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Abstract

This paper focuses on enhancing the perfor-
mance of GPT-2, pre-trained on the BabyLM
Strict-Small challenge datasets, for the BLIMP
zero-shot tasks. We explored various curricu-
lum learning optimizations to supervise the or-
der of training samples presented to the model.
We discovered that training GPT-2 on a cor-
pus consisting of one dataset sorted based on
difficulty leads to improved BLiMP scores. Ad-
ditionally, we measured the loss of contextual
information by comparing the semantic simi-
larity of neighboring sentences before and after
reordering inputs of each dataset. A positive
correlation is found between the measured con-
textual similarity of sentences in the difficulty-
sorted dataset and the BLiMP performance of
the model trained on the rearranged dataset. We
conclude that reordering sentences based on
difficulty while minimizing the loss of contex-
tual and semantic similarity between sentences
that follow each other in a context length can
enhance the model’s performance. Using this
approach we trained a model with an average
of 75.77% across all BLiIMP’s tasks. Addition-
ally, data cleaning using ASR further enhanced
the model performance on BLiMP to 75.84%,
an improvement of over 6% compared to the
baselines released for the BabyL.M Strict-Small
challenge.

1 Introduction

Language models have shown significant progress
in natural language processing tasks, but their
performance heavily relies on the diversity and
quality of large-scale training data. This paper
aims to enhance the performance of language mod-
els trained exclusively on the datasets from the
BabyLM Strict-Small challenge (Warstadt et al.,
2023). We evaluate the models using the aver-
age across all BLiMP’s zero-shot tasks, which as-
sess language models’ knowledge of major English
grammatical phenomena (Warstadt et al., 2020).

The reason we exclusively relied on BLiMP re-
sults to optimize the performance of our models
is that other evaluation tasks within the BabyLM
evaluation pipeline, like (Super)GLUE and held-
out MSGS tasks, require fine-tuning the model and
demand more computational resources than we had
available.

In this paper, we attempt to optimize the per-
formance of language models on the BLiMP eval-
uation by using heuristics inspired by difficulty
metrics proposed in Competence-based Curricu-
lum Learning (Platanios et al., 2019) to reorder
sentences in the datasets and remove semantically
meaningless inputs. As a result, we achieved an im-
provement of over 6 percent on BLIMP compared
to the baseline results released for the BabyLM
Strict-Small track (Table 1).

We first manually analyzed the training data to
gain a better understanding of the training data. The
analysis revealed the sentences in the gutenberg
dataset were fragmented across lines. This frag-
mentation could disrupt the intrinsic structure and
the contextual information provided by each sen-
tence during training, as irrelevant fragments would
follow each other in a single context length due
to the shuffling of training samples at each train-
ing epoch. To rectify this, we preprocessed the
gutenberg dataset by merging subsegments of
each sentence into a coherent sentence printed in
one line (Table 1).

We then attempted to optimize the use of lim-
ited training samples by supervising the order of
samples presented to the model using Curriculum
Learning (CL) and Competence-based Curriculum
Learning. These methods involve starting the train-
ing of the model with simpler examples and grad-
ually introducing harder ones. In Competence-
based CL, the training corpus is constructed us-
ing the competence function which samples from
the difficulty-sorted training inputs based on the
competence of the model at time t compared to

356

Proceedings of the 27th Conference on Computational Natural Language Learning:
Volume 2: The BabyLM Challenge, pages 356-365
December 6-7, 2023 ©2023 Association for Computational Linguistics



Baselines BLiMP

OPT-125 - BabyLM baseline 62.63%
RoBERTa-base - BabyLM baseline  69.47%
T5-base - BabyLM baseline 58.83%
GPT-2 - gutenberg not merged 73.40%
GPT-2 - gutenberg merged 75.05%

Table 1: The BLiMP evaluation results comparing
the baselines released for the BabyLM Strict-Small
challenge and our baseline GPT-2 models. GPT-2
gutenberg not merged is trained on all raw datasets in
the Strict-Small track, and GPT-2 - gutenberg merged
model is trained on 9 unchanged datasets and the prepro-
cessed gutenberg dataset, where sentences are merged
into a single line.

the competence of the model at convergence time.
Using this method leads to an overrepresentation of
shorter sentences (which are sorted as easier using
length-dependent difficulty metrics such as sen-
tence length (SL) or sentence rarity (SR) suggested
in Platanios et al. (2019)) in the training corpus.
Shorter sentences tend to contain more grammati-
cal errors in the BabyLLM datasets, as these datasets
consist largely of spoken language sentences. We
hypothesize this could result in suboptimal results
on BLiMP when implementing Competence-based
CL optimizations. To address this, we proposed
a novel length-independent difficulty metric, av-
erage sentence rarity (ASR), calculated by taking
the average frequency of words in a sentence to
determine the singular score for the difficulty of
the sentence.

