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Abstract

The use of neural language models to model
human behavior has met with mixed success.
While some work has found that the surprisal
estimates from these models can be used to
predict a wide range of human neural and be-
havioral responses, other work studying more
complex syntactic phenomena has found that
these surprisal estimates generate incorrect be-
havioral predictions. This paper explores the
extent to which the misalignment between em-
pirical and model-predicted behavior can be
minimized by training models on more develop-
mentally plausible data, such as in the BabyLM
Challenge. We trained teacher language models
on the BabyLM “strict-small” dataset and used
sentence level surprisal estimates from these
teacher models to create a curriculum. We
found tentative evidence that our curriculum
made it easier for models to acquire linguis-
tic knowledge from the training data: on the
subset of tasks in the BabyLM challenge suite
evaluating models’ grammatical knowledge of
English, models first trained on the BabyLM
data curriculum and then on a few randomly
ordered training epochs performed slightly bet-
ter than models trained on randomly ordered
epochs alone. This improved linguistic knowl-
edge acquisition did not result in better align-
ment with human reading behavior, however:
models trained on the BabyLM dataset (with
or without a curriculum) generated predictions
that were as misaligned with human behavior as
models trained on larger less curated datasets.
This suggests that training on developmentally
plausible datasets alone is likely insufficient to
generate language models capable of accurately
predicting human language processing.

1 Introduction

The rapidly increasing success of neural language
models has resulted in a corresponding increase
the use of these models to model human neural
and behavioral responses. This research direction
has yielded mixed success — while the surprisal

estimates from these language models (i.e., the
negative log probability of words given their pre-
ceding context) can certainly predict a wide range
of neural and behavioral responses (Schrimpf et al.,
2021), there are cases where surprisal estimates
from these models generate quantitiatively (Huang
et al., 2023; Van Schijndel and Linzen, 2021) and
even qualitatively (Arehalli and Linzen, 2020) in-
correct predictions.

To what extent are these incorrect predictions
a consequence of the fact that these models are
trained on orders of magnitude more data than
an average human is exposed to in their lifetime
(Linzen, 2020)? Can training these models on more
developmentally plausible datasets, such as in the
BabyLM challenge (Warstadt et al., 2023), bridge
the gap between empirical and predicted behavior?
Does increased alignment with human behavior
come at the cost of success on other NLP tasks?
We explore these questions in this paper by train-
ing models on the the “strict-small” dataset of the
BabyLM Challenge (∼10M tokens) and evaluat-
ing the models on two types of tasks: first, tasks
from the BabyLM challenge designed to test these
models’ linguistic abilities; second, a large scale
reading time dataset of syntactically complex sen-
tences designed to evaluate models’ ability to cap-
ture aspects of human language processing (SAP
benchmark; Huang et al., 2023).

Concretely, we explored whether training mod-
els on an easy-to-difficult curriculum (Elman,
1993) could result in improved performance on
the BabyLM suite of challenge tasks and/or an im-
proved fit to human reading behavior in the SAP
Benchmark. To design the curriculum, we used the
Cross-Review method (Xu et al., 2020): we trained
teacher language models on different subsets of the
training dataset and then generated sentence level
surprisal estimates for held out sentences from each
of the teacher models. For every sentence, the sur-
prisal estimates from multiple teachers were av-
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Figure 1: Schematic for how Cross-Review can be used to generate an easy-to-difficult order for the training dataset.

eraged together to compute a “difficulty” score,
which was then used to generate an ordered se-
quence of training sentences (or “curriculum”).

To foreshadow our results, we found that models
trained on our curriculum alone performed worse
on the BabyLM suite of challenge tasks compared
to models trained for the same number of steps
without a curriculum. However, for a subset of the
challenge tasks evaluating models’ grammatical
knowledge, models which were trained on the cur-
riculum followed by a few randomly ordered train-
ing epochs performed better than models trained on
the randomly ordered epochs alone. This suggests
that while training on the curriculum alone was not
sufficient to acquire relevant linguistic knowledge,
it might have induced useful biases in the mod-
els which made it easier for the models to acquire
linguistic knowledge from the training data.

