason

input
[CLS] Der große Einbruch der Schülerzahlen
an den weiterführenden Schulen beginnt bereits
im Herbst 2003 . [SEP] Und die Zeit drängt .

Table 4: Examples of inputs with different directions.
In the first example, the direction of the relation is 1>2,
therefore the model input is in the same order as in the
data. In the second example, the direction is 1<2, so the
model input has the two sentences in reversed order.

necessary conversions (e.g. tokenization, lower-
casing) are specified by each model. However, at
the tokenization stage, we ensured that the input
length complied with the restrictions of maximum
input length that transformer-based models impose;
each sentence is truncated to half of the maximum
input length, if necessary.

5.3 DiscReT: Model architectures

We opted for transformer-based architectures
for our experiments and tested several of them
(mBERT, xml-RoBERTa, DistilBERT) in order to
decide on which one to focus our research effort
on. After preliminary tests, the multilingual BERT
base cased model (mBERT) (Devlin et al., 2019)
was the most successful overall and included all
the languages of the Shared Task in its pretrained
version available from Huggingface.4

As a “baseline” for our experiments, we trained
an mBERT classifier built with PyTorch (Paszke
et al., 2019), without frozen layers, and trained for
a maximum of 5 epochs.

In order to inject additional information in the
finetuning process of the classifier, without further
changing the input data, we used adapters along-

4https://huggingface.co/bert-base-multilingua
l-cased

side our mBERT classifier. Adapters (Houlsby
et al., 2019) are an alternative lightweight method
to finetuning with equivalent good results on most
NLP tasks. An adapter is a transformer architecture
with layer-specific pretrained parameters Θl which
are frozen and a small set of new parameters Φl

(where l is the transformer layer). During finetun-
ing, only the adapters’ Φl parameters are updated
from the loss function L on dataset D (see Equa-
tion 1). This enables efficient parameter sharing
between tasks, languages, etc.

Φ∗
l ← argmin

Φl

L(D; {Θl,Φl}) (1)

We are using the tool AdapterHub (Pfeiffer et al.,
2020) which allows for easier finetuning and inte-
gration of adapters to transformer-based models.
After several experiments, we observed that the
finetuning process of an adapter is quite different
than that of a model; the adapter set of parameters
learns most effectively with more finetuning epochs
than a normal model and the training process per
epoch is longer. Additionally, we experimented
with freezing the parameters of certain layers for
the models and the adapters, in order to determine
the best model.

We trained multiple mBERT adapters, out of
which the most successful were:

1. mBERT adapter trained on the entire dataset for
15 epochs and with frozen layer 1 (A1)

2. mBERT adapter trained on the entire dataset for
15 epochs and with frozen layers 1-3 (A1-3)

5.4 Results
5.4.1 Shared Task results
While evaluating our models, we observed that the
best accuracy in each development set was not al-
ways achieved by one model. Our final submission
is composed of three models:

1. the “baseline” finetuned mBERT model without
adapter with multiple epochs (B)

2. the finetuned mBERT model for 3 epochs with
an mBERT adapter trained for 15 epochs and
layer 1 frozen (A1)

3. the finetuned mBERT-cased model for 4 epochs
with an mBERT adapter trained for 15 epochs
and layers 1-3 frozen (A1-3)

The results on the test set, as recreated and re-
ported by the organizers of the Shared Task, are
found in Table 5. Our poor performance is, to some
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extent, due to the problems we faced to convert
the lower-cased and converted labels back to their
upper-cased format, which was required for the
Shared Task evaluation. This dramatically low-
ered the test results reproduced and published for
the Shared Task. For clarity, we are reporting the
Shared Task results from the organizers, but also
include the results on the dev and test sets that
were produced before converting the labels to their
original in Tables 6 and 7 respectively. These re-
sults were calculated with scikit-learn (Pedregosa
et al., 2011) and the process of calculating them is
transparent in our code.

Our goal was to create a truly multilingual ap-
proach for discourse relation parsing. We did not
aim to establish a new state-of-the-art, but to ob-
serve whether multilingual word embeddings can
work in synergy (to learn common labels) and spe-
cialize at the same time (to learn corpus-unique
labels). We also deliberately focused and sub-
mitted a combination of three models, instead of
proposing the best model for each dataset, thus sac-
rificing performance for reproducibility. During
our experiments, there were other combinations of
adapters and models with frozen layers that yielded
slightly better results on specific corpora, however,
the training times for multiple models would be
problematic for a Shared Task entry.

