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Abstract

In the context of the BabyLM challenge, we
present a language model which uses pretrained
embeddings from a grammar induction model
as its first layer. We compare it to one of the
challenge’s baseline models and a minimally
different baseline which uses random embed-
dings. We find that though our model shows
improvement over the challenge’s baseline, the
model with randomly initialized embeddings
performs equally well. Our results suggest
that it is not the pretrained embeddings which
aided performance, but likely our tokenizer and
choice of hyperparameters.

1 Introduction

The BabyLM Challenge (Warstadt et al., 2023)’s
goal is to develop language models and training
pipelines that can learn reasonable linguistic repre-
sentations for downstream language modeling task
using much more constrained datasets. With this
goal in mind, we hypothesized that giving mod-
els additional information about syntactic structure
may help them learn more generalizable represen-
tations of language. As part of the strict track of the
challenge, we were not allowed to give additional
syntactic labels as part of our training data, so in-
stead we propose to first induce a compound prob-
abilistic context-free grammar (compound-PCFG)
over the data using a neural grammar induction
model (Kim et al., 2019). There are many ways we
can then integrate this syntactic information into
a language model. Here, we test a simple method:
we initialize a language model using the terminal
token embeddings of a trained grammar induction
model as its embedding layer. We test the effec-
tiveness of this method on the BabyLM strict-small
challenge.1

∗Corresponding author: eva.portelance@mcgill.ca
1All code for this project is available in this github reposi-

tory. The trained models and preprocessed data can be down-
loaded from this OSF Project repositorythis Open Science
Framework (OSF) project repository.

2 Data and preprocessing

In the experiments which follow, we use the 10
Million word BabyLM task dataset (the strict track
small dataset) to train our language models. Prior to
training, we preprocessed the dataset to remove any
blank lines or unecessary formatting punctuation
(e.g. ‘== Title ==’ became ’Title’). Additionally,
we split paragraphs such that each new line repre-
sented a single sentence and removed any sentence
that was longer than 40 words.

2.1 Grammar induction data

Since grammar induction algorithms can be quite
memory intensive, we use a subset of the 10M
BabyLM dataset to train our grammar induction
model. We randomly sampled a tenth of the sen-
tences from the corpus, resulting is a smaller gram-
mar induction dataset containing 991,510 words.

2.2 Tokenizer

We trained a custom tokenizer on the 10M BabyLM
dataset. To guarantee coverage we created a tok-
enizer that produces both subwords and word-level
tokens. Since previous grammar induction models
used word-level tokens, we wanted to maximize the
number of word-level tokens and keep subwords
and character tokens to only a limited necessary
number. We therefore trained a tokenizer using
the WordPiece algorithm with a vocabulary size of
10,000 and a maximum alphabet of 72 tokens.

3 Models

3.1 Grammar induction model

We first trained a compound-PCFG grammar (Kim
et al., 2019) over our subset of the BabyLM small
corpus described above. PCFG embeddings are
trained to encode terminal rule information, e.g.,
reflecting syntactic categories in grammar, which
could further improve model’s language under-
standing ability. We used our tokenizer to split
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Table 1: Overall mean performance on each benchmark

benchmark baseline baseline-
token

grammar

BLiMP 62.63 64.78 64.44
BLiMP suppl. 54.72 54.66 54.88
SuperGLUE 63.38 68.21 67.93
MSGS 69.22 67.45 68.08

sentences into tokens and then induced trees over
the corpus2. During learning, the model induces
embedding representations for the grammar rules
and terminals, where the terminals are the token
embeddings.3

Once the grammar is induced, we extract the
token embedding layer of the grammar and use it
as the initial embedding layer for an OPT-125m-
like 4 language model with a vocabulary size of
10,000 5. We then trained this language model on
next token prediction using the full BabyLM 10M
dataset. The embedding layer is trained with other
layers and not frozen during training. We will refer
to this model as the grammar model in the sections
which follow.

3.2 Baseline models
We compare our model results to the OPT-125m
baseline model supplied by the BabyLM challenge
(baseline) and to a baseline OPT-125m language
model that we trained using our tokenizer and
randomly initialized embeddings (baseline-token),
thus using a vocabulary size of 10,000 tokens.
Baseline-token has the exact same hyperparameters
as our grammar model and only differs in terms of
its initial embeddings, here random ones.

4 Results

Results for the baseline model were taken directly
from the BabyLM evaluation pipeline project page
(github.com/babylm/evaluation-pipeline).
For the baseline-token and grammar models, these
were trained for 3 epochs and tested on validation
accuracy every 100,000 sentences; we report the
best models found during training based on next
token prediction on the validation dataset.

2See Appendix D for example induced parses
3Hyperparameters for the grammar induction model are

reported in Appendix A.
4We refer to these models as as OPT-125M-like since they

minimally vary from this baseline, however since their vocab-
ulary size is 10,000, they in fact have 94M parameters.

510,000 was the original vocabulary size used in Kim et al.
(2019). Since we did not do hyperparameter search over the
grammar induction model, we followed their ideal settings.