However, any useful biases that training on the
the curriculum might have induced did not result
in improved alignment with human reading behav-
ior: models trained on the BabyLM data (with or
without the curriculum) had nearly identical perfor-
mance on the SAP benchmark to each other and to
models trained on larger and less curated datasets.
This result, along with prior work on training mod-
els on child directed speech (Yedetore et al., 2023),
suggests that merely training on developmentally
plausible data is likely insufficient for bridging the
gap between human behavior and language-model
predicted behavior.

2 Background

Curriculum learning (Bengio et al., 2009) refers to
training models through a difficulty-based order-
ing of training examples (i.e. a curriculum), most
often “starting small” (Elman, 1993) from easy ex-
amples before progressing to increasingly difficult
sentences. In NLP, curriculum learning has been
widely used for Machine Translation (e.g., Platan-
ios et al., 2019), but has also been applied more
recently to other natural language understanding
tasks (Xu et al., 2020). For a survey see Soviany
et al. (2022); Wang et al. (2021).

There are two steps involved in designing a
curriculum: assigning a difficulty score to every
training example (“difficulty measurer”) and using
these difficulty scores to determine the order in
which training examples are presented to the model
(“training scheduler”) (Wang et al., 2021).

2.1 Difficulty measurer
Prior work exploring the efficacy of curriculum
learning for NLU tasks has used a wide range of
properties to compute sentence difficulty such as
sentence length, word frequency (or rarity), tree
depth, diversity and understandability (for a review,
see Soviany et al., 2022). None of these properties
by themselves can comprehensively capture what
makes one sentence more difficult to process or
acquire than another. For example, while long sen-
tences are in general more difficult than short sen-
tences, a shorter ambiguous sentence (“the horse
raced past the barn fell”) is more difficult to pro-
cess than a longer unambiguous one (“the horse
which was raced past the barn is the same horse
that fell”). Given the complex ways in which all of
the individual properties can interact, a holistic way
of combining these properties is likely necessary
to generate good measures of sentence difficulty.

A natural way of combining these properties to
compute a difficulty measure is to use a “teacher”
language model to compute the predictability of
words in a sentence: given some context, a good
language model will assign lower probabilities to
words that result in long continuations with infre-
quent words and structures and/or continuations
that describe improbable or hard-to-understand
events. Concretely, in this work we define diffi-
culty of a sentence as the mean surprisal of words
in the sentence, as given in equation 1, where D is
difficulty, L is the model being used to compute dif-
ficulty, sk is the k-th sentence, and n is the number
of words in sk.

D(sk, L) = − 1

n

n∑

i=0

logP (wi | w0...wi−1, L)

(1)
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There are two issues with estimating sentence
difficulty in this manner. First, the difficulty es-
timates can be inaccurate if the teacher language
model is trained on the same data for which dif-
ficulty scores are being computed. Second, the
difficulty estimates can be affected by noisy id-
iosyncrasies if they are computed from just one
teacher language model. To avoid these two is-
sues, we use the Cross-Review method proposed
by Xu et al. (2020). In this method each teacher is
trained on a subset of the data, and then evaluated
on all subsets other than the one it was trained on.
Therefore if there are n teachers, there are n-1 dif-
ficulty scores for each sentence which can then be
averaged together for a final difficulty score for the
sentence (see Equation 2 and Figure 1).

D(sk) =
1

M

M∑

m=1

D(sk,m) (2)

2.2 Training scheduler
Given a training dataset E in which examples are
ordered by difficulty and a training time step t,
the training scheduler determines the subset of E
that the model can be exposed to at t. At a broad
level there are two types of schedulers: discrete and
continuous (see Wang et al., 2021 for a more de-
tailed taxonomy of training schedulers). In discrete
schedulers, the training proceeds in stages with m
training time steps; at all training time steps in a
stage ti...ti+m, the model is exposed to the same
subset of E.1 In continuous schedulers on the other
hand, the subset of E that the model is exposed to
changes at every training time step.

