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Abstract

We present the submission of the ILLC at
the University of Amsterdam to the BabyLM
challenge (Warstadt et al., 2023), in the
strict-small track. Our final model,
ChapGTP, is a masked language model that
was trained for 200 epochs, aided by a novel
data augmentation technique called Automatic
Task Formation. We discuss in detail the per-
formance of this model on the three evaluation
suites: BLiMP, (Super)GLUE, and MSGS. Fur-
thermore, we present a wide range of methods
that were ultimately not included in the model,
but may serve as inspiration for training LMs
in low-resource settings.

1 Introduction

Modern language models (LMs) are trained on
datasets that are many orders of magnitude larger
than the amount of text a human can read in a sin-
gle lifetime. Driven by the scaling law paradigm,
which states that model performance scales as a
power law with model and data size, language
model training has become increasingly data hun-
gry (Kaplan et al., 2020; Hoffmann et al., 2022).
This has raised questions about the efficiency of the
paradigm: is it possible to train proficient models
on amounts of data similar to that what humans
process when learning language? The BabyLM
challenge (Warstadt et al., 2023) proposes a com-
munity effort to find efficient training strategies for
model training, providing a fixed, “developmen-
tally plausible” training data set.

This paper presents the submission of the Insti-
tute of Logic, Language and Computation at the
University of Amsterdam to the BabyLM challenge.
We participated in the strict-small track of the
challenge, which limits the amount of training data
to a fixed set of 10 million tokens. The usage of
any sources trained on external data was not al-
lowed, which forced us to utilize the training data
as efficiently as possible. Evaluation is based on

various benchmarks, including BLiMP (Warstadt
et al., 2020a), (Super)GLUE (Wang et al., 2018,
2019), and MSGS (Warstadt et al., 2020b).

Our final model, ChapGTP1, is a bidirectional
masked LM based on the DeBERTa architecture (He
et al., 2023). Our core contribution is a novel data
augmentation technique called Automatic Task
Formation (ATF), which generates meaningful
textual formulations from the existing training data
based on pre-defined templates. These formula-
tions are tailored for learning specific tasks such as
question answering and sentiment classification.
The procedure relies solely on shallow surface
heuristics, and requires no external data or expert
labeling.

Besides ATF, we explored many other strategies:
prosodic guidance, formal languages, tokenizer and
model engineering, emergent language games, and
grokking. Although not all of these were included
in ChapGTP, many showed potential. Notably, we
find that “pre-pre-training” a language model on
constituency-labeled text (induced by an unsuper-
vised constituency parser) or on synthetic emer-
gent languages (generated by neural agents in a
referential game with real images) can lead to im-
provements on the final evaluation benchmarks—
but more research is needed to explore the prac-
ticality and effectiveness of these approaches in
more detail. We hope that our discussion of the var-
ious strategies for training data-efficient language
models will inspire other researchers and engineers
working on NLP in low-resource settings.

2 Data-efficient NLP

The exponential growth in computing resources
needed to train recent language models has un-
derscored the need for more data-efficient models.
Increased model training efficiency would avoid

1Chaperoned Generalised Task formation and Pretraining,
DynaBench ID 1448. HuggingFace hub link: https://
huggingface.co/mwhanna/ChapGTP
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environmental harms (Schwartz et al., 2020) and
ensure the model openness and accountability that
is needed to democratize technological develop-
ment (Ahmed and Wahed, 2020; Liesenfeld et al.,
2023). From a cognitive perspective, which aims
to model human-like generalization abilities, sam-
ple efficiency should be more of priority than is
currently reflected in leaderboard-like model com-
parisons (Linzen, 2020).

Language models’ resource consumption can be
decreased at all stages of model development, on
both the model and data sides; see He et al. (2023)
for an overview. On the modeling side, many stud-
ies have aimed to improve data-efficiency by in-
jecting neural models with inductive biases that
aid generalization. Examples of such work include
distilling inductive biases from other neural mod-
els (Abnar et al., 2020) or Bayesian learning algo-
rithms (McCoy and Griffiths, 2023). Other work
has compared different types of bias by transfer
learning to English after “pre-pre-training” mod-
els on synthetically generated structures (Papadim-
itriou and Jurafsky, 2023).