We tested all models on the BabyLM evaluation
tasks, which included the Benchmark of Linguistic
Minimal Pairs (BLiMP) (Warstadt et al., 2020a),
a custom supplementary set of BLiMP-like tasks,
‘Super’ benchmark for General Language Under-
standing Evaluation (SuperGLUE) (Wang et al.,
2019), and the Mixed Signals Generalization Set
evaluation (MSGS) (Warstadt et al., 2020b). Re-
sults are reported in Table 1. The complete perfor-
mance results by individual task are presented in
Tables 4-7 in Appendix C.

The baseline-token and grammar models gener-
ally do better than the baseline on all benchmarks
except MSGS, where they perform slightly worse.
Overall, the gains in performance are small, though
the baseline-token and grammar do seem to do
quite a lot better on the SuperGLUE benchmark
than the baseline in particular. Importantly, we
do not find that the grammar model performs bet-
ter than the baseline-token model, suggesting the
the addition of our pretrained embeddings did not
help the model perform better on the evaluation
pipeline.

5 Discussion

Though our grammar model did do better overall
than the BabyLM OPT-125m baseline, when we
compared it to our baseline-token model, we did
not find that initializing the model with pretrained
grammar induction embeddings helped perfomance
overall. Instead, it may be our tokenizer and
choice of hyperparameters which helped improve
performance between the baseline and baseline-
token/grammar models.

Simply using the terminal embedding layer of a
grammar induction model to initialize a language
model is not be the most effective way to encode
syntactic information into the model. In future
work, we would like to consider other methods
for combining these two types of models, like en-
riching the training set with copies of induced con-
stituents or more complex architectural modifica-
tion to condition recurrent states with rule embed-
dings representing the syntactic rules applied to
generate a sub-string at each state.
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A Hyperparameters for Grammar
Induction

Table 2: Hyper-parameter setting for grammar induc-
tion

parameters values
latent dimension 64
number of preterminal states 60
number of nonterminal states 30
symbol embedding dimension 256
hidden dim for variational LSTM 768
word embedding dim 768
sentence max length 40
vocab size 10000
number of epochs 15
batch size 5
learning rate 1e-4
random seed 1213

B Hyperparameters for OPT language
models

Table 3: Hyper-parameter setting for language model-
ing

parameters values
embedding size 10000
number of epochs 3
batch size 20
learning rate 1e-4
warm-up steps 2000
gradient clipping threshold 3
max grad norm for gradient clipping 1.0
random seed 527

Table 4: Compute resources for language modeling

parameters values
Device A100
Memory 32G of GPU memory
Training time 12 hours

C Complete evaluation results

Table 5: BLiMP accuracy scores

task baseline baseline-
token

grammar

Anaphor agr. 63.8 68.6 69.7
Arg. structure 70.6 65.7 63.4
Binding 67.1 66.5 67.6
Control/Raising 66.5 62.2 60.4
Det.-Noun agr. 78.5 77.8 77.2
Ellipsis 62 49.3 51.6
Filler-Gap 63.8 62.1 63
Irregular forms 67.5 81.4 81.2
Island effects 48.6 48.5 47.9
NPI licensing 46.7 56.3 55
Quantifiers 59.6 71.4 68.9
Subject-verb agr. 56.9 67.5 67.4
Overall mean 62.63 64.78 64.44

Table 6: BLiMP-Supplement accuracy scores

task baseline baseline-
token

grammar

Hypernym 50 52.3 53.3
QA congr. (easy) 54.7 57.8 45.3
QA congr. (tricky) 31.5 41.8 40
Subj.-aux. inversion 80.3 67.5 82.9
Turn taking 57.1 53.9 52.9
Overall mean 54.72 54.66 54.88
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Table 7: Super(GLUE) accuracy scores

task baseline baseline-
token

grammar

CoLA 64.6 69.6 68.8
SST-2 81.9 85 83.3
MRPC (F1) 72.5 76.1 73.7
QQP (F1) 60.4 78.9 79.1
MNLI 57.6 66.4 65.9
MNLI-mm 60 66 67.8
QNLI 61.5 66.5 66.5
RTE 60 52.5 52.5
BoolQ 63.3 67.6 65.8
MultiRC 55.2 60.2 62.3
WSC 60.2 61.5 61.5
Overall mean 63.38 68.21 67.93

Table 8: MSGS accuracy scores

task baseline baseline-
token

grammar

contr.-raising/lex. cat. 66.5 66.7 68.9
contr.-raising/rel. tok. pos. 67 67.2 67.2
main verb/lex. cat. 66.5 66.8 66.6
main verb/rel. tok. pos. 67.6 66.8 66.8
synt. cat./lex. cat. 80.2 69 71.3
synt. cat./rel. pos. 67.5 68.2 67.7
Overall mean 69.22 67.45 68.08

D Example trees from grammar
induction model
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Figure 1: Induced tree for “do you know how long he’s out of work?"

Figure 2: Induced tree for “at the time this was the only coast guard air base in california."

Figure 3: Induced tree for “they don’t live anywhere, they sail all the time, but they often come ashore to talk to me."
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