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Abstract

Pre-trained Large Language Models (LLMs)
have shown success in a diverse set of language
inference and understanding tasks. The pre-
training stage of LLMs looks at a large corpus
of raw textual data. This shared task compares
LLM pre-training to human language acquisi-
tion, where the number of tokens seen by 13-
year-old kids is magnitudes smaller than the
number of tokens seen by LLMs. In this work,
we pre-train and evaluate LLMs on their ability
to learn contextual word representations using
roughly the same number of tokens as seen
by children. We provide a strong set of base-
lines; with different architectures, evaluation of
changes in performance across epochs, and re-
ported pre-training metrics for the strict small
and strict tracks of the task. We also try to
loosely replicate the RoBERTa baseline given
by the task organizers to observe the training ro-
bustness to hyperparameter selection and repli-
cability. We provide the submission details to
the strict and strict-small tracks in this report.

1 Introduction

Transformer-based LLMs (Vaswani et al., 2017)
show state-of-the-art performance on a variety
of language processing tasks. In the last few
years, pre-training methods for LLMs have evolved
rapidly to meet task-driven demands. This evo-
lution has focused on model expansion (Brown
et al., 2020), more pre-training data (Hoffmann
et al., 2022), use of higher quality data (Raffel
et al., 2019), model alignment (von Werra et al.,
2020), quicker run-time inference (Sanh et al.,
2020), quicker pre-training (Clark et al., 2020),
faster fine-tuning (Sanh et al., 2020), domain adap-
tation (Alsentzer et al., 2019; Caselli et al., 2021;
Beltagy et al., 2019; Shah et al., 2022), and the ad-
dition of multi-modal capabilities (OpenAI, 2023;
Gatti et al., 2022). The task-driven nature of this
development optimizes performance at scale but
fails to account for human-like learning.

Humans typically encounter fewer than 100 mil-
lion tokens through language exposure by the time
they are 13 years old (Warstadt et al., 2023). LLMs,
on the other hand, parse tens of billions to tril-
lions of tokens in their pre-training stage, typically
from sources like Wikipedia (Wikipedia contrib-
utors, 2004), and Open Book Corpus (Zhu et al.,
2015), which consist of different tokens than the
ones seen by children. In this paper, we evaluate
the capabilities of popular architectures on various
tasks when trained on a number of tokens compa-
rable to that seen by 13-year-old children. Such
scaled-down pre-training has several potential ben-
efits:

• A better sandbox for the development of new
LLM training techniques inspired by the cog-
nitive science literature (Yiu et al., 2023).

• Robust evaluation of models on human behav-
ioral signatures (Shah et al., 2023).

• Building plausible human cognition models
using LLMs aligned to actual human actions
(Park et al., 2022).

Track Data
size

Datasets Our work

Strict-small 10M
words

Child-directed speech,
transcribed speech
from multiple sources,
children’s books, and
Wikipedia, etc.

Strict 100M
words

Loose 100M
words

Strict track data + un-
limited non-linguistic
data

×

Table 1: Task Summary

1.1 Task Descriptions
The shared task has three tracks: Strict, Strict-small,
and Loose. The details of each track are summa-
rized in Table 1. The Strict and Strict-small tracks
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use pre-released datasets containing Child-directed
speech, transcribed speech from multiple sources,
children’s books, and Wikipedia. These tracks are
meant to encourage explorations of architectural
variation and self-supervised approaches.

1.2 Key Contributions

Given the benefits of using scaled-down human-
like pre-training data, our work focuses on the fol-
lowing aspects of the shared task:

1. Replication details: Can we replicate the re-
sults of the baselines given by the task orga-
nizers?

2. Can we understand the impact of more train-
ing epochs on the same architecture?

3. Providing each training checkpoint for the dif-
ferent model architectures to facilitate future
modeling of development. All checkpoints
can be found here.

We provide details of training and evaluation for
the strict and strict-small tracks of this task.