Given that our results are not much worse than
approaches with a combination of monolingual
models and independent training, it is possible
to derive benefits from joint training and evalu-
ating multiple languages. Our multilingual models
showed strengths (e.g. in the spa.rst.rstsb dataset)
and weaknesses (e.g. in English, Turkish and Chi-
nese datasets) that cannot be pinpointed directly to
a specific framework, the size of the corpus, or the
size of the specific language data, and will need to
be further explored. Our submission was marred by
implementation issues, but we are hopeful that in
future work we will tackle these issues and imple-
ment improvements on our multilingual approach.

6 Conclusion

In this paper, we presented our submissions for the
three tasks of the DISRPT Shared Task. Our main
goals were to rely on only a few architectures vari-
ants for generality, and experiment with parameter
efficient methods. For Tasks 1-2, we employed
multi-task, multi-corpora approaches; however, at
this stage of our research our results are not opti-

Corpus DiscReT DiscoDisco Difference

deu.rst.pcc 26.92 39.23 -12.31
eng.rst.gum 55.34 66.76 -11.42
eng.rst.rstdt 49.98 67.1 -17.12
eus.rst.ert 51.77 60.62 -8.85
fas.rst.prstc 50.34 52.53 -2.19
nld.rst.nldt 43.69 55.21 -11.52
por.rst.cstn 62.87 64.34 -1.47
rus.rst.rrt 61.52 66.44 -4.92
spa.rst.rststb 58.22 54.23 3.99
spa.rst.sctb 33.33 66.04 -32.71
zho.rst.gcdt 55.72 - -
zho.rst.sctb 49.06 64.15 -15.09

eng.sdrt.stac 56.89 65.03 -8.14
fra.sdrt.annodis 44.96 46.4 -1.44

∗eng.dep.covdtb 41.3 - -
eng.dep.scidtb 67.56 - -
zho.dep.scidtb 67.44 - -

eng.pdtb.pdtb 69.25 74.44 -5.19
∗eng.pdtb.tedm 19.94 - -
ita.pdtb.luna 58.42 - -
∗por.pdtb.crpc 72.76 - -
∗por.pdtb.tedm 54.95 - -
∗tha.pdtb.tdtb 95.24 - -
tur.pdtb.tdb 49.05 60.09 -11.04
∗tur.pdtb.tedm 49.73 - -
zho.pdtb.cdtb 69.13 86.49 -17.36

MEAN (all) 54.44 -
MEAN (2021) 52.02 61.82 -9.8

Table 5: The results that organizers provided for dis-
course relation classification (Task 3), evaluating the
test sets and reporting accuracy in %. ‘DiscoDisco’ was
the best-performing model of DISRPT 2021 (Gessler
et al., 2021) and ‘Diff.’ is the comparison with our mod-
els. MEAN (all) provides the mean for the currently
available datasets, while MEAN (2021) averages only
DISRPT 2021’s corpora.

mal. In future work, we aim to further explore this
strategy, as it seems promising for lower-resource
languages. Additionally, we are interested in ap-
proaches beyond the scope of this campaign, such
as domain transfer. Furthermore, it was possible
to perform segmentation and connective detection
on datasets without training data, as shown by the
surprise TEDm test sets. It would be interesting
to examine whether the DISRPT framework could
be transferred to new languages, for which there
are no training data for segmentation or connective
detection, such as the rest of the TEDm corpus. As
for Task 3, our focus was on a unified, purely mul-
tilingual approach with parameter optimization, as
well as dataset preprocessing for unification. Even
though we faced problems on the Shared Task sub-
mission results, our approach showed promising
results compared to language-specific models.
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Corpus B (1) B (2) B (3) B (4) B (5) B (6) A1-3 (4) A1 (3)

deu.rst.pcc 25.31 29.46 26.97 31.54 31.54 29.88 29.05 30.71
eng.rst.gum 48.03 51.66 52.46 53.31 53.76 53.69 55.79 56.67
eng.rst.rstdt 46.33 49.85 44.97 47.25 48.49 47.62 51.02 50.28
eus.rst.ert 41.53 43.65 43.16 44.95 42.18 44.46 45.44 47.07
fas.rst.prstc 53.31 50.1 52.1 51.3 49.5 51.9 52.91 52.71
nld.rst.nldt 43.5 40.79 46.53 41.09 46.53 42.9 45.92 45.32
por.rst.cstn 54.8 59.51 55.15 60.38 60.56 58.12 62.48 61.43
rus.rst.rrt 57.41 58.84 60.04 60.04 58.77 59.61 61.16 60.91
spa.rst.rststb 51.44 54.31 55.61 62.4 60.05 61.62 60.31 59.01
spa.rst.sctb 47.87 62.77 56.38 58.51 62.77 67.02 59.57 64.89
zho.rst.gcdt 53.98 55.57 56.86 57.55 57.75 58.05 58.85 59.34
zho.rst.sctb 40.43 50 46.81 46.81 42.55 50 47.87 46.81