Most relevant to the BabyLM challenge is
Huebner et al.’s (2021) work inspired by child
language learning abilities, which drastically de-
creased model parameters as well as training data
size. They pre-trained RoBERTa-base from scratch
on a developmentally plausible amount of data,
resulting in a model with lower grammatical com-
petence than the original, large-scale model (Liu
et al., 2019). However, via careful hyperparam-
eter tuning, they developed BabyBERTa, which
performs well even with acquisition-scale training
data. Their model has only 8 million parameters,
8912 vocabulary items and—importantly—does
not predict unmasked tokens.

Data-oriented approaches provide a complemen-
tary strategy for improving training efficiency. One
successful strategy is to filter the training data, for
example by removing duplicates (Lee et al., 2022),
or excluding thematic document clusters that lead
to undesirable model behavior (Kaddour, 2023).
Mishra and Sachdeva (2020) used human-inspired
heuristics to remove irrelevant and redundant data,
aiming to select the optimal dataset for learning a
specific task. Via a combination of coarse and fine
pruning techniques, they achieved competitive re-
sults on out-of-distribution NLI datasets with only
∼2% of the SNLI training set.

Finally, data augmentation has proven to be use-

ful in low-resource settings. Such techniques aim
to diversify the set of training examples without col-
lecting more data (Feng et al., 2021); this can lead
to task-specific or domain-general improvement on
model performance. Fabbri et al. (2020) showed
that performance on a downstream question an-
swering (QA) task increased when models’ training
data was augmented with synthetically generated
questions that helped models learn more complex
question-context relationships. Their most success-
ful approach used simple templates to generate
wh-questions based on sentences retrieved from
the original training data.

Jia et al. (2022) showed that including auto-
matically generated question-answer pairs in pre-
training data leads to a better encoding of con-
textual information in token-level representations.
They found that this question-infused pre-training
strategy results in improved model performance on
a range of standard NLP tasks beyond QA, includ-
ing paraphrase detection, named entity recognition,
and sentiment analysis.

3 The BabyLM Challenge

The BabyLM Challenge is a shared task that chal-
lenges researchers to train a language model from
scratch on an amount of linguistic data similar to
what is available to a child. The task has two main
goals: 1) developing novel techniques for learning
efficiently in low-resource settings; and 2) increas-
ing access to cognitively plausible models of lan-
guage, which could improve our understanding of
human language learning.

Training Data The BabyLM Challenge offers a
developmentally plausible training dataset, draw-
ing inspiration from the linguistic input children
typically receive until the age of 13. The dataset
contains fewer than 100 million words and pre-
dominantly uses transcribed speech, as children are
primarily exposed to spoken language during their
early years. The data come from various domains:
child-directed speech (CHILDES; MacWhinney,
2000), dialogue (Switchboard Dialog Act Corpus;
Stolcke et al., 2000), subtitles (OpenSubtitles, Li-
son and Tiedemann, 2016, and QCRI Educational
Domain Corpus (QED), Abdelali et al., 2014), sim-
ple written English (Simple Wikipedia, Children’s
Book Test Hill et al., 2015, Children Stories Text
Corpus), and regular written English (Wikipedia,
Standardized Project Gutenberg Corpus Gerlach
and Font-Clos, 2018).
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The challenge features three participation tracks:
strict, strict-small, and loose. In the strict
track, the training dataset is limited to 100 million
written words extracted from the sources above.
In the strict-small track, the training dataset is
further restricted to a subset of merely 10 million
words from the strict dataset. In the loose track,
models could additionally be trained on an unlim-
ited amount of non-linguistic data (e.g. symbolic
data, audio, images, etc.). For the exact number and
proportion of words per data source included in the
strict and strict-small dataset, see Warstadt
et al. (2023).

Evaluation The evaluation of BabyLM models
is based on various benchmarks, namely BLiMP
(Warstadt et al., 2020a), (Super)GLUE (Wang et al.,
2018, 2019), and MSGS (Warstadt et al., 2020b).
These benchmarks cover a wide range of linguis-
tic phenomena and aim to collectively provide a
comprehensive assessment of a model’s linguistic
capabilities. BabyLM provides filtered versions of
the benchmarks, where each example only includes
words that have appeared in the strict-small
training set at least twice.