In this work we use a continuous scheduler pro-
posed by Platanios et al. (2019), in which the pro-
portion of E that the model can be exposed to at t,
croot−p(t), is given by the formula below, where T
is the maximum number of training time steps and
c0 is the proportion of sentences that the model is
exposed in the first time step:

croot−p(t) = min
(
1,

p

√

t
1− cp0
T

+ cp0

)
(3)

Our primary reason for using the scheduler
above is that it has only three hyperparameters:
c0, T and p. The authors demonstrate that hyper-
parameters like warmup steps, which are normally

1This is equivalent to saying that the at any given training
stage, the model is trained on m epochs of a subset of E.

very highly tuned, do not have to be tuned with
their scheduler. Given our compute limitations, hy-
perparameter tuning was infeasible, thus making
this approach appealing.

3 Designing the curriculum

3.1 Datasets
We trained our random baselines and designed
our curriculum using the datasets provided in the
“strict-small” track of the BabyLM challenge. The
data for this track was made up of 10 datasets, with
a total of about ∼10M tokens and ∼920K sentences
(where sentences were defined as sequences sepa-
rated by a new line character). As specified in the
BabyLM call for papers, the relative distribution of
the ten datasets at the token level was intended to
be developmentally plausible – for example, about
55% of all the tokens in the “strict-small” dataset
comes from transcribed speech, and another 19%
of the tokens come from stories (see Table 1).

While the BabyLM challenge datasets were con-
structed at the token level, we designed our curricu-
lum at the sentence level, where we defined sen-
tences as sequences separated by a new line charac-
ter. We did this because it was more straightforward
to sort the training dataset based on the difficulty of
entire sentences; creating a token-level curriculum
would require specifying an additional mechanism
for ensuring that contextual integrity was main-
tained. The relative distribution of the ten datasets
at the sentence level was very different from the
relative distribution of tokens (see Table 1). Specif-
ically, the proportion of more “complex” datasets
(such as Wikipedia and Simple Wikipedia) was
much lower at the sentence level than at the to-
ken level. We discuss the consequence of these
distributional differences in § 7.

3.2 Computing sentence difficulty
As discussed in § 2.1, we used the Cross-Review
method proposed by Xu et al. (2020) to compute
the difficulty of every sentence in the training
dataset. We divided the training dataset into five
metasets, each with approximately the same num-
ber of tokens and number of sentences. Then, we
used the neural-complexity codebase (van Schijn-
del and Linzen, 2018)2 to train five LSTM teachers
on each of these metasets.

Our LSTM teachers each had two hidden layers
with 200 units in each layer. Training sentences

2https://github.com/vansky/neural-complexity
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Dataset Speech? # tokens Proportion # sentences Proportion

CHILDES Yes 0.44 M 4% 80K 9%
BNC Spoken Yes 0.84 M 9% 73.41 K 8%
Children’s book test No 0.57 M 6% 26 K 3%
Children stories No 0.34 M 3% 5.72 K 1%
Project Gutenberg No 0.99 M 10% 91.81 K 10%
Open Subtitles Yes 3.03 M 31% 470.89 K 51%
QED Yes 1.03M 10% 91.91 K 10%
Simple Wikipedia No 1.51 M 15% 48.80 K 5%
Switchboard Yes 0.11 M 1% 11.09 K 1%
Wikipedia No 0.99 M 10% 19.35 K 2%

Total 9.87 M 918.98 K

Table 1: Number of tokens and sentences in each of the sub-datasets in the BabyLM “strict-small” datasets. The
number of tokens are based on a BPE tokenizer we trained and we exlcude tokens from lines with just a tab or space.
Therefore the numbers are slightly different from those in the BabyLM call for papers.

0.00

0.25

0.50

0.75

1.00

28.9k 57.9k 86.8k 115.7k 144.7k Full Train

Number of training steps

P
ro

po
rt

io
n 

of
 d

at
a

Wikipedia

Children stories

Simple Wikipedia

Childrens Book Test

Project Gutenberg

QED

BNC spoken

Switchboard

Open subtitles

CHILDES

Figure 2: Proportion of sentences from each of the sub-datasets in our training curriculum for every 28937 training
steps (i.e. equivalent to 1 epoch in the random models), as well as the proportions in the entire training dataset.

were pre-tokenized using a BPE tokenizer that we
trained (described in § 4.2) and were passed to the
teacher models in 20 batches. They were trained
until their validation loss did not improve for three
epochs, or until they reached 100 epochs. All teach-
ers converged within 67 epochs, with the fastest
teacher converging in 54 epochs.