eng.sdrt.stac 45.5 55.02 53.8 55.28 55.55 54.15 57.82 56.59
fra.sdrt.annodis 30.3 44.32 47.16 46.4 49.81 47.92 48.3 47.54

∗eng.dep.covdtb 40.39 42.81 35.22 36.64 36.18 42.93 43.56 43.1
eng.dep.scidtb 59.39 59.34 66.48 66.06 70.2 66.17 70.56 71.03
zho.dep.scidtb 47.33 61.57 62.99 59.79 60.85 62.63 66.19 65.48

eng.pdtb.pdtb 67.32 67.44 71.39 70.85 70.43 69.41 72.4 71.09
∗eng.pdtb.tedm 10.67 14.04 19.1 15.73 15.17 14.04 20.79 19.1
ita.pdtb.luna 45.93 53.59 51.67 50.72 54.07 54.07 54.55 56.46
∗por.pdtb.crpc 65.76 66.69 67.39 67.16 67.16 65.29 68.25 67.94
∗por.pdtb.tedm 50 45.79 47.37 49.47 48.95 46.32 54.21 51.05
∗tha.pdtb.tdtb 92.68 93.56 93.08 93.97 93.64 92.76 93.72 93.97
tur.pdtb.tdb 42.95 39.1 42.95 40.06 39.42 41.67 41.03 39.1
∗tur.pdtb.tedm 42.72 42.72 44.13 42.25 41.31 46.48 43.66 43.66
zho.pdtb.cdtb 73.8 75.09 76.37 74.62 73.8 74.15 75.44 73.92

MEAN 49.18 52.6 52.93 53.24 53.5 53.96 55.42 55.2

Table 6: Results on the dev set for discourse relation classification, before converting labels to their original form.
In parenthesis is the number of epochs for which the model was trained.

Corpus B (1) B (2) B (3) B (4) B (5) B (6) A1-3 (4) A1 (3) DiscoDisco Diff.

deu.rst.pcc 25.77 30.77 26.54 32.31 32.31 33.08 33.85 33.08 39.23 -5.38
eng.rst.gum 50.49 54.72 55.96 57.09 57.36 55.69 58.56 58.41 66.76 -8.2
eng.rst.rstdt 46.91 50.16 46.73 47.94 48.54 48.77 49.84 49.88 67.1 -16.94
eus.rst.ert 40.56 43.66 44.99 47.94 46.17 48.97 50.44 51.33 60.62 -9.29
fas.rst.prstc 47.47 47.13 48.31 50.84 47.47 49.16 50.51 49.66 52.53 -1.69
nld.rst.nldt 43.38 42.46 43.38 42.46 43.38 40.31 46.15 47.38 55.21 -7.83
por.rst.cstn 64.34 65.44 65.07 64.34 63.97 64.71 65.44 65.07 64.34 1.1
rus.rst.rrt 59.44 60.11 60.75 60.96 60.11 59.41 62.29 61.98 66.44 -4.15
spa.rst.rststb 48.83 51.17 53.76 57.04 54.69 53.76 57.75 59.15 54.23 4.92
spa.rst.sctb 58.49 64.15 64.78 69.81 64.15 63.52 65.41 61.64 66.04 3.77
zho.rst.gcdt 47.32 49.32 49.32 52.78 53.2 52.47 53.73 54.67 - -
zho.rst.sctb 45.28 53.46 55.35 57.86 44.03 48.43 47.8 50.31 64.15 -6.29

eng.sdrt.stac 40.99 50.46 50.73 52.52 52.32 51.19 55.76 55.17 65.03 -9.27
fra.sdrt.annodis 31.68 42.56 45.92 44 44.8 45.12 46.88 45.12 46.4 0.48