BLiMP (Benchmark of Linguistic Minimal Pairs
for English) targets linguistic acceptability judg-
ments, and contains sentence pairs that differ in
grammatical acceptability based on only one dis-
tinct linguistic element. The sentence pairs cover
12 phenomena from English morphology, syntax
and semantics, such as anaphor agreement, binding
and filler-gap constructions. If a language model is
sensitive to the linguistic phenomenon under con-
sideration, it should assign higher probability to the
acceptable sentence of the minimal pair.

GLUE (General Language Understanding Eval-
uation) is a collection of diverse natural language
understanding tasks, such as sentiment analysis
and textual entailment. SuperGLUE is an improve-
ment upon GLUE and additionally includes corefer-
ence resolution and question answering tasks. Both
GLUE and SuperGLUE are used for BabyLM eval-
uation, summing to 11 tasks in total.

MSGS (Mixed Signals Generalization Set) aims
to test whether a model prefers linguistic or surface
generalizations, through a range of binary classi-
fication tasks. It contains unambiguous tasks that
can be solved by relying on either a surface or a lin-
guistic feature (not both), and ambiguous tasks that
can be solved both by relying on a surface feature
and by relying on a linguistic feature. The unam-

biguous tasks test whether a model represents the
features of interest in the first place. The ambigu-
ous tasks tests the model’s preference for linguistic
or surface generalization. The BabyLM evaluation
includes 5 unambiguous tasks and 6 ambiguous
tasks.

Evaluation on BLiMP is performed in a zero-
shot setting, by calculating the proportion of mini-
mal pairs for which the model assigns higher proba-
bility to the acceptable sentence. For (Super)GLUE
and MSGS, evaluation involves fine-tuning mod-
els on each task and then calculating accuracy or
macro-F1. The task-specific scores are averaged to
arrive at a final score for each of the three bench-
marks.

4 ChapGTP

In this section we describe the components of our
final model, ChapGTP, that we submitted to the
strict-small track of BabyLM. The results of
the model are presented in §6. In §7 we describe
various approaches that were not successful, but
that may inspire future work on improving data
efficiency in language modeling.

Model Architecture In our experiments we ini-
tially considered both causal and masked LM archi-
tectures; we ultimately chose a masked LM since
it outperformed causal LMs on all evaluation tasks.
The model is based on the DeBERTa-small archi-
tecture (He et al., 2023): a 6 layer bidirectional
transformer, 12 attention heads, a hidden state size
of 768, and intermediate state size of 3072. The
final model has 43.5 million parameters.

Data Processing We use a Byte-Pair Encoding
tokenizer (Sennrich et al., 2016), which we train
on the strict-small corpora, limited to a vocab-
ulary size of 10,000 tokens. This relatively small
vocabulary size was sufficient for the challenge,
and allowed for more compact models and faster
model training.

We preprocessed the corpora by appending all
sentences together, separated by a special separa-
tor token. This ensures that consecutive sentences
within a paragraph will occur together in a sin-
gle batch item, allowing the model to leverage
inter-sentential information. It also significantly
improves training speed, since all batches are fully
filled up, with little to no padding overhead.

Model Training We train the model with a
masked token prediction objective, with a token
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masking probability of 15%. We train for 200
epochs with a batch size of 64 and a maximum
sentence length of 128. We investigate the impact
of the number of epochs in more detail in §6. We
use the AdamW optimizer (Loshchilov and Hutter,
2019), with a cosine learning rate scheduler that
interpolates from 5 · 10−4 to 0, weight decay set
to 0.1, and gradient accumulation for 8 steps. We
train models using the transformers library (Wolf
et al., 2020).

5 ATF: Automatic Task Formation

The strict-small track of the BabyLM challenge
did not permit the usage of external data sources
to improve the learning procedure. It was there-
fore vital to use all data in the training corpora as
efficiently as possible. To this end, we defined Au-
tomatic Task Formation (ATF), a procedure that
looks for simple regex patterns in the training data
that we can use to augment the data. The main
goal of ATF was to improve performance on the
GLUE tasks: we hoped that if the training data
were augmented with patterns that resembled data
found in GLUE, the model could already start learn-
ing representations useful for GLUE tasks during
pre-training.