We hypothesize that when using CL optimiza-
tions, the performance of the model is also neg-
atively impacted because the contextual informa-
tion provided by neighboring sentences is disrupted
when reordering sentences based on difficulty. To
tackle the loss of contextual information, we nar-
row our focus to a smaller optimization problem,
supervising the order of sentences within a con-
text length rather than the order of all sentences in
the training corpus, as determined by the compe-
tence function. To measure contextual information
provided by nearby sentences, we propose a new
heuristic, local coherence, calculated by quantify-
ing the similarity between a central sentence and its
adjacent ones using sup-simcse-roberta-large
model (Gao et al., 2021) within a specific window
of seven inputs. The size of this window is deter-
mined by the average number of samples combined
into a context length after tokenization.

Excluded BLiMP [Excluded BLiMP
aochildes 74.40% |open_subtitles 72.81%
bnc_spoken 73.91% |qed 74.12%
cbht 74.21% |simple_wikipedia 73.64%
children_stories 73.36% |switchboard 73.93%
gutenberg 73.48% |wikipedia 72.70%

Table 2: BLiMP evaluation results for GPT-2 model
trained on all datasets in Strict-Small track beside the
dataset listed under the ’Excluded’ column. The sen-
tences in the gutenberg dataset are merged into one
line, and thus the baseline model for this experiment
is GPT-2 - gutenberg merged with a BLiMP score of
75.05%.

To enhance the model’s performance and inves-
tigate our hypothesis about the correlation between
the local coherence of sentences in the datasets
sorted based on difficulty and the resulting im-
provement in the language model’s performance
on BLiMP, we conducted a series of 20 experi-
ments. In these experiments, we exclusively re-
ordered sentences from one dataset based on SR or
ASR, while leaving the other 9 datasets unchanged.
Upon analyzing the results, we found a positive
correlation between the expected local coherence
of the sorted datasets and the BLiMP performance
of the models trained on the corpus compromising
of one sorted dataset. The positive correlations in-
dicate that reordering sentences based on difficulty
while minimizing the loss of contextual and seman-
tic similarity between sentences that follow each
other in a context length can enhance the model’s
performance.

We were also able to improve the model’s per-
formance with data cleaning. ASR sorts inputs
with high counts of frequent words and low counts
of other words, as easy inputs. Through man-
ual evaluation of datasets, we discovered that
these characteristics often correspond to mean-
ingless or grammatically incoherent inputs in
the 3 following datasets: cbt, gutenberg, and
bnc\_spoken. Removing these redundant inputs
from the gutenberg dataset, led to improved
BLiMP performances for the model trained on the
sorted and cleaned dataset (Table 6).

While we did achieve improvements in the
BLiMP evaluation by training models only on the
Strict-Small datasets using the described methods,
the most significant intellectual contribution of this
paper is highlighting the importance of considering
contextual and knowledge-based similarity when
reordering training inputs with any performance-
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enhancing metrics for language models. This con-
cept reflects how humans learn effectively. In
schools, subjects like math and English are not
mixed in the same class period, regardless of the
difficulty of the subjects, unless students are al-
ready proficient in both.

If we compare a context length-sized input to a
human’s attention span of 5 minutes, teaching math
to a model or human is more effective if we present
10 similar examples of arithmetic operations that
follow the same logical pattern within that 5S-minute
span, rather than presenting examples of different
mathematical operations (like basic combinatorics
mixed with calculus and geometry) without any log-
ical pattern connecting the examples, even if these
examples share the same level of difficulty. There-
fore, in curriculum learning for language models,
we argue that sentences that are presented together
within a context length should be semantically and
contextually similar beyond having the same level
of difficulty.