∗eng.dep.covdtb 38.09 41.38 33.37 35.11 35.77 39.44 41.14 40.87 - -
eng.dep.scidtb 59.45 61.38 67.29 67.09 69.65 68.18 69.81 70.38 - -
zho.dep.scidtb 53.02 61.86 64.19 56.28 60.93 60.93 64.65 64.19 - -

eng.pdtb.pdtb 64.91 64.2 68.41 68.01 65.62 64.82 68.85 68.63 74.44 -5.59
∗eng.pdtb.tedm 10.83 12.25 18.23 15.67 12.54 15.67 20.8 19.94 - -
ita.pdtb.luna 45.53 52.11 52.11 52.37 56.32 53.68 57.63 57.63 - -
∗por.pdtb.crpc 69.15 67.71 70.59 71.07 70.67 68.51 71.07 72.04 - -
∗por.pdtb.tedm 58.24 54.12 58.52 56.04 55.49 56.04 56.32 58.52 - -
∗tha.pdtb.tdtb 94.12 95.16 95.24 95.39 95.16 94.79 94.94 95.31 - -
tur.pdtb.tdb 51.9 48.1 48.82 48.58 46.92 50.95 51.42 50.71 60.09 -8.19
∗tur.pdtb.tedm 45.33 45.05 44.51 45.33 44.23 46.7 49.18 50.55 - -
zho.pdtb.cdtb 68.34 71.24 73.61 67.41 66.75 65.17 68.6 66.89 86.49 -12.88

MEAN (2021) 49.3 52.49 53.32 54.32 52.41 52.69 54.97 54.65 61.82 -7.17
MEAN (all) 50.38 53.08 54.1 54.47 53.56 53.83 56.11 56.1 - -

Table 7: Results on the test set for discourse relation classification, before converting labels to their original form.
In parenthesis is the number of epochs for which the model was trained. ‘DiscoDisco’ was the best-performing
model of DISRPT 2021 (Gessler et al., 2021) and ‘Diff.’ is the comparison with our models. MEAN (all) provides
the mean for the currently available datasets, while MEAN (2021) averages only DISRPT 2021’s corpora.
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Corpus Treebanked Plain
F1 dev F1 test DD21 F1 dev F1 test DD21

Segmentation

deu.rst.pcc 96.79 97.30 95.58 96.60 96.60 93.94
eng.rst.gum 95.54 95.55 94.15 95.78 94.97 92.61
eng.rst.rstdt 97.33 97.11 96.64 97.60 97.45 96.35
eus.rst.ert 91.69 91.56 90.46 91.83 92.38 90.47
fas.rst.prstc 93.79 93.88 92.94 94.05 92.56 92.86
nld.rst.nldt 97.51 97.47 95.97 97.09 97.63 94.69
por.rst.cstn 94.06 93.48 94.35 93.50 94.08 94.11
rus.rst.rrt 86.80 85.86 86.21 84.75 85.46 85.74
spa.rst.rststb 96.19 92.67 92.22 96.32 92.31 91.76
spa.rst.sctb 86.88 84.40 82.48 85.44 87.16 80.86
zho.rst.gcdt 92.69 92.30 - 92.20 91.78 -
zho.rst.sctb 79.05 81.18 83.34 77.53 75.29 76.21

eng.sdrt.stac 94.77 94.83 94.91 91.57 90.69 91.91
fra.sdrt.annodis 90.27 89.54 90.02 90.17 91.40 85.78

∗eng.dep.covdtb 91.32 91.41 - 91.65 92.26 -
eng.dep.scidtb 96.18 95.44 - 95.63 94.89 -
zho.dep.scidtb 93.33 90.40 - 93.01 89.64 -

Mean 92.60 92.02 - 92.04 91.56 -
Mean corpora 2021 - 91.91 91.48 - 91.38 89.79

Connective identification

eng.pdtb.pdtb 94.41 92.38 92.02 93.94 92.25 92.56
∗eng.pdtb.tedm 75.86 77.88 - 80.00 80.63 -
ita.pdtb.luna 79.72 64.08 - 74.19 70.17 -
por.pdtb.crpc 85.16 81.74 - 84.65 80.26 -
∗por.pdtb.tedm 73.08 75.23 - 71.22 77.60 -
∗tha.pdtb.tdtb 87.43 86.42 - 74.32 69.32 -
tur.pdtb.tdb 89.73 92.48 94.11 89.69 93.57 93.56
∗tur.pdtb.tedm 65.42 66.33 - 64.15 64.27 -
zho.pdtb.cdtb 87.66 89.95 87.52 87.77 90.43 88.35

Average 82.05 80.72 - 79.99 79.83 -
Mean corpora 2021 - 92.30 91.22 - 91.78 91.49

Table 8: DisCut: Results (F1) on the dev and test sets
for segmentation and discourse connective identifica-
tion. Models with RoBERTa-large, freezing layers 0-5.
’DD21’ stands for DiscoDisco 2021, the system ranked
first in DISRPT 2021. ’Mean corpora 2021’ is the mean
F1 without considering the corpora added in DISRPT
2023.