2 Related Work

2.1 Cognitive science driven LLM
architecture development

With the efforts put into LM pre-training, learning
frameworks informed by cognitive science have
received increasing attention. For instance, unsu-
pervised and adversarial pre-training methods have
been employed to enhance the logical reasoning
capabilities of language models (Pi et al., 2022b).
Using pre-training to inject numerical (Pi et al.,
2022a) and commonsense reasoning (Zhong et al.,
2019) has also been recently explored. Huebner
et.al have constructed pre-training paradigms using
curriculum learning (Huebner et al., 2021) to show
the advantages of incremental learning.

2.2 Pre-training with limited data

Previous experiments show that pre-training data
size is positively correlated with the syntactic capa-
bilities of RoBERTa in terms of generalization and
robustness (Pérez-Mayos et al., 2021). However, it
has been discovered that model performance gains
bring a high financial and environmental cost (Tay
et al., 2021). This justifies the appeal of small-
scale pretraining with data limitations. There have
also been explorations of how human-like data

scales could improve our understanding of lan-
guage acquisition and solidify current cognitive
models (Dupoux, 2018).

Track Model Competition Scores Perplexity
(Dynabench)

Strict Small Distilbert Epoch 20 0.62 86.283
Distilbert Epoch 60 0.65 17.278
RoBERTa Epoch 20 0.58 49.586

GPT2 Epoch 20 0.64 79.318
Competition Max 0.73

Strict Distilbert Epoch 20 0.66 39.427
Distilbert Epoch 60 0.71 10.332
RoBERTa Epoch 20 0.63 27.566

GPT2 Epoch 20 0.67 34.950
Competition Max 0.81

Table 2: Model scores on dynabench

3 Methodology

3.1 Models
We use the simple-transformers library (Rajapakse,
2019) to pre-train the models below from scratch.
The library uses the Huggingface trainer for pre-
training. Note: We build new vocabularies for all
models and limit the number of training epochs due
to computational constraints in certain models.

• RoBERTa: We train the RoBERTa-base model
(Liu et al., 2019) for comparison to the base-
line given by the task organizers. This model
is trained for 20 epochs on both datasets (strict
and strict-small). The size of this model is
roughly 125M parameters.

• DistilBert (uncased): Because this model
(Sanh et al., 2020) is smaller (roughly 66M
parameters) and quicker to pre-train, we addi-
tionally train it for 60 epochs. This allows us
to explore the impact of more training epochs
on performance.

• GPT2: We include a decoder-based architec-
ture (Radford et al., 2019) in our pre-training
to explore the impact of architecture type on
the evaluation tasks. This model has a simi-
lar size to RoBERTa (117M parameters). We
train it for 20 epochs due to computational
constraints.

All of the checkpoints for the three architectures
and the two tracks are uploaded on Huggingface
(Wolf et al., 2020). Hyperparameters: We per-
form a grid search over the hyperparameters for all
three architecture types. We use a subset of 0.5 GB
of the training data for the search. The learning
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Tasks Super GLUE
Model CoLA SST-2 MRPC (F1) QQP (F1) MNLI MNLI-mm QNLI RTE BoolQ MultiRC WSC

Strict Small Majority label 69.50 50.20 82.00 53.10 35.70 35.70 35.40 53.10 50.50 59.90 53.20
OPT-125m 64.60 81.90 72.50 60.40 57.60 60.00 61.50 60.00 63.30 55.20 60.20
RoBERTa-base 70.80 87.00 79.20 73.70 73.20 74.00 77.00 61.60 66.30 61.40 61.40
T5-base 61.20 78.10 80.50 66.20 48.00 50.30 62.00 49.40 66.00 47.10 61.40
Distilbert Epoch 20 69.38 83.46 79.69 80.21 69.80 71.56 60.15 54.55 65.42 53.67 51.81
Distilbert Epoch 60 69.68 85.63 78.81 82.28 71.62 73.11 76.73 60.61 67.77 56.74 61.45
RoBERTa Epoch 20 65.55 81.30 79.71 76.37 65.16 65.82 62.73 56.57 62.38 44.91 61.45
GPT2 Epoch 20 69.58 83.07 75.47 73.13 63.88 65.95 59.84 56.57 64.45 58.38 46.99