We then evaluated each of the teacher LSTMs
on all metasets except the one they were trained
on, and then used the resulting surprisal values
to compute the difficulty of every sentence in the
training dataset (see Equation 2 and Figure 1).

Why use LSTM teachers? We trained LSTM
language models instead of transformers because
prior work has demonstrated that for datasets with
4 million tokens or less, such as our metasets,
LSTM language models outperform their trans-
former counterparts (Hu et al., 2020), and therefore
would make better “teachers”. Note, we did not use
state-of-the-art language models as our teachers be-

cause of the constraints of the strict-small track of
the BabyLM challenge.

3.3 Creating the training dataset

As discussed in § 2.2, we use the training sched-
uler proposed by Platanios et al. (2019) which has
three hyperparameters (see Equation 3): the ini-
tial competence (c0), the total number of training
steps (T ) and the root value (p). Following Pla-
tanios et al. (2019), we set the value of c0 to 0.01.
We set the value of T to be 150001 because our
random baseline (described in § 4.3) achieved the
highest validation perplexity after 144685 training
steps (i.e., after 5 epochs).3 We set the value of p
to be 10 after some experimentation because for
values of p lower than that, the complex domains in
our training dataset (such as Wikipedia) were very
underrepresented (see Figure 5 in the Appendix).
Then, for every batch, we sampled 32 sentences

3It was 150001 instead of 150000 because of an error.
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from the subset of sentences that the model can be
exposed to at the current time step as determined
by Equation 3.

4 Training

4.1 Model architecture

For our target models we use the OPT 125M ar-
chitecture (Zhang et al., 2022). This decoder-only
transformer architecture consists of 12 layers with
12 attention heads each, an embedding size of 768
and a context length of 2048 tokens. We addition-
ally use a final 0.2M layer with a causal language
modeling head.

4.2 Tokenization and batching

Since the BabyLM challenge does not permit the
use of pretrained tokenizer, we trained a BPE tok-
enizer on the training dataset with a vocabulary size
of 50272 (the same as was used in the original OPT
models). Like in the GPT-2 (Radford et al., 2019)
tokenizer implementation, we do not significantly
normalize or pre-tokenize the tokenizer training
data. For the batching process, the tokenizer trun-
cates sequences longer than 128 tokens, and returns
the overflowing tokens as a separate sequence; only
about 2% of our training examples were truncated.
We used batch size of 32 with dynamic padding.
The entire training dataset was divided into 28937
batches or training steps per epoch.

4.3 Model types

Random baseline: A randomly initialized OPT
125M model trained on our training dataset without
any curriculum for up to 8 epochs. We present
results from two baselines: the checkpoint after the
5th epoch (RandOPT 5ep; 144685 training steps)
which had the best validation loss, and the last
checkpoint (RandOPT 8 ep; 231496 training steps).

Curriculum only model: A randomly initialized
OPT 125M model trained on our entire curriculum
(CurrOPT; 150001 training steps).

Curriculum + Finetuning: The checkpoint of
the CurrOPT model after it was trained on 144685
steps (i.e., same number of steps as the RandOPT
5ep model) further “finetuned” on the entire ran-
domly ordered training dataset for upto 5 additional
epochs. We present results from the checkpoint af-
ter 3 finetuning epochs (CurrOPT_ft 3ep; 231496
training steps, same as RandOPT 8ep) and the

checkpoint after 5 finetuning epochs (CurrOPT_ft
5ep; 289370 training steps).

4.4 Training procedure

We use an AdamW optimizer (Loshchilov and Hut-
ter, 2017) with β1 and β2 set to 0.9 and 0.95 re-
spectively. We use a weight decay and dropout of
0.1, and clip gradient norms at 1.0. For our random
baseline we use a linear learning rate schedule and
use a warmup of ∼5% of our maximum training
steps. As discussed in § 2.2 we do not use warmup
for our curriculum models. Due to our considerably
smaller pre-training corpus we do not implement
the several mid-flight changes to learning rate and
gradient clipping employed by Zhang et al. (as
an adhoc response to training instability) over the
course of their significantly longer training run.