A Additional results

The table 8 corresponds to the scores we obtain
on the test sets, that can be compared to the ones
obtained by the organizers when reproducing our
system, as given in Table 2.
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Abstract
HITS participated in the Discourse Segmenta-
tion (DS, Task 1) and Connective Detection
(CD, Task 2) tasks at the DISRPT 2023. Task 1
focuses on segmenting the text into discourse
units, while Task 2 aims to detect the discourse
connectives. We deployed a framework based
on different pre-trained models according to
the target language for these two tasks.

HITS also participated in the Relation Clas-
sification track (Task 3). The main task was
recognizing the discourse relation between text
spans from different languages. We designed
a joint model for languages with a small cor-
pus while separate models for large corpora.
The adversarial training strategy is applied to
enhance the robustness of relation classifiers.

The implementation of our models for three
tasks is available at https://github.
com/liuwei1206/disrpt2023.

1 Task and Data

The 2023 shared task provides 3 sub-tasks, includ-
ing discourse segmentation (DS, Task 1), Connec-
tive Detection (CD, Task 2), and Relation Classifi-
cation (RC, Task 3).

Task 1 focuses on conducting discourse units
segmentation under different formalisms, such as
Rhetorical Structure Theory (RST, MANN and
Thompson, 1988), Segmented Discourse Represen-
tation Theory (SDRT, Lascarides and Asher, 2007)
and Penn Discourse Treebank (PDTB, Miltsakaki
et al., 2004). As different corpora, languages and
formalisms or theories use different segmentation
guidelines, the challenge is to design flexible meth-
ods to deal with various situations. The aim of Task
2 is to identify discourse connectives in the text.

Relation classification aims to identify the dis-
course relation, such as Cause and Comparison, be-
tween two text spans. The shared task provides 26

*Equal contribution. Wei is responsible for relation classi-
fication, while Yi works on discourse segmentation and con-
nective detection.

corpora covering 13 languages, including Basque,
Chinese, Dutch, English, French, German, Italian,
Persia, Portugal, Russian, Spanish, Thai, and Turk-
ish. Most of corpora are annotated with Rhetorical
Structure Theory (RST, MANN and Thompson,
1988) and Penn Discourse Treebank (PDTB, Milt-
sakaki et al., 2004), with a small part using Seg-
mented Discourse Representation Theory (SDRT,
Lascarides and Asher, 2007) and Discourse Depen-
dency Framework (DEP, Stede et al., 2016). We
show the statistics of relation corpora in Table 2.

2 Discourse Segmentation and
Connective Detection

2.1 Approach
Our framework for Task 1 and Task 2 is com-
posed of a BERT-based model (Devlin et al., 2019),
Bi-LSTM (Hochreiter and Schmidhuber, 1997)
and conditional random field (CRF, Lafferty et al.,
2001). In our framework, we first obtain the em-
bedding of the input text via a BERT-based model.
We then use Bi-LSTM to capture the contextual
information and generate a richer contextual repre-
sentation by exploiting the sequential relationships
between words. Finally, CRF can globally opti-
mise the label sequence based on the contextual
information of the current word and the relation-
ship between the preceding and following labels,
resulting in better consistency and rationality of the
predicted label sequence.

2.2 Experiments
As the BERT-based model provides the embed-
ding for the input text, choosing an appropriate one
according to the language is essential for the frame-
work. We choose at least two pre-trained BERT-
based models for each language and fine-tune the
parameters to achieve the best performance for our
framework. After several experiments and compar-
ing different BERT-based models, our final choice
for the BERT-based model for different languages
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Framework Corpus
Task 1/2 Task3