2 Model Architecture & Training Loop

To identify the optimal base model architecture
for our experiments, we trained BERT(Devlin
et al., 2018), RoBERTa(Liu et al., 2019), and GPT-
2(Radford et al., 2019) on the given datasets, ad-
hering to the conventional guidelines for language
model training, and utilizing identical hyperparam-
eters, without any extra optimizations. Our results
revealed that GPT-2 not only converged at a faster
rate but also marginally outperformed the other
models in the BLiMP evaluation. Consequently,
we selected GPT-2 as the base model architecture
for all our following experiments.

The GPT2 models were trained for six epochs,
with convergence typically occurring around the
fifth epoch. Throughout the training process, we
assessed the models on the evaluation dataset every
500 steps, with the gradient accumulation set to 1.
We then selected the best checkpoint based on the
evaluation loss to assess with BLiMP evaluation.
For all experiments, we utilized the DatalLoader
function to load data in batches of size 64. We set
the shuffle boolean to True, which rearranges the
indices of all samples at each epoch for the baseline
experiments and the ablation experiments (results
in Table 2) that did not involve reordering the data.

The data preparation process involved reading
each line of the dataset files as a separate sample.
We then joined all the tokenized samples in a batch

with an eos_token_id token in between and then
divided the concatenated samples into sequences
of size context-length. During experiments that in-
volved sorting the sentences based on difficulty, we
eliminated any duplicated inputs from the dataset.
We used the preprocessed gutenberg dataset, with
sentence fragments merged into one line, as our
baseline gutenberg dataset for all the experiments
besides GPT-2 gutenberg not merged (Table 1).

In our experimental setup, we tested our base-
line model using different context length sizes. We
observed that a context length of 64 resulted in a
decline in the model’s performance on BLiMP. On
the other hand, context lengths of 512 and 256 did
not yield any performance improvements over a
context length of 128. However, they significantly
increased the GPU memory usage and extended
the training time. Consequently, we chose a con-
text length of 128, the smallest size that did not
adversely affect the model’s performance, for all
subsequent experiments.

We repeated a subset of baseline experiments
multiple times to understand the effect of random-
ness on the outcome of experiments. The limited
volume of data used to train our models introduces
an inherent instability in the training process, re-
sulting in some variation in the BLiMP evaluation
results. We observed a variance of up to 0.6% in the
experiments with the same setup when altering the
seed before instantiating the model. To neutralize
the randomness effect and ensure a valid compari-
son of different optimizations, we standardized the
seed value to 1 for all the experiments discussed in
this paper.

3 Dataset Analysis

In order to gain a better understanding of the train-
ing data, we conducted a manual analysis of the
datasets. This examination revealed that the sen-
tences in the Gutenberg dataset were fragmented
across multiple lines. Given that each line is read
as a separate sample in our baseline training loop,
shuffling the sample indices results in unrelated
sentence segments following one another in a con-
text length. This disrupts the inherent structure of
the sentences and interrupts the contextual infor-
mation provided by the surrounding words when
learning word embeddings during training.

To address this issue, we preprocessed the Guten-
berg dataset by consolidating subsegments of each
sentence into a single, coherent sentence printed
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in one line. This modification led to an improve-
ment of over 1.6% percent in the model’s BLiIMP
evaluation results compared to the baseline (Table
1). This notable enhancement over the baseline,
achieved through a straightforward preprocessing
step, highlights the importance of maintaining the
contextual information provided by the surround-
ing sentences when feeding the training data to the
model.

To evaluate the influence of each dataset on
the model’s performance during the BLiMP as-
sessment, we conducted an ablation study consist-
ing of 10 experiments. In each of these exper-
iments, the model was trained on nine datasets,
with one dataset being excluded in each itera-
tion (Table 2). The results show that removing
the aochildes dataset has the least influence on
the model’s performance. However, excluding
the wikipedia dataset significantly reduced the
model’s BLiIMP score. A comparison between sen-
tences in the aochildes and wikipedia datasets
highlights their distinct grammatical characteris-
tics. Sentences in the aochildes dataset, which
are compiled from child-directed speech (Huebner
et al., 2021), are short, informal, and often con-
tain grammatical errors, including missing or mis-
placed pronouns and verbs. On the other hand, the
wikipedia dataset contains longer sentences that
strictly adhere to grammatical rules while avoiding
unnecessary repetition.