Question Answering The text in the pre-training
corpora already contains questions, such as those
found in dialogue. However, most of these ques-
tions do not require a retrieval-based approach of
finding the answer to the question (e.g. “How are
you doing?”). To aid the model with retrieval-based
question answering, which is vital for GLUE tasks
like QNLI (Rajpurkar et al., 2018), we augment the
training corpus with question-answer pairs about
various topics. The patterns we consider are:

1. Birth date
The (Simple) Wikipedia data contains many
patterns of the form ‘⟨Name⟩ (born ⟨DD⟩
⟨Month⟩ ⟨YYYY⟩)’. For each such instance, we
add a question-answer pair of the form ‘On
what date was ⟨Name⟩ born? [SEP] ⟨DD⟩
⟨Month⟩ ⟨YYYY⟩’.

2. Nationality & Profession
The Simple Wikipedia articles describe peo-
ple in the same template: ‘⟨Name⟩ (born X)
is a ⟨Profession⟩ from ⟨Nationality⟩’. We
use this pattern to augment the data with
question-answer pairs of the form ‘Where is

⟨Name⟩ from?’ and ‘What is the profession of
⟨Name⟩?’.

3. Discovery, Founding & Naming
We consider three other patterns, of the form
‘⟨Name⟩ was discovered in ⟨Year⟩’, ‘⟨Name⟩
was founded in ⟨Year⟩’, and ‘⟨Name1⟩ was
named after ⟨Name2⟩’.

In total this procedure yielded 1663 question-
answer pairs that we append to the training corpus.

Sentiment Classification To aid the model with
the sentiment classification task of SST-2 (Socher
et al., 2013), we augment our dataset by exploit-
ing sentences containing sentiment carrying tokens.
After each sentence that contains a token from a
list of positive tokens (great, terrific, etc.) or neg-
ative tokens (not good, terrible, etc.)2, we add a
special sentiment token followed by the sentence
sentiment. Sentence sentiment is solely based on
the presence of a positive or negative token; we
skip sentences containing both positive and nega-
tive tokens. The procedure yielded 2500 positive
and 2500 negative sentences, which we appended
to the training corpus.

Note that we do not modify the masked language
modeling training objective for this: the prediction
of answers (as well as questions) is performed in
the same way as any other token prediction. In-
corporating the procedure with a separate classi-
fication head is something that we leave open for
future work.

6 Results

We report the results of our models in Table 1. Re-
sults are aggregated over individual subtasks in
BLiMP, GLUE, and MSGS. Our final ChapGTP
model, trained for 200 epochs with ATF data aug-
mentation, obtained an average score of 77.2. Next
to this model we report various alterations to the
training regime. To investigate the impact of the
ATF procedure, we also train a model without the
augmented data. The strongest gains of ATF are
achieved in the GLUE tasks (+1.7 points), which
is in line with our original goal of aligning the
pre-training data more with that of the fine-tuning
tasks. Furthermore, prolonging model training has
a strong positive impact on both BLiMP and GLUE,
but not for the MSGS tasks. In Figure 1 we present
a more fine-grained overview of the results split

2We report the full lists in Appendix A.
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Model BLiMP GLUE MSGS Avg.

ChapGTP(20E) 73.5 72.3 79.2 75.0

¬ ATF (§5) 73.1 70.6 80.4 74.7
+ 40E 74.8 73.4 80.7 76.3
+ 100E 76.5 73.8 80.0 76.8
+ 200E 76.6 74.0 80.9 77.2
+ FLOTA 57.8 – – –
+ BRAK (40E, §7.4) 75.0 72.0 82.1 76.4

dGPT-2 (¬ATF, 40E) 68.9 70.2 79.9 73.0
+ OMG (§7.3) 70.8 69.7 80.0 73.5

OPT† 62.6 63.4 79.8 68.6
RoBERTa† 69.5 71.4 80.9 73.9

Table 1: Aggregate results for the ChapGTP model with
various configurations on the three evaluation suites.
nE denotes a model trained for n epochs. † models
are baseline models made available by the BabyLM
organisers. Best performing model per suite is in bold.

out for each individual task in the evaluation suites,
for a subset of models that showcase improvements
driven by ATF and prolonged model training.