Label Train Dev Test Label Train Dev Test

RST

deu.rst.pcc (Stede and Neumann, 2014) 2 1773 207 213 26 2164 241 260
eng.rst.gum (Zeldes, 2017) 2 9234 1221 1201 14 19497 2618 2576
eng.rst.rstdt (Lynn Carlson, 2002; Carlson et al., 2003) 2 6672 717 929 17 16003 1622 2156
eus.rst.ert (Iruskieta et al., 2013; Aranzabe et al., 2015) 2 1599 366 415 29 2534 679 615
fas.rst.prstc (Shahmohammadi et al., 2021) 2 1713 202 264 17 4101 500 593
nld.rst.nldt (Redeker et al., 2012) 2 1156 255 240 32 1609 332 326
por.rst.cstn (Cardoso et al., 2011) 2 1825 257 139 32 8798 1286 1249
rus.rst.rrt (Pisarevskaya et al., 2017; Toldova et al., 2017) 2 18932 2025 2087 22 28869 2856 2844
spa.rst.rststb (da Cunha et al., 2011) 2 1548 254 287 28 2241 384 427
spa.rst.sctb (Cao et al., 2018a, 2017b,a, 2016) 2 326 76 114 24 440 95 160
zho.rst.sctb (Cao et al., 2018b, 2017c,a, 2016) 2 361 86 133 26 440 95 160
zho.rst.gcdt (Peng et al., 2022) 2 2026 331 335 31 6455 1007 954

PDTB

eng.pdtb.pdtb (Webber et al., 2019) 3 44563 1703 2364 23 43920 1674 2257
eng.pdtb.tedm (Zeyrek et al., 2018) 3 - 143 238 20 - 179 352
ita.pdtb.luna (Tonelli et al., 2010) 2 3721 775 1315 15 957 211 382
por.pdtb.crpc (Mendes and Lejeune, 2022) 3 4078 581 535 22 8798 1286 1249
por.pdtb.tedm (Zeyrek et al., 2018) 3 - 148 246 20 - 191 365
tha.pdtb.tdtb 3 5076 633 825 20 8279 1244 1345
tur.pdtb.tdb (Zeyrek Bozşahin et al., 2013) 3 24960 2948 3289 23 2452 313 423
tur.pdtb.tedm (Zeyrek et al., 2018) 3 - 141 269 23 - 214 365
zho.pdtb.cdtb (Zhou et al., 2014) 3 2049 438 404 9 3657 855 758

SDRT
eng.sdrt.stac (Asher et al., 2016) 2 8754 991 1342 16 9581 1146 1511
fra.sdrt.annodis (Afantenos et al., 2012) 2 1020 245 242 18 2186 529 626

DEP
eng.dep.covdtb (Nishida and Matsumoto, 2022) 2 - 1162 1181 12 - 2400 2587
eng.dep.scidtb (Yang and Li, 2018) 2 2570 815 817 24 6061 1934 1912
zho.dep.scidtb (Cheng and Li, 2019) 2 308 103 89 23 803 282 216

Table 1: Statistics of corpora provided by the shared task.

Language Pre-trained model choice

deu xlm-roberta-base
eng roberta-base
eus ixa-ehu/berteus-base-cased
fas HooshvareLab/bert-fa-base-uncased
fra xlm-roberta-base
ita xlm-roberta-base
nld pdelobelle/robbert-v2-dutch-base
por neuralmind/bert-base-portuguese-cased
rus DeepPavlov/rubert-base-cased
spa dccuchile/bert-base-spanish-wwm-cased
tur dbmdz/bert-base-turkish-cased
zho bert-base-chinese
tha airesearch/wangchanberta-base-att-spm-uncased

Table 2: Model choice for different languages

is shown in Table 2. Our framework is trained with
batch size 16 for each corpus, and the maximum
input sequence length is 512. If the input sequence
length exceeds 512, then our framework will slice it
into two or more segments. The maximum length
of all segments is also 512. The LSTM in our
framework has two layers, and both of them are
bi-directional. The criterion that we choose those
BERT-based models in our framework is their best
performance with corresponding parameters. In
addition, all the pre-trained models we use for this
shared task are provided by HuggingFace*. The

*https://huggingface.co/

result of our framework’s performance with golden
treebanked data for Task 1 and Task 2 shows in
Table 3. We use our trained model on another cor-
pus to evaluate corpora that do not have a training
corpus and select the best one, shown in Table 4.