As BLIMP is specifically designed to assess
the sensitivity of language models to acceptabil-
ity contrasts using grammar templates (Warstadt
et al., 2020), it follows that the impact of excluding
spoken language sentences in aochildes, which
are incomplete and error-prone, on improving the
model’s performance in BLiMP evaluation is less
significant. Additionally, we can observe that
shorter sentences in the BabyLLM datasets are less
effective in training the model for BLiMP evalua-
tion.

4 Curriculum Learning

To optimize the use of the limited training samples
available and improve the model’s performance,
we chose to supervise the order in which samples
are presented to the model. To this end, we imple-
mented Curriculum Learning (CL) (Bengio et al.,
2009) and Competence-based Curriculum Learn-
ing (Platanios et al., 2019). The fundamental idea
behind CL is to initiate learning with simpler ex-

Difficulty Metric BLiMP
Sentence Length 69.93%
Sentence Rarity 71.49%

Average Sentence Rarity 74.51%

Table 3: BLiMP results for competence-based CL using
different difficulty metrics. The gutenberg dataset is
preprocessed to have complete sentences in each line
before reordering the samples based on difficulty. Shuf-
fle is set to false, and the number of training epochs is 1,
as the competence function samples from the difficulty-
sorted datasets multiple times when constructing the
training corpus.

amples and gradually incorporate harder ones by
sorting the samples based on their difficulty. In
Competence-based CL, the training data is filtered
based on the estimated difficulty of the sample and
model competence.

To implement Competence-based CL, we sorted
the training samples based on the difficulty metrics
outlined in the Platanios et al. (2019): Sentence
Length (SL), which ranks samples based on length,
considering shorter samples as easier, and Sentence
Rarity (SR), which is the overall likelihood of a
sentence, incorporating both word frequency and
sentence length, with less likely or more rare sen-
tences being considered more difficult. To build the
training corpus with a supervised order of samples,
we employed the square root competence function
which determines which examples should be in-
corporated into the training corpus, based on the
competence of the model at time t of training, and
the pace at which new examples are introduced
during the training process, where the rate of new
examples added decreases over time, allowing the
learner more time to assimilate the information
(Table 3).

However, BLiMP results for models trained us-
ing SL or SR difficulty metrics were worse than
the performance achieved when training the model
on the base datasets (with gutenberg sentences
merged) without any CL optimizations. We hypoth-
esize that the sub-optimal performance is linked to
the competence function’s design and the unique at-
tributes of the BabyLM datasets. The competence
function samples more from easier sentences when
constructing the training corpus, and both SR and
SL heuristics employ sentence length as a criterion,
either implicitly or explicitly, to determine the dif-
ficulty of sentences. Consequently, this leads to
an overrepresentation of shorter sentences in the
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training data created using this competence func-
tion. Furthermore, a higher portion of the BabyLM
datasets includes transcribed speech, and shorter
spoken language sentences are often fragmented
and contain more grammatical errors due to the
spontaneous flow of the speech. Our prior obser-
vations also show a negative correlation between
sentence length and the importance of the sentence
in training the model for BLiMP evaluation. Thus,
we can deduce that the overrepresentation of short
sentences in the Competence-based CL training
dataset adversely affects the model’s performance
on BLiMP.

5 Proposed Methods

5.1 Average Sentence Rarity

Using word frequencies as a difficulty heuristic
can be helpful when training language models with
limited data. Training examples with rare words
need repeated exposure for effective learning, mak-
ing them difficult to learn (Platanios et al., 2019).
Moreover, limited data can lead to high variance
in gradients for rare word embedding due to in-
sufficient contextual information. This suggests
that word frequencies can be an effective difficulty
heuristic.

Given a corpus of M sentences, {s;}}£,, where
each sentence is a sequence of words, s; =
{w}, ..., wly, }, word frequencies are defined as:

M N;
Flo) 237 iy,
i=1 k=1

where j = 1,...,, #{unique words in corpus}
and 1 ,.ondition 1S the indicator function which is
equal to 1 if its condition is satisfied and O other-
wise. Here, we argue that using the product of the
unigram probabilities of word frequency counts,
which is employed to compute SR, is not an ap-
propriate strategy for aggregating word frequencies
into a singular difficulty score for sentences in the
BabyLM Corpus. This approach implicitly incor-
porates sentence length into the difficulty score, re-
sulting in shorter sentences being classified as easy
and subsequently overrepresented in the training
dataset when sampling from the difficulty-sorted
datasets with the competence function. Instead, we
propose using the average of the word frequencies
as the singular score for sentence difficulty. This
ensures that the difficulty metric is independent
of sentence length. We thus propose the average

sentence rarity difficulty heuristic:

davgfrarity(si) £ ;1 Z f(wj)

For the easier sentences to receive a higher score us-
ing this metric, we incorporate the —1 factor in our
difficulty metric. Implementing this difficulty met-
ric along with the competence function to construct
the training corpus led to a performance increase
of over 3% on BLiMP, reaching 74.51% (Table 3).