BLiMP For BLiMP, increasing the amount of
epochs has a positive effect on almost all tasks. One
clear outlier, however, is the Irregular Forms tasks,
where our 200 epoch model performs significantly
worse than models trained for shorter. We plot this
behavior for models trained on increasing amounts
of epochs in Figure 1B, from which it can be seen
that this task follows a peculiar inverse scaling
pattern (McKenzie et al., 2023). Exploring this
pattern in more detail could provide an interesting
direction for future research, connecting it to the
rule learning of irregular forms in LMs (Dankers
et al., 2021).

GLUE The impact of training longer is less pro-
nounced on GLUE than for BLiMP, but it still has
a positive effect for most tasks. The ATF proce-
dure appears to have a positive effect on only a
small number of tasks, especially MultiRC and
MRPC. Surprisingly, performance on QNLI and
SST2, the tasks targeted by ATF, did not improve
significantly.

7 Additional Experiments

Our final ChapGTP model adopted only a small
number of the techniques we investigated for the
BabyLM challenge. In this section we highlight
various approaches that were not entirely success-
ful, but could serve as inspiration for future work.

Note that some of these approaches would not
be permitted under the strict-small conditions
of the BabyLM challenge, but would be possible
within the loose track.

7.1 Model Architecture

FLOTA Our ChapGTP model uses a BPE sub-
word tokenizer, a common tokenizer used by many
LMs, such as GPT-3 (Brown et al., 2020). From a
linguistic point of view, this tokenization procedure
may be sub-optimal: it is based solely on frequency
statistics, and takes no morphological information
into account (e.g. undesirable → undesi+rable).
The FLOTA tokenizer (Hofmann et al., 2022) ad-
dresses this concern, and presents a tokenization
procedure that adheres more strongly to the mor-
phological formation of English words (e.g. un-
desirable → un+desirable). We incorporated this
tokenizer in our pipeline, but unfortunately it re-
sulted in sub-par results on BLiMP (Table 1). A
reason for this might be the relatively low vocab-
ulary size (10.000), though it remains surprising
that this tokenizer led to such a significant drop in
performance.

LLaMA LLaMA (Touvron et al., 2023) is a pre-
trained model whose performance rivals that of
many larger models trained on more data. In or-
der to achieve this performance, it incorporates
a variety of architectural tweaks that aim to im-
prove performance or training stability; these in-
clude pre-normalization of transformer block in-
puts using RMSNorm (Zhang and Sennrich, 2019),
the SwiGLU activation function (Shazeer, 2020),
and rotary embeddings (Su et al., 2022). Unlike our
ChapGTP model, LLaMA uses the SentencePiece
tokenizer (Kudo and Richardson, 2018).

Motivated by LLaMA’s successful training on
smaller data using a smarter architecture, we
trained our own LLaMA model. We used a va-
riety of scaled-down model architectures, e.g. with
a hidden (residual stream) size of 64, an intermedi-
ate (MLP) size of 256, 4 layers, 4 attention heads,
and a vocabulary size of 10000. However, these
models exhibited no performance gains over sim-
ilarly sized models that used a more traditional,
GPT-like architecture.

7.2 Model Training

Prosodic Guidance Information in speech is not
only conveyed through which words are said, but
also how they are spoken (Wallbridge et al., 2023).
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Figure 1: (A) Results for BLiMP on the individual conditions, ordered increasingly by the performance of the final
200E model. (B) Inverse scaling behavior on the Irregular Forms condition, which worsens as the amount of training
is increased. For other tasks the opposite is true: training for longer leads to a monotonic improvement. (C) Results
for the individual GLUE tasks, ordered similarly to the BLiMP scores in (A). (D) Results for the individual MSGS
tasks, including the BRAK model that outperforms the ChapGTP on average.