Strict OPT-125m 73.70 86.60 82.10 77.80 70.10 71.90 80.10 67.70 66.00 61.10 59.00
RoBERTa-base 75.90 88.60 80.50 78.50 68.70 78.00 82.30 51.50 59.90 61.30 61.40
T5-base 76.30 88.00 85.90 79.70 71.50 74.00 83.10 60.60 69.00 62.40 60.20
Distilbert Epoch 20 69.48 86.22 62.98 83.81 73.44 74.97 79.00 60.61 67.91 62.98 44.58
Distilbert Epoch 60 74.78 87.01 81.40 84.37 74.95 75.27 80.97 55.56 65.56 65.83 61.45
RoBERTa Epoch 20 67.81 84.06 82.00 82.12 72.22 73.19 77.17 53.54 60.30 51.48 38.55
GPT2 Epoch 20 69.58 87.20 79.29 82.23 74.00 74.98 81.01 52.53 69.58 57.83 48.19

Table 3: Results for the Super GLUE tasks

Tasks Blimp
Model Anaphor Agr. Binding Control/ D-N Ellipsis Filler-Gap Irregular Island NPI Quantifiers S-V

Agr. Structure Binding Raising Agr. Forms Effects Licensing Agr.
Strict Small OPT-125m 63.8 70.6 67.1 66.5 78.5 62 63.8 67.5 48.6 46.7 59.6 56.9

RoBERTa-base 81.5 67.1 67.3 67.9 90.8 76.4 63.5 87.4 39.9 55.9 70.5 65.4
T5-base 68.9 63.8 60.4 60.9 72.2 34.4 48.2 77.6 45.6 47.8 61.2 65
Distilbert Epoch 20 83.49 64.12 63.98 62.22 77.72 62.76 62.36 85.24 42.94 41.38 67.47 55.81
Distilbert Epoch 60 89.62 68.44 64.08 65.20 89.70 81.64 63.57 89.92 39.69 44.58 66.20 78.09
RoBERTa Epoch 20 84.76 60.54 67.97 60.69 56.47 52.25 65.48 64.53 54.22 52.51 52.42 66.63
GPT2 Epoch 20 81.24 72.56 67.81 67.43 86.98 59.82 67.72 84.38 52.62 51.76 58.14 64.12

Strict OPT-125m 94.9 73.8 73.8 72.2 93.1 80.5 73.6 80.8 57.8 51.6 74.5 77.3
RoBERTa-base 89.5 71.3 71 67.1 93.1 83.8 68 89.6 54.5 66.3 70.3 76.2
T5-base 66.7 61.2 59.4 59.8 53.8 49.1 70 75.5 43.6 45.6 34.2 53.2
Distilbert Epoch 20 92.43 67.06 67.66 65.27 94.38 87.24 65.42 85.04 42.86 50.43 67.41 66.25
Distilbert Epoch 60 94.68 70.39 68.39 68.25 96.39 89.03 68.69 90.08 45.59 64.67 70.20 72.32
RoBERTa Epoch 20 85.94 67.68 65.27 63.74 91.04 75.52 62.98 87.23 46.41 44.47 61.46 60.51
GPT2 Epoch 20 91.56 74.88 73.21 69.22 91.89 75.52 71.91 75.32 55.04 51.20 66.13 67.19

Table 4: Results for the Blimp tasks

Tasks Blimp Supplement Tasks
Model Hypernym QA Congruence (easy) QA Congruence (tricky) Subj.-Aux. Inversion Turn Taking

Strict Small OPT-125m 50.00 54.7 31.5 80.3 57.1
RoBERTa-base 49.4 31.3 32.1 71.7 53.2
T5-base 48 40.6 21.2 64.9 45
Distilbert Epoch 20 50.00 65.63 42.42 77.31 61.79
Distilbert Epoch 60 48.95 70.31 41.21 60.87 62.86
RoBERTa Epoch 20 51.28 48.44 31.52 53.86 66.07
GPT2 Epoch 20 47.44 48.44 45.45 72.41 62.86

Strict OPT-125m 46.3 76.50 47.9 85.3 82.9
RoBERTa-base 50.8 34.4 34.5 45.6 46.8
T5-base 51.1 45.3 25.5 69.2 48.9
Distilbert Epoch 20 48.26 64.06 40.61 81.53 65.36
Distilbert Epoch 60 48.95 73.44 47.88 83.43 65.36
RoBERTa Epoch 20 51.16 46.88 37.58 76.85 64.29
GPT2 Epoch 20 49.53 57.81 45.45 81.85 65.00

Table 5: Results for the Blimp supplemental tasks

rate ranges from 5e-5 to 4e-4 across the searches,
with weight decay in place but no early stopping
mechanisms.