5 Evaluation

We evaluate our models on the three challenge
sets included in the BabyLM challenge – BLiMP
(Warstadt et al., 2020a), (Super)GLUE (Wang et al.,
2018, 2019) and MSGS (Warstadt et al., 2020b) —
as well as on the SAP Benchmark (Huang et al.,
2023).

BLiMP and BLiMP supplement The Bench-
mark of Linguistic Minimal Pairs (BLiMP) probes
the linguistic knowledge that a language model
encodes by measuring how often the model accu-
rately assigns higher probabilities to words in min-
imally different grammatical and ungrammatical
sentences. The original dataset contains minimal
pairs for 12 different linguistic phenomena probing
English morphology, syntax and semantics. The
BabyLM challenge supplements this dataset with
five additional linguistic phenomena targeting dis-
course level acceptability as well as other syntactic
phenomena (such as question formation).

SuperGLUE The General language Understand-
ing Evaluation (GLUE) benchmark and its succes-
sor SuperGLUE are challenge sets that are designed
to evaluate models’ general purpose natural lan-
guage understanding. The BabyLM challenge in-
cludes tasks from GLUE (COLA, SST2, MRPC,
QQP, MNLI, QNLI, RTE), three tasks from Su-
perGLUE (BoolQ, RTE and WSC), as well as an
additional task (Multimodal NLI). Unlike BLiMP
which largely evaluates grammatical knowledge,
the SuperGLUE tasks are designed to evaluate
higher level linguistic abilities such as sentiment
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analysis, inference, causal reasoning, coreference
resolution, question answering, paraphrasing, etc.

MSGS The Mixed Signals Generalization Set is
a diagnostic set used to evaluate how models solve
an ambiguous classification task that can be solved
using either linguistic features or surface features.
The MSGS set contains five surface features and
four linguistic features, resulting in 20 ambiguous
classification tasks. There are also 9 control tasks to
evaluate how well models can classify each of the
features in an unambiguous context. The BabyLM
challenge uses three linguistic features (syntactic
position, syntactic construction, and syntactic cate-
gory) and two surface features (lexical content and
relative position), thus resulting in six ambiguous
classification tasks.

SAP Benchmark The Syntactic Ambiguity Pro-
cessing (SAP) benchmark is a large scaled reading
time dataset for seven different types of syntacti-
cally complex sentences. Unlike the other datasets
which measure models’ linguistic knowledge and
ability, this dataset measures whether the models
process information as humans do; specifically,
whether models and humans are equally surprised
by sentences that are grammatical but have com-
plex and infrequent syntactic structures. The data
processing pipeline of the SAP benchmark involves
three steps: first, estimating empirical effects of
interest using Bayesian mixed effects models; sec-
ond, generating predicted reading times from lan-
guage model surprisal (i.e. negative log probabil-
ity) values and fitting mixed effects models to esti-
mate predicted effects of interest;4and third, com-
paring empirical and predicted effects of interest.
The surprisal estimates and reading times are mea-
sured at specific target words and the following two
spillover words. Further details about the different
constructions are included in the Supplementary
materials.

6 Results

6.1 What curriculum was learned?

The datasets with transcribed speech had the low-
est average sentence difficulty scores. Even within
transcribed speech, datasets with informal speech
(such as child directed speech and subtitles) had
lower average difficulty scores than datasets with

4SAP Benchmark uses Bayesian mixed effects models. We
use linear mixed effects models because they are less resource
intensive to fit and yield nearly identical model estimates.

more formal speech (such as BNC). Additionally,
as expected the proportion of transcribed speech
steadily decreased over time, as the proportion of
written text increased. By the last “epoch”, the dis-
tribution of datasets was very similar to the true dis-
tribution (see Figure 2), suggesting that the cross-
review method we used as our difficulty-measurer
was effective, as was the root-10 training scheduler.

Agreement between LSTM teachers For any
given sentence, there was a lot of variance in the
surprisal estimates across the teachers: the average
standard deviation was 113 bits of surprisal; the
mean Spearman rank correlation between any two
pairs of teachers was only 0.0009. This highlights
the importance of averaging the surprisal estimates
across different teachers to avoid over-fitting to
idiosyncrasies of any particular teacher model.