Hence even models trained on transcribed speech
data miss out on the rich auditory cues available
in spoken language, which could be informative
for learning (Chrupała, 2023). We explored the use
prosodic information as one such guiding signal
for language model training. Prosody is thought
to play an important role in scaffolding human lan-
guage learning (Gervain et al., 2020), for example
in helping infants learn non-adjacent dependen-
cies by highlighting the relevant linguistic elements
(Martinez-Alvarez et al., 2023).

One way to provide a text-based language model
with a similar learning signal would be to train the
model on spoken language transcriptions for which
audio recordings are available. Prosodic promi-
nence cues based on properties like pitch and dura-
tion, or more advanced scores estimated based on
continuous wavelet transforms (Suni et al., 2017),
could be extracted from the audio recordings to
guide model training. Though we considered this a
promising approach to study if language modeling
can be improved with access to prosodic informa-
tion, it was not feasible for us to pursue within the
constraints of the BabyLM challenge—curating an
audio-aligned text dataset at the 10M- or 100M-
word scale poses a significant challenge on its own.
We therefore left experiments into using prosodic
information for language model training out of our
BabyLM submission and hope to work on this idea
separately in the future.

Grokking Grokking is a phenomenon in which
models seemingly neural networks begin to gen-
eralize better after overfitting (Power et al., 2022).
In such scenarios, models initially achieve high
training performance, but poor held-out (evalua-
tion) performance. Extended training leads models
to suddenly generalize, achieving higher evaluation
performance. Grokking has been shown to occur
not only on toy algorithmic tasks, but also image
and sentiment classification (Liu et al., 2022, 2023).
More recent work has suggested that transformers
can grok hierarchical linguistic structure after ex-
tremely prolonged training (Murty et al., 2023).

On the basis of this recent evidence, we con-
duct experiments to determine if longer training
can help language models capture the hierarchical
structure of language, even when trained on small
data. Our grokking setup is simple: we train a
DistilGPT2 model for 500 epochs on the small
(10M word) dataset. We set training hyperparame-
ters as in Murty et al. (2023). We find that grokking
does not occur in this scenario: evaluation loss does
not improve. Moreover, while our long-training
model performed reasonably well on the zero-shot
linguistic tasks from BLiMP, performance on the
SuperGLUE tasks, which required fine-tuning, is
much worse. We conclude that while longer train-
ing may not have hurt linguistic knowledge, it may
have hurt the model’s ability to be fine-tuned.

These results may be surprising, given that in
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§6, longer training generally led to better perfor-
mance on BLiMP and GLUE. Unfortunately, differ-
ences in model architecture and training procedure
(particularly ATF) could have led to different train-
ing dynamics, making direct comparison difficult.
Moreover, prior work suggests that the occurrence
of grokking is reliant on specific conditions such
as a large initial weight norm, or specific adaptive
optimizers (Thilak et al., 2022; Liu et al., 2023).
More controlled and extensive study is needed to
shed light on grokking in LMs.

7.3 OMG: Data from Object Mediated Games

Simulating cooperative games with deep neural
agents that need to communicate about objects in
their environment is an active area of research; the
communication protocols emerging in these set-
tings have been studied extensively in previous
works (Havrylov and Titov, 2017; Kottur et al.,
2017; Bouchacourt and Baroni, 2018; Lazaridou
and Baroni, 2020; Luna et al., 2020, i.a.).

An important motivation for these experiments is
to simulate conditions under which certain natural
language properties may develop (e.g. Kirby, 2002;
Kirby et al., 2015). Others suggest that these set-
tings may enable language models to learn aspects
of human communication difficult to acquire from
passive language modeling alone (e.g. Lazaridou
et al., 2020).

Interestingly, Yao et al. (2022) show that pre-
pre-training LMs on synthetic emergent languages
generated in referential games with images can in
fact improve their performance in low-resource set-
tings. We aim to reproduce the findings of Yao et al.
with our particular setup; as such, compare the per-
formance of DistilGPT2 trained on BabyLM with
and without first pre-pre-training on their synthetic
emergent languages.