5.2 Local Coherence

There is semantic similarity between consecutive
sentences that convey information about the same
concept. For instance, sentences from a Wikipedia
article on engines are more similar compared to
sentences from a conversation between parents and
children about lunch. Therefore, adjacent sentences
encoding the same concept tend to be more seman-
tically similar. This semantic coherence between
adjacent sentences is preserved when sentences
from a dataset are in their original order. However,
reordering sentences based on difficulty metrics
can disrupt the semantic distribution of nearby sen-
tences.

Learning contextualized word embeddings heav-
ily relies on the sequence of words presented to-
gether within a context length. We hypothesize
that the inferior performance of models developed
using Competence-based CL optimizations, in com-
parison to baselines achieved with simple prepro-
cessing steps, is likely due to the language model’s
inability to capture important context encoded by
nearby sentences. This is because as a consequence
of reordering sentences based on difficulty metrics,
sentences are followed by others that are gram-
matically and semantically different, potentially
sampled from other datasets, and encoding a com-
pletely different concept.

The objective here is to reorder sentences based
on difficulty in a manner that minimizes the loss
of contextual information encoded by nearby se-
mantically similar sentences, to enhance model
performance. To achieve this, we diverge from the
competence algorithm proposed, which controls
the order of all sentences that the model sees during
training. Instead, we focus on a smaller-scale opti-
mization problem by supervising the sequence of
sentences that follow each other within a given con-
text length. The order of sentences grouped at the
context length level has a significant impact on the

360



Number of merges in a context length

10000 A

I @ [
=] =] o
=) <] =]
=1 =1 =}

N
=
=]
=}

# inputs in context lengths with x # merges

0 5 10 15 20 25 30 35
# of merges

Figure 1: Frequency of context length size samples
that are a merge of x number of tokenized inputs in
the BabyLLM datasets. The average number of merged
inputs in a context length is 8.512. However, for the
80% longer portion of inputs, the average is 6.55.

model’s performance, because, due to the shorter
length of sentences in the BabyLM datasets, an av-
erage of 8 sentences are grouped within a context
length of 128 tokens when using the concatenation
algorithm to merge tokenized inputs (Figure 1).

To assess the extent of contextual informa-
tion that is lost during sentence reordering, we
use local coherence as a heuristic. This metric
quantifies the pair-wise contextual similarity be-
tween a central sentence and its adjacent sentences
within a window of seven sentences, as measured
by sup-simcse-roberta-large, a model specifi-
cally designed to produce contextualized sentence
embeddings (Gao et al., 2021). It’s important to
note that this measurement, produced by a pre-
trained Roberta model, is completely independent
of the training process of our models. We define
local coherence for sentence s; as:

3
c(s;) = é Z sim(8;, Si+k)
k=-3
k0

Where sim(s;, s;) is the cosine similarity be-
tween the sentence embeddings encoded for s; and
sj using sup-simcse-roberta-large. To deter-
mine the size of the local similarity window, we
consider the average number of inputs concatenated
in a context length of 128, which is 8.512 for all sen-
tences in the BabyLLM datasets. However, for the
subset of sentences that make up the 80% of longer
inputs, which are more influential in optimizing
the model’s performance for BLiMP, the average

number of inputs merged in a context length of 128
reduces to 6.55. Thus, we opt for a window size of
seven for this particular metric.

To unify the local coherence of individual sen-
tences into a single metric for a given corpus, we
use an average pooling function. However, due
to limited computational resources and to enhance
time efficiency, we opt for calculating the expected
local coherence of a corpus. To compute this, in-
stead of calculating the local coherence of all sen-
tences in the corpus, we take the average of the
local coherence values of 1000 randomly selected
unique sentences from each dataset in the BabyLM
Strict-Small track.