4 Results

Table 2 shows the results obtained from the dyn-
abench submission portal. The individual results
for each of the tasks in different benchmarks are
available in Tables 3, 4, 5, 6, 7. Looking at these

tables, we observe the following patterns:

1. We see that training for more epochs leads to
better overall performance (compare 20 and
60 epochs of DistilBert in Table 2).

2. Variation among architecture types exists
when limiting the training to the same num-
ber of epochs, but it is difficult to identify a
definitively better architecture.
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Tasks MSGS Tasks
Model CR LC MV RP SC CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP

(Control) (Control) (Control) (Control) (Control)
Strict-Small OPT-125m 86.40 86.10 99.80 100.00 94.30 66.50 67.00 66.50 67.60 80.20 67.50

RoBERTa-base 84.10 100.00 99.40 93.50 96.40 67.70 68.60 66.70 68.60 84.20 65.70
T5-base 78.40 100.00 72.70 95.50 94.40 66.70 69.70 66.60 66.90 73.60 67.80
Distilbert Epoch 20 79.22 100.00 97.17 98.57 96.36 66.53 66.71 66.61 67.47 67.89 67.58
Distilbert Epoch 60 81.68 100.00 98.61 99.14 95.66 67.24 66.72 66.61 67.03 67.76 68.27
RoBERTa Epoch 20 73.02 100.00 73.91 99.59 86.47 66.70 67.19 66.61 66.84 67.44 71.93
GPT2 Epoch 20 89.78 96.30 99.23 100.00 97.13 66.46 66.72 66.58 66.83 78.78 64.87

Strict OPT-125m 97.20 82.60 100.00 99.80 88.10 75.30 67.10 66.30 66.80 84.80 62.00
RoBERTa-base 93.00 100.00 100.00 100.00 89.00 68.30 66.80 66.60 80.20 67.40 67.40
T5-base 95.10 100.00 100.00 99.80 88.70 76.70 69.40 67.00 67.70 72.70 68.00
Distilbert Epoch 20 81.44 100.00 97.36 97.35 94.77 67.26 66.72 66.61 66.97 67.67 68.63
Distilbert Epoch 60 93.23 100.00 99.33 99.17 95.64 68.91 66.77 66.61 67.45 67.89 66.59
RoBERTa Epoch 20 84.63 97.38 92.12 98.15 95.54 66.47 66.59 66.41 66.05 68.17 72.78
GPT2 Epoch 20 95.35 76.53 99.55 99.83 96.76 67.21 68.46 66.78 66.70 91.90 65.90

Table 6: Results for the MSGS tasks

Tasks Age of Acquisition tasks (mean absolute deviation)
Model Overall (591 words) Nouns (322) Predicates (167) Function words (102)

Strict Small OPT-125m 2.03 1.98 1.81 2.57
RoBERTa-base 2.06 1.99 1.85 2.65
T5-base 2.04 1.97 1.82 2.64
Distilbert Epoch 20 2.06 2.00 1.84 2.65
Distilbert Epoch 60 2.09 2.00 1.84 2.76
RoBERTa Epoch 20 2.06 2.00 1.84 2.63
GPT2 Epoch 20 2.06 2.00 1.85 2.64

Strict OPT-125m 2.04 1.97 1.83 2.61
RoBERTa-base 2.06 1.99 1.82 2.66
T5-base 2.06 2.00 1.83 2.65
Distilbert Epoch 20 2.06 2.00 1.83 2.65
Distilbert Epoch 60 2.08 2.00 1.81 2.79
RoBERTa Epoch 20 2.06 2.00 1.84 2.62
GPT2 Epoch 20 2.04 1.98 1.81 2.60

Table 7: Results for the Age of Acquisition tasks

3. Tables 3, 4, 5, 6, and 7 show that pre-training
(RoBERTa) is not robust to initialization, and
the competition scores would greatly benefit
from a warm-up or a grid search over different
hyper-parameters.