Approach We pre-pre-train DistilGPT2 on a
synthetic emergent language coming from a refer-
ential game played with neural agents, as provided
by Yao et al. (2022).3 In this referential game, deep
neural agents successfully communicate about im-
ages from the Conceptual Captions dataset (Sharma
et al., 2018). We use the set of messages with vo-
cabulary size 4035 and maximum message length
15, sampling 2, 721, 927 messages for the training
data, and 143, 260 for the development set (split in

3https://github.com/ysymyth/ec-nl/

Task OMG ∆baseline BRAK ∆baseline

BLiMP 70.8 +0.7 75.0 -0.6
GLUE 69.7 +1.4 72.0 -0.7
MSGS 80.0 -0.1 82.1 +3.2

Table 2: Aggregate results for pre-pretraining Distil-
GPT2 with text from object mediated games (OMG)
and ChapGTP with constituency labelled text (BRAK).
We also show the difference with their respective base-
lines (∆baseline) as discussed in §7.3 and §7.4, where +
indicates an improvement. All models shown here are
further trained on the BabyLM dataset for 40 epochs
without the ATF data augmentation (§5).

roughly 95% and 5%, respectively).4

We pre-pre-train on the emergent language for 8
epochs, after which we continue pre-training on the
BabyLM 10M dataset (¬ ATF) for 40 epochs. We
compare this to the baseline where we do not pre-
pre-train DistilGPT2 on the emergent messages.5

Results Table 2 shows the aggregate results of
pre-pre-training on synthetic emergent languages
(OMG). Curiously, OMG pre-pre-training seems
to result in a better performance on BLiMP and
GLUE compared to the baseline. In our experi-
ments, we also noticed that the loss curves con-
verge faster during training, indicating that OMG
pre-pre-training may be a viable strategy for ini-
tializing language models in low-resource settings;
this is in line with the findings of the original au-
thors (Yao et al., 2022).

7.4 BRAK: Bracketed pre-pre-training
Can initially pre-training on texts where the struc-
ture is explicitly marked be used to improve the
LM’s performance later on? To test this approach,
we train the Deep Inside-Outside Recursive Au-
toencoders model (DIORA, Drozdov et al., 2019), to
augment a portion of the training data with brack-
eting that indicate the constituents of the sentences.
The general idea is that the bidirectional ChapGTP
can use this extra training signal to quickly learn
the syntactic structures of the data—bootstrapping
its further language modeling.

Approach We pre-pre-train ChapGTP for 4
epochs on a subset of 15, 030 sentences from the

4An example of an emergent message (before tokenization
and converting to integers) is: 1019 3876 601 2194 3360
3360 3360 3360 3360 3360 3360 3360 3360 3360 0.

5Note that the results for this baseline are slightly different
from Table 1 but comparable, as we used another random seed
for training the 40E DistilGPT2.

80

https://github.com/ysymyth/ec-nl/


BabyLM 10M dataset, where the constituents of
each sentence is marked using the “[” and “]” to-
kens.6 After this, pre-training continued on the
entirety of the unbracketed BabyLM dataset (with-
out ATF) for 40 epochs.

To obtain the constituents for the 15, 030 sen-
tences, we trained a DIORA model with a hidden
dimension of 50 and batch size of 128 for a max-
imum of 5 epochs. We initialized its embeddings
using GloVe (Pennington et al., 2014) (embedding
size 16) trained on the same corpus as DIORA. Since
DIORA requires sentences as input, we use the dot
(“.”) to split the documents in the datasets into in-
dividual sentences, which are then split into words
using the space token. We lower-cased each token
and removed all punctuation from the sentences.
This approach is deliberately kept simple to avoid
using any techniques requiring non-trivial expert
knowledge. From this set, we labeled 15, 030 sen-
tences with a minimum length of three with the
trained DIORA model. As a baseline, we pre-pre-
train ChapGTP on the same 15, 030 sentences, but
without the bracketing.

Results The aggregate results of the bracketed
pre-pre-training (BRAK) are shown in Table 1 and
compared to the baseline in Table 2. While BRAK
ChapGTP performs slightly worse on BLiMP and
GLUE, it performs considerably better on the
MSGS tasks, as seen in Figure 1D. BRAK’s main
gains stem from two tasks: ‘Main Verb Lexical
Control The’, and ‘Main Verb Relative Token Posi-
tion’. We encourage future work on how including
inductive biases can improve the performance of
language models in low-resource settings.