Other difficulty measures Figure 7 plots the
correlation between our difficulty measure com-
puted using the cross-review method and two other
simpler difficulty measures: average unigram fre-
quency of the words in a sentence and sentence
length. Our difficulty measure is moderately cor-
related with unigram frequency (R = 0.27, p <
0.0001) and highly correlated with sentence length
(R = 0.89, p < 0.0001). We also predicted our
difficulty measure as a function of unigram fre-
quency and sentence length in a linear regression
model and found that unigram frequency explains
variance in our difficulty measure over and above
sentence length, and together they explain most
of the variance in the difficulty measure (adjusted
R-squared = 0.93). This suggests that for the spe-
cific BabyLM datasets, using cross-review, while
effective, might not be necessary: using faster-to-
compute measures such as sentence length would
have likely resulted in a comparable curriculum.

6.2 Training time
Since our difficulty measure was highly correlated
with sentence length, in early stages of training
the average sentence length in our curriculum was
lower than the average sentence length in early
epochs of model training without a curriculum.
Since we dynamically padded our sequences, the
model trained on our curriculum (CurrOPT) was
initially trained on batches consisting of fewer total
tokens than the model trained on the unordered data
(RandOPT). As a result, in early stages of training,
the time taken to train CurrOPT was less than half
the amount of time taken to train RandOPT. As
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Dataset Task RandOPT
5 ep

RandOPT
8 ep

CurrOPT CurrOPT_ft
3 ep

CurrOPT_ft
5 ep

114685
steps

231496
steps

150001
steps

231496
steps

289370
steps

BLiMP Anaphor Agr. 75.72 86.71 70.35 72.59 75.05
Agr. structure 66.09 67.85 67.8 70.44 70.04
Binding 69.19 66.83 69.23 69.29 72.72
Control/Raising 63.65 65.89 63.57 66.81 68.58
D-N Agr. 72.33 74.64 72.05 76.58 78.6
Ellipsis 52.71 52.89 53 61.66 55.43
Filler-gap 72.84 73.5 72.74 74.4 75.18
Irregular forms 82.39 71.04 82.34 80.97 81.27
Island effects 52.06 57.21 57.1 64.13 62.48
NPI licensing 47.46 41.59 38.76 45.52 48.25
Quantifiers 55.69 64.4 52.81 67.03 67.34
Subj-Verb Agr 63.92 64.43 58.84 64.73 65.55

BLIMP Hypernym 50.58 49.19 48.95 47.91 47.21
Supplement Congr. (easy) 48.44 51.56 50 53.12 53.12

Congr. (tricky) 36.97 36.97 36.36 36.36 36.36
Subj-Aux Inv. 84.92 86.53 72.55 84.58 85.02
Turn taking 55 60.71 51.43 55.71 57.5

SuperGlue COLA 3.2 9.35 3.2 9.77 8.91
SST2 83.07 83.86 83.27 85.43 83.86
MRPC 73.64 75.59 65.50 72.07 80.14
QQP 76.86 77.27 74.78 77.33 76.83
MNLI 65.75 67.07 64.63 65.18 65.3
MNLI-MM 65.88 66.31 65.58 66.2 66.22
QNLI 60.63 59.84 59.54 61.33 60.98
RTE 51.51 45.46 47.48 53.54 48.49
BoolQ 65.15 67.50 66.53 60.30 66.81
MultiRC 55.53 48.85 56.74 46.55 47.54
WSC 56.63 61.45 61.45 61.45 61.45

MSGS MV lexical -100 -100 -100 -100 -100
MV position -99.95 -98.39 -99.75 -88.76 -97.62
SC lexical 0.18 -57.66 -58.62 -62.46 -69.88
SC position -62.68 -66.39 -62.82 -76.28 -62.88
CR lexical 0 -4.17 -1.7 -2.4 -1.2
CR position -69.49 -95.59 -87.47 -70.38 -98.53