4. In most cases, the pre-training improves per-
formance over the majority label in the Super
GLUE tasks.

5. Tables 8, 9 shows that the performance on
the BLIMP tasks becomes better with more
training epochs. While this is orthogo-
nal to wisdom performance saturates at one
epoch(Biderman et al., 2023). Our results hint
that training saturation or stability may be a
function of model size divided by the number
of tokens seen.

5 Conclusions

We pre-train popular LLM architectures on the kind
of textual data seen by children when they are

around 13 years old. We show that pre-training
paradigms like Masked Language Modeling or
Causal Language Modeling lead to only minor vari-
ations. Our results show that models are not robust
to the initialization of weights. Our work provides
each and every checkpoint of the model architec-
tures on Huggingface to facilitate future research.
All checkpoints can be found here.

6 Limitations

Our work trains some of the popular Language
Model architectures on human-like scaled-down
training data, it does not introduce new training
methodologies or architectures which may be better
suited for such tasks. Furthermore, our work does
not exhaustively cover different model types in the
literature. Our results are preliminary as they do
not account for all possible confounds.
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Epochs
BLIMP Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Anaphor Agr. 50.77 70.81 82.21 79.75 84.46 84.00 86.71 88.14 87.27 87.88 87.42 87.32 83.54 86.91 86.30 84.76 85.22 85.99 85.22 85.94
Agr. Str. 58.69 59.81 60.46 60.83 59.80 60.39 60.43 60.84 61.02 60.60 59.69 62.08 63.70 65.22 65.39 66.56 67.54 67.34 67.92 67.68
Binding 64.43 68.06 64.84 65.32 64.31 67.17 64.31 66.00 63.92 64.10 64.00 59.45 61.52 62.60 62.72 63.67 64.54 65.21 65.18 65.27
Control Rais. 59.17 59.19 58.17 58.24 59.06 59.01 59.79 59.70 59.70 60.01 58.51 62.22 60.25 59.41 60.87 62.88 62.79 63.57 63.85 63.74
Det-N Agr. 51.47 56.72 58.87 59.57 58.63 58.62 58.18 60.09 60.16 59.06 59.63 63.47 71.69 80.95 85.20 87.18 88.49 90.51 90.98 91.04
Ellipsis 37.93 44.05 46.54 50.87 50.98 54.27 56.12 58.43 59.70 61.61 55.02 51.96 54.62 65.47 68.30 73.85 72.92 75.64 75.23 75.52
Filler Gap 69.39 64.53 66.48 63.66 65.38 61.95 61.31 61.95 61.84 65.39 60.58 61.86 60.21 62.14 61.47 61.80 62.40 63.35 63.38 62.98
Hypernym 53.84 49.77 52.09 51.74 48.02 48.49 48.72 50.12 49.88 51.28 50.35 50.70 48.84 50.35 51.28 49.77 51.51 50.47 51.86 51.16
Irr. Forms 45.90 59.75 60.87 61.32 63.66 59.54 65.24 63.36 64.83 64.99 69.97 78.07 76.39 81.53 86.92 86.87 88.96 88.85 87.74 87.23
Island Effects 53.66 42.68 56.20 55.53 54.67 44.66 48.28 51.91 49.93 52.88 47.31 45.22 51.76 50.67 47.83 48.92 46.82 46.38 45.40 46.41
NPI Lic. 34.89 43.58 35.71 46.96 40.81 43.41 43.29 42.97 39.60 44.02 37.25 38.23 39.20 40.80 40.10 43.77 44.05 44.46 43.65 44.47
QA_cong. Easy 34.38 35.94 39.06 42.19 39.06 35.94 40.63 40.63 37.50 37.50 37.50 46.88 56.25 57.81 56.25 50.00 45.31 45.31 48.44 46.88
QA_cong. Tricky 38.18 34.55 32.73 31.52 31.52 30.91 30.30 29.70 28.48 28.48 27.27 24.85 23.64 30.30 33.94 32.73 35.76 35.15 38.18 37.58
Quantifiers 37.92 38.15 36.22 40.96 43.07 41.96 49.00 50.05 43.07 51.91 51.52 66.95 65.35 67.85 60.72 64.30 61.98 64.09 61.39 61.46
S-Aux Inv. 74.68 75.04 69.85 68.87 63.19 52.74 55.40 50.65 47.89 48.65 52.28 62.94 66.85 72.82 70.36 77.92 73.82 76.38 75.43 76.85
S-V Agr. 49.67 50.89 52.10 51.91 52.34 53.68 53.80 54.47 55.54 55.83 54.87 52.72 54.27 57.58 58.10 58.70 60.09 60.31 60.23 60.51
Turn-Taking 59.64 59.64 60.00 59.29 61.43 60.36 58.57 59.64 58.93 58.57 61.07 63.57 64.64 67.14 63.57 63.57 64.29 63.93 64.64 64.29