5.3 Data Cleaning With ASR

ASR sorts sentences based on the relative frequency
of the words, classifying sentences with a high con-
centration of common words as the easiest and
those with a high concentration of rare words as
the hardest. Manual evaluation of datasets sorted
using this metric indicates that sentences classified
as easy tend to lack semantic meaning and appear
fragmented in some datasets. This is expected, as
this metric ignores sentence length, and thus, sen-
tences classified as easy have few words besides
the most frequent words, which include numbers,
articles, and pronouns. This leaves limited room
for meaningful development of concepts in those
sentences. The datasets that display this pattern
most prominently are gutenberg, bnc, and cbt.
gutenberg contains thousands of lines consisting
of a few words and a long series of numbers, likely
corresponding to Project Gutenberg catalog num-
bers. These lines are isolated when the dataset is
sorted by ASR and ranked as the easiest sentences.

We found that cleaning the datasets by removing
redundant or semantically meaningless lines with
a high count of common words can improve the
model’s performance. ASR also effectively iden-
tifies meaningless inputs containing a high count
of rare words, as hard samples; however, we found
that removing such samples did not provide an
improvement in the model’s performance. This
might be because removing the limited contextual
information available for the rare words either en-
tirely erases them from the model’s vocabulary or
increases the variance in gradients of their embed-
dings, given the small size of our dataset. Alterna-
tively, removing meaningless contextual informa-
tion for high-frequency tokens from the datasets
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can be advantageous, because when learning em-
beddings for the common words, the noise intro-
duced by meaningless samples can be amplified
due to the small size of our training datasets.

When employing SR to sort inputs in the
datasets, the isolation of semantically meaningless
lines does not occur, because this metric is depen-
dent on sentence length. This difficulty metric fails
to identify inputs with a high count of frequent to-
kens and a low count of all other tokens, which is a
marker for meaningless inputs in the target datasets.
Examples classified as hard tend to be very long,
and at least segments of those sentences are coher-
ent. On the other hand, the frequency of common
words is lower compared to the frequency of other
words in the inputs classified as easy, primarily due
to the imposed short length limit for these inputs.
As a result, sentence rarity cannot be used as an
effective metric to clean these datasets.

6 Experiments

6.1 Reordering One Dataset

The primary objective of these experiments is to
enhance the performance of the language model
on BLiMP by grouping training samples with a
similar difficulty, as quantified by either SR or ASR,
in the same context length, and to measure the
loss of contextual information when sentences are
rearranged to this new order.

The BabyLLM datasets are derived from various
sources, each encoding distinct conceptual informa-
tion. As a result, sentences from the same database
exhibit a higher level of grammatical and semantic
similarity. Thus, to preserve the maximum contex-
tual information when rearranging sentences, we
reorder sentences only within each dataset in this
series of experiments.

To quantify the extent of contextual information
loss following sentence reordering, we calculate
the expected local coherence of each dataset in
the Strict-Small track separately with the sentences
of the dataset in their original order and with the
sentences sorted based on either of the difficulty
metrics (Table 4). As expected, rearranging sen-
tences using either difficulty metric significantly
reduced the expected local coherence across all
datasets. When it comes to arranging sentences
with a similar context close to each other, both
metrics demonstrated comparable performance.

To assess the potential improvement of GPT-2’s
performance on the BLiMP evaluation through or-

ganizing sentences of a single dataset based on a
difficulty metric, we conducted a series of 20 exper-
iments. In each experiment, GPT-2 is trained on a
training corpus consisting of 9 unchanged datasets
concatenated with one dataset sorted based on dif-
ficulty. The model’s performance is then evaluated
on the BLiMP evaluation (Table 5). We also mea-
sure the correlation between the expected local co-
herence of the difficulty-sorted dataset and model
performance to test our hypothesis that even though
sorting inputs based on difficulty can improve per-
formance, interrupting the semantic distribution of
nearby contextual sentences can reduce the model
performance.

We observed a positive correlation between the
expected local coherence of datasets sorted by ei-
ther difficulty metric and the evaluation results of
the model on BLiMP (Figure 2). To assess the re-
lationship between these two variables, we used
Spearman’s Rank correlation coefficient. The cor-
relation coefficient between the coherence score of
datasets sorted with SR and the BLiMP score of
the models is 0.693, indicating a strong correlation.
For datasets sorted with average sentence rarity, the
coefficient is 0.559, indicating a moderate correla-
tion.