Table 2: Results for the tasks included in the BabyLM challenge set. Most of the numbers in the table indicate
accuracy except for the following cases: MSGS tasks and COLA numbers are Matthew’s Correlation Coefficient;
MRPC and QQP numbers are F1 scores. Light green cells indicate cases in which CurrOPT and CurrOPT_ft 3ep
performed better than their random counterpart trained on the same number of steps: RandOPT 5ep and RandOPT
8ep respectively. Similarly, red cells indicate cases in which CurrOPT and CurrOPT_ft 3ep perform worse. Orange
cells indicate tasks in which one of the random models ultimately had the best performance. Teal cells indicate
tasks in which training the random model on more epochs led to worse performance. Bolded numbers indicate the
best performance in a task across all five models. For MSGS we interpret “best performance” as having the weakest
surface bias (i.e., the least negative numbers).
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Figure 3: Difference between empirical and model-predicted reading times for the different constructions in the
SAP Benchmark. Wiki-LSTM and GPT-2 estimates were from the original paper.

the curriculum progressed, the number of tokens in
each batch of CurrOPT approached those in Ran-
dOPT causing the training time for CurrOPT to be
similar to that of RandOPT.

6.3 BabyLM challenge tasks

On almost all of the tasks, the performance of the
model trained on our curriculum (CurrOPT) was
worse than the random baseline trained on fewer
training examples (RandOPT 5ep). However, when
we continued to train CurrOPT on more epochs of
the entire training data, the resulting model (Cur-
rOPT_ft 3ep) performed better than the random
baseline trained on the same number of training ex-
amples (RandOPT 8ep) on some tasks (see Table 2).
Specifically, CurrOPT_ft 3ep performed better than
RandOPT 8ep on most tasks that evaluated mod-
els’ knowledge of English grammar (e.g., BLiMP,
COLA). However, additional training did not seem
to help the curriculum models’ performance on
tasks that required specific lexical knowledge (e.g.,
irregular forms and hypernyms) or on tasks that
required the model to learn more factual informa-
tion (e.g., MNLI, MNLI-MM and BoolQ). Taken
together these results suggest that while training
on our curriculum by itself is insufficient to impart
the necessary grammatical knowledge, it might in-
duce biases in the model that make it easier for the
model to acquire this knowledge from training data.
However, there may be limits to the usefulness of
these induced biases: training on our curriculum
seemed to have some negative impact on the mod-
els’ ability to acquire nuanced lexical or factual
information required to solve more complex tasks

like inference or question answering.

6.4 SAP Benchmark

We compared reading times predicted from the sur-
prisal estimates of each of our models, as well as
two baselines that were used in the original pa-
per (GPT-2 (Radford et al., 2019) and an LSTM
model trained on Wikipedia) to the empirical read-
ing times. The difference between predicted and
empirical reading times is nearly identical across
all models, and very high (greater than 25 ms) for
five out of the seven constructions (see Figure 3).
This difference is not just a result of an incorrect
conversion from surprisal to RTs — we observe
qualitatively similar patterns when we look at raw
surprisal values (see Figure 8 in the Appendix).
Thus training on developmentally plausible data
(with or without a curriculum) does not result in
more human-like processing compared to models
trained on less curated written text from the inter-
net. This result aligns with the finding that training
on child directed speech does not result in human-
like generalization (Yedetore et al., 2023). Taken
together these results suggest that merely modify-
ing the training data of language models is unlikely
to result in better cognitive models of human lan-
guage acquisition and processing.

7 Discussion

In this paper we explored whether training on a de-
velopmentally plausible dataset can improve align-
ment with human behavior, and whether the im-
proved alignment (if any) comes at the cost of per-
formance on other NLP tasks evaluating different
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aspects of linguistic competence. We trained mod-
els with and without a curriculum on the BabyLM
“strict-small” dataset and evaluated them on the
BabyLM suite of evaluation tasks as well as on
a large scale benchmark of reading behavior for
syntactically complex sentences (SAP benchmark).

Drawing on prior work on curriculum learning,
we created an easy-to-difficult ordering of the sen-
tences in the training dataset using surprisal values
from LSTM teacher language models in a Cross-
Review paradigm (Xu et al., 2020), and then used
this ordering with a root-10 scheduler (Platanios
et al., 2019) to design the training curriculum. This
learned curriculum aligned with intuitive expecta-
tions for our curriculum — for example, the pro-
portion of transcribed speech decreased over time,
whereas the proportion of written text increased.