Table 8: Results for the BLIMP tasks across different epochs of the RoBERTa-base model architecture for the strict
(100M token) track.

Epochs
Behavior/ Model +Epoch 1 5 10 15 20 25 30 35 40 45 50 55 60
Anaphor Agr. 46.57 82.87 89.88 91.21 92.43 93.10 94.07 94.17 95.19 94.94 94.58 94.43 94.68
Agr. Str. 58.06 59.71 61.78 65.69 67.06 68.02 70.05 69.07 69.67 70.55 70.49 70.27 70.39
Binding 59.65 65.24 63.15 67.14 67.66 66.93 68.48 66.55 69.07 68.76 68.95 68.27 68.39
Control Rais. 58.33 58.93 60.01 64.14 65.27 66.00 65.91 67.12 67.30 67.41 68.10 67.87 68.25
Det-N Agr. 50.76 60.30 70.41 92.16 94.38 95.24 95.94 95.97 96.34 96.14 96.27 96.37 96.39
Ellipsis 37.53 54.16 55.08 81.99 87.24 86.49 86.20 89.32 89.32 89.38 88.57 88.86 89.03
Filler Gap 70.23 64.89 58.56 62.06 65.42 64.74 66.64 67.49 67.54 67.24 69.00 68.88 68.69
Hypernym 51.40 50.23 50.70 48.84 48.26 50.00 48.60 51.40 50.23 50.00 49.77 48.49 48.95
Irr. Forms 56.39 65.24 87.38 85.55 85.04 86.92 88.50 89.16 88.85 88.85 89.72 89.72 90.08
Island Effects 46.52 44.62 48.09 45.52 42.86 45.07 43.20 46.49 44.81 43.80 44.39 45.44 45.59
NPI Lic. 53.23 46.90 41.06 46.67 50.43 55.25 58.56 57.39 61.69 64.36 64.09 64.15 64.67
QA_cong. Easy 31.25 43.75 59.38 67.19 64.06 68.75 70.31 73.44 75.00 70.31 70.31 73.44 73.44
QA_cong. Tricky 333.33 22.42 23.03 35.15 40.61 42.42 46.06 43.03 44.24 41.82 46.06 46.06 47.88
Quantifiers 54.87 69.55 62.31 65.43 67.41 70.40 70.50 72.82 70.74 70.63 70.25 70.81 70.20
S-Aux Inv. 58.45 65.77 73.65 79.21 81.53 81.19 81.85 81.75 83.17 82.80 83.63 82.53 83.43
S-V Agr. 48.93 54.60 55.56 62.06 66.25 68.24 70.82 70.05 71.64 72.50 71.73 72.41 72.32
Turn-Taking 59.29 60.71 65.36 64.29 65.36 63.93 64.64 65.36 65.36 65.00 66.07 65.00 65.36

Table 9: Results for the BLIMP tasks across different epochs of the DistilBERT-base model architecture for the
strict (100M token) track.

7 Ethical Considerations

All researchers in this study have active responsi-
ble code of conduct in research certifications. The
models shared on Huggingface have the same risks
associated with any other Large Language Model.
Researchers in this study have tried to be mindful of
the environment while doing the pre-training runs
and hope that publically available checkpoints will
help other researchers avoid computation and envi-
ronmental costs associated with repeat pre-training.

8 Computational Resources

The models are trained on Nvidia-RTX 2080 GPUs
with 12 GB RAM. The models are trained for
nearly 975 GPU hours.
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