The larger correlation coefficient achieved for
datasets sorted with SR may be caused by the im-
plicit similarity in length among neighboring sen-
tences within the window of local coherence when
sentences are sorted by SA. And this similarity in
turn increases the local coherence score and BLiMP
performance of the model. This suggests that con-
sidering sentence length when sorting sentences
by difficulty is beneficial, however, it is the high
sampling frequency from shorter sentences in our
datasets, ranked as easier using SA, that reduces the
model’s performance when using the competence
function.

Out of the 20 experiments conducted, 8 re-
sulted in an improvement in the BLiMP evalua-
tion relative to our baseline of 75.05% achieved
by preprocessing gutenberg, and all results were
above the 73.40% BLiMP score achieved with
no optimizations. Notably, the model trained on
aochildes sorted with SA achieved a 0.72% in-
crease in BLIMP and reached a score of 75.77%.

The lower performance of certain models in this
experiment on BLiMP is most likely attributed to
the loss of significant contextual information in the
dataset during the reordering of sentences based
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Datasets

Order of Sentences | aochildes bnc_spoken cbt

children_stories gutenberg open_subtitles

qed simple_wikipedia switchboard wikipedia

Original Order | 0.303 0.228  0.227 0.326
SA 0.149 0.114 0.127 0.180
ASR 0.152 0.108 0.124 0.172

0.307 0.204 0.240 0.348 0.249 0.400
0.121 0.104 0.090 0.108 0.147 0.124
0.120 0.110 0.086 0.115 0.120 0.127

Table 4: Comparing the expected local coherence of each dataset when its sentences are in their original order to when the

sentences are sorted based on sentence rarity (SA) or average

sentence rarity (ASR).

Rearranged Dataset In The Training Data

Order of Sentences | aochildes bnc_spoken cbt children_stories

gutenberg open_subtitles qed simple_wikipedia switchboard wikipedia

SA
ASR

74.64%
75.59%

75.42%
75.40%

75.77% 75.19%
74.85% 75.37%

75.42% 74.58%
74.71% 74.69%

74.54%
74.11%

74.29% 74.81% 75.48%
74.32% 74.88% 74.74%

Table 5: BLiMP results for models trained on the BabyLM Strict Small Corpus with one dataset sorted based on SA or ASR.

on difficulty. This is evident from the positive cor-
relation between the local coherence score of the
dataset and the model’s performance on BLiMP,
which suggests that models that achieved lower
performance on BLiMP were trained on datasets
with higher contextual information loss.

The loss of contextual information may also
be attributed to higher subject variance in certain
datasets. In that case, to improve the preservation
of local contextual information, it may be benefi-
cial to sort sentences at a sub-dataset level. For
instance, rearranging sentences from only a single
story in the children\_stories dataset instead of
rearranging all sentences in the dataset could poten-
tially lead to better results. Furthermore, to enhance
the model’s performance on these datasets, it may
be essential to implement a larger-scale supervi-
sion of the sentence order. This can be achieved
through the development of a difficulty metric that
considers the semantic similarity of consecutive
sentences when reordering sentences from different
datasets, leading to a minimum loss of contextual
information when sorting sentences with different
meanings and grammar styles.

6.2 Data Cleaning

In this series of experiments, we applied the previ-
ously discussed data-cleaning method to 3 datasets:
bnc, cbt, and gutenberg. To set up these ex-
periments, we initially sorted the datasets using
ASR. Next, we determined the number of lines to
eliminate from the easiest sentences in the dataset
through manual evaluation. For every 200 lines,
we assessed 10 lines and removed the preceding
200 lines if more than 1 out of the 10 lines con-
tained grammatically incoherent or semantically
meaningless sentences. Subsequently, the sorted
and cleaned dataset was concatenated with the 9

Data Cleaning with ASR | ASR
Dataset BLiMP # Lines Cut BLiMP
bnc_spoken 75.53% 4600 75.37%
cbt 75.69% 800 75.59%
gutenberg 75.84% 3200 74.71%

Table 6: A comparison between the results of training GPT-2
on the training corpus consisting of one dataset cleaned and
sorted with ASR and the earlier experiment results obtained
by simply reordering the dataset with ASR. The number of
lines eliminated from the sorted dataset (after duplicates were
removed) is also stated.

base datasets to create the training corpus. We
trained a model on each corpus and evaluated their
performance using BLiMP. Table 6 compares the
results of training GPT-2 on the training corpus
composed of one dataset cleaned and sorted with
ASR with the experiment results achieved earlier
by only reordering the dataset with ASR.