However, due to the time limitation, we only
tuned all pre-trained models and tested our frame-
work with the golden treebanked data as the in-
put. Besides, we observed that normally the larger
model performs better than the base model. For
instance, for the corpus eng.dep.scidtb, we use
the best parameters we tuned for the Roberta-
base model (Liu et al., 2019) for the Roberta-
large model, our framework’s performance will
increase 0.28% and 0.11% in the development set
and test set separately. Also, we tried the Ad-
versarial Training strategy (Miyato et al., 2016)
and the Bootstrap aggregating strategy (Breiman,
1996), which is a commonly used ensemble learn-
ing method, separately with our framework. We
only test the Bootstrap aggregating strategy on the
corpus ita.pdtb.luna. We use the best and second-
best learning rates on training with our framework
to generate two models first. Then, we change
the xlm-base model to dbmdz/bert-base-italian-
uncased, and also apply the best and second-best
learning rates to generate two trained models. Ev-
ery time when we train these models, we tune the
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Corpus F1

deu.rst.pcc 96.19%

eng.rst.gum 81.22%
eng.rst.rstdt 97.36%
eus.rst.ert 89.85%
fas.rst.prstc 93.05%
nld.rst.nldt 93.64%
por.rst.cstn 94.63%
rus.rst.rrt 85.05%
spa.rst.rststb 90.87%
spa.rst.sctb 83.17%
zho.rst.sctb 80.12%
zho.rst.gcdt 91.37%
eng.pdtb.pdtb 93.47%
ita.pdtb.luna 66.41%
por.pdtb.crpc 79.74%
tha.pdtb.tdtb 86.92%
tur.pdtb.tdb 84.89%
zho.pdtb.cdtb 87.40%
eng.sdrt.stac 95.84%
fra.sdrt.annodis 88.45%
eng.dep.scidtb 94.97%
zho.dep.scidtb 90.59%

Mean 88.41%

Table 3: Results of Task 1 and Task 2 for corpora with a
training dataset

ratio of the corpus to 1 means we use the whole
corpus. Note that we can tune the ratio to sample
randomly the percentage of data from the training
dataset. Then we let all models vote in the develop-
ment set and test set. Finally, we tally the results of
the voting to determine the final model predictions.
In our experiment setting, we follow the majority
vote, which implies every vote contributes equally
to the final result and the most voted result is se-
lected. We found this simple setting of Bootstrap
aggregating strategy can improve the F1 score by
0.16% and 0.13% on the development set and test
set respectively. During the test of the Adversarial
Training strategy, we only test on a few corpora.
The result shows in Table 5. We observe that the
performance increases in almost all corpora we test,
which means this strategy functions. Insufficient
time prevented us from exploring the result for the
Adversarial Training strategy, the Bootstrap aggre-
gating strategy, and the larger pre-trained models
separately and in combinations of them on all cor-
pora with plain text input and golden treebanked
input settings.

Corpus F1 model source
eng.pdtb.tedm 78.56% eng.pdtb.pdtb
por.pdtb.tedm 80.19% por.pdtb.crpc
tur.pdtb.tedm 66.15% tur.pdtb.tdb
eng.dep.covdtb 90.14% eng.dep.scidtb
Mean 78.76% -

Table 4: Results of Task 1 and Task 2 for corpora with-
out a training dataset. The models used for generating
the result are trained on is noted in the model source
column.

Corpus F1 vs. without adv
deu.rst.pcc 96.59% +0.40%

eng.sdrt.stac 97.21% −0.15%
eus.rst.ert 90.10% +0.25%
fas.rst.prstc 93.14% +0.09%
nld.rst.nldt 96.46% +2.82%
por.rst.cstn 95.85% +1.22%
spa.rst.rststb 91.02% +0.15%
spa.rst.sctb 83.76% +0.59%

Mean 93.02% +0.67125%

Table 5: Comparison between applying Adversarial
Training strategy and without it for our framework on
the dataset we have tested.

3 Relation Classification

3.1 Approach

The relation classifiers employed in this work fol-
low an architecture widely used for text classifica-
tion tasks: pre-trained models as the encoder and
a linear network as the classification layer. The
training of classifiers on each corpus varies from
each other depending on the corpus size. Specifi-
cally, we train individual classifiers for large cor-
pora (e.g., eng.pdtb.pdtb) but a joint model for a set
of small datasets. This is because a large number
of instances is sufficient to train a good classifier,
while a small corpus can lead to underfitting.