8 Conclusion

In this paper, we introduced our submission to
the strict-small track of the BabyLM chal-
lenge. ChapGTP is a DeBERTa-based masked
LM, trained for 200 epochs with help of our novel
data augmentation technique: Automatic Task For-
mation (ATF). We proposed ATF as a means of
creating more task-specific textual formulations
based on the existing training data. In particu-
lar, we focused on improving representations for
question answering and sentiment classification.
The idea behind these specific ATF augmentations

6An example of a constituency-labeled sentence is: [ [ [
[ they are ] placed ] into ] [ [ [ one [ character
[ and [ it is ] ] ] ] [ [ mostly [ used with ] ]
[ east asian ] ] ] fonts ] ].

was that they might lead our model to learn useful
representations for the retrieval- and classification-
based GLUE tasks during pre-training; such rep-
resentations could be harder to learn from the
primarily spoken language data in the BabyLM
strict-small training set alone.

Our results show that the ATF procedure indeed
improved performance on GLUE tasks, especially
for the paraphrase detection (MRPC) and multi-
sentence reading comprehension (MultiRC) sub-
tasks. The QNLI and SST2 tasks targeted by the
Sentiment Classification component of ATF did not
improve significantly. Our experiments with pro-
longed training of ChapGTP up to 200 epochs re-
sulted in increased performance for most evaluation
benchmarks, but we also found inverse scaling be-
havior for the Irregular Forms BLiMP task. Based
on this result, exploring how prolonged training
affects LM’s memorization of linguistic patterns
beyond generalizable rules seems an interesting
direction for future research.

ChapGTP outperforms the baseline models pro-
vided by the BabyLM challenge, and our ATF aug-
mentation technique proved successful at improv-
ing performance on specific targeted tasks. Jia et al.
(2022) motivated their QA-infused pre-training ap-
proach by the intuition that phrase representations
should encode all questions that the phrase can
answer in context. Such relational information inte-
gration might be encouraged by the addition of ATF
question-answer pairs in our augmented training
data as well, and could potentially result in more
human-like encodings of contextual knowledge.

Nevertheless, the performance of ChapGTP on
BabyLM admittedly does not present significant
advances in terms of cognitive plausibility. We
believe that promising approaches for stimulating
more human-like learning in language models in-
corporate some form of human-like inductive bi-
ases in model training. Since humans presumably
come to the language learning task from much less
of a “blank slate” state than randomly-initialized
masked language models, this area leaves much
potential for further research. Our use of unsuper-
vised constituency parsers for BRAK ChapGTP
(§7.4) was an attempt to make use of such induc-
tive biases in the syntactic domain, and resulted in
notable performance gains on hierarchical general-
ization tasks (MSGS), although ideally such biases
would be integrated into LMs more holistically.

Finally, ChapGTP is only trained only on text,
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while children rely on many other modalities to
learn language (e.g. audition and vision). Although
we made efforts to indirectly incorporate multi-
modal cues through speech prosody and object-
mediated referential games, we only scratched the
surface of what is possible. The BabyLM challenge
provided an inspiring start to explore such possi-
bilities, and we hope that our range of experiments
presented here will usefully inform future work on
data-efficient and cognitively plausible NLP.

Limitations

There are various aspects in our setup that could
have been addressed more rigorously. For repro-
ducibility, the number of random seeds should be
increased to obtain more robust insights into the
impact of various training enhancements. The opti-
mality of our hyperparameter setup is not guaran-
teed, a wider hyperparameter search sweep would
be necessary for this.
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A Sentiment Tokens

To augment the training corpus with sentiment clas-
sification we use the following lists of negative and
positive tokens.
Negative: { "not good", "not great", "not like",
"didn’t like", "not [a-z]+ great", "not [a-z]+ good",
"horrible", "terrible", "hate", "hated", "bad", "dis-
liked", "annoying", "frustrating", "worst" }
Positive: { "loved", "not bad", "not [a-z]+ bad",
"great", "fantastic", "incredible", "terrific", "gor-
geous", "enjoyed", "enjoy", "beautiful" }
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