By employing this method, we achieved a con-
siderable improvement in the performance of the
model trained on the cleaned gutenberg dataset.
However, the improvement achieved in the perfor-
mance of the two other models was negligible. We
believe the substantial enhancement on gutenberg
is because a higher portion of the excluded inputs
was meaningless relative to the inputs cut from the
other two datasets. The model trained on ASR
sorted and cleaned gutenberg performed the best
on BLiMP among the other models we trained and
is the model submitted for the challenge. This
model’s perplexity on the BabyLLM test datasets is
54.8.

7 Conclusion and Future Work

In conclusion, the primary objective of this paper
was to enhance GPT-2’s performance on BLiMP
zero-shot tasks by pre-training the model on the
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Figure 2: The graph illustrates a positive correlation between
the expected local coherence of the sorted dataset and the
BLiMP score of the model trained on it. The Spearman’s
Rank correlation coefficient is 0.693 for datasets sorted with
SA (represented in orange) and 0.559 for those sorted with
ASR. The green line indicates the best BLiMP score obtained
without any CL optimizations, achieved by preprocessing the
gutenberg dataset.

datasets provided in the BabyLLM Strict Small track.
Various difficulty metrics were explored to super-
vise the order of sentences presented to the model.
It was observed there’s a positive correlation be-
tween the BLIMP result of models trained on a
corpus comprised of one dataset sorted based on
difficulty and the contextual coherence of nearby
sentences in the rearranged dataset. Thus, Train-
ing models on a dataset sorted by difficulty with
preserved contextual coherence could lead to better
performance on BLiMP. By employing difficulty-
based sentence reordering, we trained a model
that achieved an average accuracy of 75.77% on
BLiMP’s zero-shot tasks. Additionally, we used
average sentence rarity, a length-independent sen-
tence rarity metric, to clean and sort the gutenberg
dataset, which further improved the performance
to 75.84%.

Hence, to improve curriculum learning optimiza-

tions for language models, we argue that sentences
presented together within a context length should
exhibit not only the same level of difficulty but also
semantic and contextual similarity. In our study,
we employed similarity measures to assess the con-
textual coherence of rearranged datasets after the
sentences were ordered based on word frequencies;
the semantic similarity of sentences had no impact
on the actual order of the sentences. A critical fu-
ture advancement arising from this research lies in
the development of more sophisticated difficulty
metrics that consider both the similarity among
sentences and their individual difficulty levels.

8 Limitations

No measure of grammatical similarity of sen-
tences: When assessing the correlation between
the expected local coherence of a dataset and the
performance of the model trained on the rearranged
dataset, we are considering the semantic similarity
of sentences within a context length, but using a
grammar-based evaluation to assess the model’s
performance. While we hypothesize that training
the model on difficulty-sorted datasets that have
more semantically similar sentences sequenced af-
ter each other improves the model’s overall perfor-
mance, leading to better BLiMP results, it might be
more effective to optimize for higher BLiMP scores
by evaluating the grammatical similarity of sen-
tences that follow each other. Nevertheless, there
is currently no reliable method to solely measure
the grammatical similarity of two sentences to the
best of our knowledge. Alternatively, using an eval-
uation pipeline that assesses the model’s semantic
understanding of sentences would be a good way
to compare against the received local coherence
scores. However, our available resources did not al-
low us to optimize our models using such pipelines.

Lack of scalability: Our current approaches to
enhance model performance are not scalable as re-
ordering two or more datasets did not yield any
improvement in BLiMP scores in our experiments.
This lack of scalability is the motivation behind the
investigation of the semantic similarity of sentences
that follow each other in a context length. We hy-
pothesize that although sorting a higher number
of datasets increases the number of context-length
samples where the concatenated sentences have the
same difficulty, sequencing sentences from differ-
ent sources with distinct grammar styles and se-
mantic meanings within a context length results in
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a decrease in the model’s performance. The resolu-
tion to this scalability issue lies in the development
of more advanced difficulty metrics that take into
account both the similarity between sentences and
their individual difficulty levels when reordering
the training samples.
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