For large corpora, including eng.rst.gum,
eng.rst.rstdt, eus.rst.ert, zho.rst.gcdt, eng.pdtb.pdtb,
eng.sdrt.stac, and fra.sdrt.annodis, individual clas-
sifiers are trained for them. For small corpora, we
divide them into three groups according their an-
notation framework. The first is the RST-group,
containing deu.rst.pcc, fas.rst.prstc, nld.rst.nldt,
por.rst.cstn, rus.rst.rrt, spa.rst.rststb, spa.rst.sctb,
and zho.rst.sctb. We train a joint model called
joint-RST on the RST-group corpus. The sec-
ond is the PDTB-group, covering ita.pdtb.luna,
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Model type Corpus Encoder

individual

eng.rst.gum

roberta-large
eng.rst.rstdt
eng.pdtb.pdtb
eng.sdrt.stac
eus.rst.ert berteus-base-cased
zho.rst.gcdt

macbert-large
zho.pdtb.cdtb
fra.sdrt.annodis camembert-large

joint-RST

deu.rst.pcc

xlm-roberta-large

fas.rst.prstc
nld.rst.nldt
por.rst.cstn
rus.rst.rrt
spa.rst.rststb
spa.rst.sctb
zho.rst.sctb

joint-PDTB

eng.pdtb.tedm
ita.pdtb.luna
por.pdtb.crpc
por.pdtb.tedm
tha.pdtb.tdtb
tur.pdtb.tdb
tur.pdtb.tedm

joint-DEP
eng.dep.scidtb
eng.dep.covdtb
zho.dep.scidtb

Table 6: Training strategy for different relation corpora.
"individual" means training a corpus-specific model.

por.pdtb.crpc, tha.pdtb.tdtb, and tur.pdtb.tdb, and
the joint model joint-PDTB is trained on this
group. The last is the DEP-group, including
eng.dep.scidtb and zho.dep.scidtb, and its corre-
sponding model is joint-DEP.

During training, adversarial strategy (Miyato
et al., 2016) is applied to improve the robustness
of classifiers. For corpora without a training set,
we evaluate them with the joint model of the cor-
responding annotation framework. We summarize
the setup for each corpus in Table 6.

3.2 Experiments

We train relation classifiers based on the corpora
provided by the shared task. During the evaluation,
we report the result of a model on the test set using
the checkpoint that achieves the best performance
on the development set.

Table 7 shows the results on corpora with train-
ing sets. We find that small corpora can sig-
nificantly benefit from joint training. For exam-
ple, the joint-RST outperforms a relation classifier
trained on deu.rst.pcc solely more than 5 points

Model type Corpus Accuracy

Individual

eng.rst.gum 65.67
eng.rst.rstdt 66.40
eng.pdtb.pdtb 74.75
eng.sdrt.stac 62.85
eus.rst.ert 56.64
zho.rst.gcdt 56.14
zho.pdtb.pdtb 85.36
fra.sdrt.annodis 50.08

joint-RST

deu.rst.pcc 35.77
fas.rst.prstc 55.91
nld.rst.nldt 55.69
por.rst.cstn 68.38
rus.rst.rrt 62.05
spa.rst.rststb 58.69
spa.pdtb.crpc 64.15
zho.rst.sctb 62.26

joint-PDTB

ita.pdtb.luna 67.89
por.pdtb.crpc 77.80
tha.pdtb.tdtb 96.80
tur.pdtb.tdb 56.64

joint-DEP
eng.dep.scidtb 75.30
zho.dep.scidtb 67.44
Mean 64.67

Table 7: Results (Task 3) for corpora with a training set.

Corpus Accuracy
eng.pdtb.tedm 65.53
por.pdtb.tedm 67.03
tur.pdtb.tedm 56.87
eng.dep.covdtb 70.03
Mean 64.87

Table 8: Results (Task 3) for corpora without a training
set.

(i.e., 30.00% → 35.77%). However, the joint
model performs worse on large corpora, such as
eng.rst.gum, decreasing the accuracy from 65.67%
to 62.06%, compared to the individual model. Due
to time constraints, we can not finish the ablation
study on all corpora.

The shared task also provides evaluation corpora
without training sets. The primary goal is to test the
zero-shot performance of trained classifiers. Our
joint models are well suited for this setting since
they have a large label set, inheriting from a group
of small corpora. Table 8 shows joint models’ re-
sults on those evaluation corpora. Surprisingly,
our joint models perform well under the zero-shot
setting, achieving an average accuracy of 64.87%,
close to the performance of corpora with a training
set (i.e., 64.67%).
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4 Conclusion

In this paper, we present our models in the shared
task DISRPT 2023. For Tasks 1 and 2, we em-
ploy a pre-trained model+BiLSTM+CRF to cap-
ture textual information and dependency between
successive labels. For Task 3, we design a joint
training strategy for small corpora, which can com-
pensate for underfitting caused by limited training
instances.
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