An OPT125M causal language model trained
on our curriculum (CurrOPT) performed worse on
most of the tasks in the BabyLM challenge set
compared to baselines trained without a curricu-
lum, suggesting that the models were unable to
acquire relevant linguistic knowledge from the cur-
riculum alone. Continuing to train CurrOPT on
epochs of randomly ordered training data improved
performance on most tasks targeting grammatical
knowledge, but not on tasks that required more fine-
grained knowledge about lexical or factual content.

Why did training on the curriculum lead to
worse performance on some tasks? Domains
with complex sentences (e.g., Wikipedia) were un-
derrepresented in our curriculum because of our
sentence level curriculum: domains like Wikipedia
had fewer but longer sentences, and were there-
fore were less likely to be sampled than sentences
from domains with many short sentences (e.g.,
Open Subtitles). As a consequence there might
not have been enough signal in the training data for
the models to acquire factual information (which
might explain their poor performance on tasks like
MNLI and BoolQ) or nuanced lexical representa-
tions (which might explain their poor performance
on tasks like irregular forms and hypernyms).

Can training on developmentally plausible data
improve alignment with human behavior? Cru-
cial to our question, we found that our models
which were trained on developmentally plausible
data (with or without a curriculum) had nearly iden-
tical performance to models trained on less curated
larger datasets — all of the models severely under-

predicted the magnitude of processing difficulty in
syntactically complex sentences. This suggests that
training on developmentally plausible data alone is
likely insufficient to bridge the gap between human
and model-predicted behavior.

Limitations and future work All of the perfor-
mance increases that we’ve discussed were very
modest and based on just one model architecture.
Therefore further work with additional random runs
of the model is required to ensure that the improve-
ments in performance were not just random noise.
Similarly repeating the experiments with different
architectures for the target and teacher models can
shed light on the generalizability of our conclu-
sions. In a similar vein, the conclusions about SAP
benchmark results also need to be validated in fu-
ture work. Specifically, it is necessary to more
carefully define what “developmentally plausible”
means, develop concrete hypotheses about why
training on specific datasets might result in better
alignment with reading behavior, and test these
hypotheses with controlled experiments.

8 Conclusion

We designed a surprisal-based curriculum using
the developmentally plausible data in the BabyLM
strict-small dataset. We found that a model which
was first trained on this curriculum and then trained
on several additional epochs of the unordered train-
ing dataset performed slightly better than a random
baseline trained on the same number of examples
across a range of NLP tasks. When these models
were evaluated on the SAP benchmark, their per-
formance was nearly identical to each other and to
that of models trained on larger and less curated
datasets. This suggests that merely altering the
training data to be more developmentally plausi-
ble is unlikely to improve alignment with human
behavior.
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Figure 4: Figure and caption adapted from (Huang et al., 2023). Each sentence pair illustrates a construction
tested in SAP Benchmark. An effect of interest is defined as the difference in reading times associated with a
disambiguating or ungrammatical word, marked in green, minus the reading time associated with that same word in
a context where it is grammatical and does not disambiguate the structure of the sentence, marked in turquoise.
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Figure 5: Proportion of sentences from each of the sub-datasets in training curricula with different root values for
every 28937 training steps (i.e. equivalent to 1 epoch in the random models), as well as the proportions in the entire
training dataset. The curriculum used this is paper is root 10.

Figure 6: Caption

(a) (b)

Figure 7: Relationship between the order average LSTM teacher surprisal and other difficulty measures. R values
indicate the Spearman rank correlation coefficients.
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Figure 8: Difference in surprisal value at the target word in ambiguous and unambiguous sentences averaged across
all sentences in a construction. Error bars represent 2 standard errors from the mean.
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Figure 9: Correlation between model surprisal estimates at the item level. For each model, an item level difference in
surprisal at the target word in the ambiguous and unambiguous conditions was computed. This item-level difference
was correlated between models using Pearsons’s correlation. The relatively weak correlations suggest that even
though the models have the same aggregate behavior on the SAP benchmark, their behavior differs at the item level.
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