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Abstract
Large transformer language models trained ex-
clusively on massive quantities of text are now
the standard in NLP. In addition to the imprac-
tical amounts of data used to train them, they
require enormous computational resources for
training. Furthermore, they lack the rich array
of sensory information available to humans,
who can learn language with much less ex-
posure to language. In this study, performed
for submission in the BabyLM challenge, we
show that we can improve a small transformer
model’s data efficiency by enriching its embed-
dings by swapping the learned word embed-
dings from a tiny transformer model with vec-
tors extracted from a custom multiplex network
that encodes visual and sensorimotor informa-
tion. Further, we use a custom variation of the
ELECTRA model that contains less than 7 mil-
lion parameters and can be trained end-to-end
using a single GPU. Our experiments show that
models using these embeddings outperform
equivalent models when pretrained with only
the small BabyLM dataset, containing only 10
million words of text, on a variety of natural
language understanding tasks from the GLUE
and SuperGLUE benchmarks and a variation
of the BLiMP task.

1 Introduction

The field of natural language processing is now
dominated by large-scale transformer models such
as GPT-3 (Brown et al., 2020). These models are
characterized not only by their enormous size—
billions of parameters—but also the huge datasets
that are used in their pretraining. The 200 billion
text tokens used to train GPT-3 are dwarfed by
the 1.4 trillion used to train Chinchilla (Hoffmann
et al., 2022). Huge model sizes and enormous
pretraining datasets make research on pretraining
language models impractical for all but the most
lavishly funded industry research groups.

Beyond the practical problems posed by such
massive data inputs, the current methods for lan-

guage modeling require vastly more resources to
learn and perform language tasks than human be-
ings do. American children, for example, begin
speaking around the age of 1 year on average (Gilk-
erson et al., 2017), and studies suggest that they
have only heard around 5 million words before
the onset of recognizable words (i.e., beyond bab-
bling). Even the medium-sized BERT model was
trained with a 3.3 billion word corpus (Devlin et al.,
2019)—orders of magnitude more than human be-
ings require to begin speaking and reach language
proficiency. This disparity suggests that current
methods in natural language procession (NLP) are
missing crucial aspects of language learning.

One thing which models trained exclusively on
text undoubtedly lack is a genuine connection be-
tween concrete words, such as red, and the physical
world they describe. Human beings learn to speak
with the aid of their sensory impressions, emotions
and a rich environment of social cues (Smith and
Gasser, 2005), which is to say that human language
is grounded in the human sensory experience (Har-
nad, 1990). To use the same example, the word red
is grounded in the visual perception of color. In
contrast, transformer NLP models only have access
to text and can only define words in terms of other
words, following the distributional hypothesis of
linguistic meaning. The lack of concrete sensory in-
formation is one possible reason why transformers
require so much text and compute to learn perform
basic human language tasks.

In this study, conducted as part of the BabyLM
challenge (Warstadt et al., 2023), we seek to im-
prove a tiny transformer model’s data efficiency
by providing it with a facsimile of that missing
sensory information. Specifically, we follow the
approach taken by Kennington (2021) and replace
a pretrained model’s word embeddings with vector
representations that encode visual and sensorimotor
information. Our approach differs in that we extract
our embeddings from a custom multiplex network
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that captures visual and sensorimotor relationships
between words. Multiplex networks are multi-layer
graphs, and researchers such as Ciaglia et al. (2023)
have demonstrated their potential for representing
various types of semantic relationships. Our multi-
plex network consists of two layers: a visual layer
and a sensorimotor layer, which we explain below.

As one of the goals of our study, and the
BabyLM challenge in general, is to increase a
model’s data effeciency, we pretrain our models
with the cognitively plausible 10M word dataset
provided by the BabyLM organizers. Additionally,
with the aim of making research on pretraining
transformer models more accessible, we use a tiny
variation of ELECTRA (Clark et al., 2020) with
fewer than 7 million parameters that can be trained
on a single modestly priced GPU. This approach al-
lows us to simultaneously address the topics of data
efficiency and parameter efficiency. The contribu-
tions of our study can be summarized as follows:

• We show that tiny models can be as effective
as models twice their size in a scarce pretrain-
ing data regime.

• We show that embeddings from a multiplex
network that encodes visual and sensorimo-
tor information related to English words can
improve the data efficiency of a small trans-
former model.

• Models using these embeddings can perform
as well as similar models that are trained with
ten times the amount of pretraining data.

In the following section we present some work
related to the topics associated with our modeling
approach. In Section 3, we introduce both the pre-
training datasets and the data we use to evaluate our
models’ downstream performance. Section 4 de-
scribe the ELECTRA model we use as the basis for
our study and the multiplex network from which
we extract our novel embeddings. Finally, we de-
scribe our experiments in Section 5 and conclude
in Section 6.

2 Related Work

Data Efficient Pretraining for Language Mod-
els To date, model compression techniques for
transformers have recieved more attention than data
efficiency. There has, however, been some research
directly addressing pretraining data types and sizes

for transformers. Micheli et al. (2020) and Mar-
tin et al. (2019) experimented with reducing the
absolute amount of training data in French lan-
guage models. They showed that full sized French
language transformer models can perform well on
select tasks with significantly less pretraining data.
Warstadt et al. (2020b) and Zhang et al. (2020) in-
vestigated the effect of different pretraining data
volumes on the grammatical knowledge of the
RoBERTa-base model using probing techniques.
Another example is the BabyBERTa model intro-
duced in Huebner et al. (2021). Here the authors
used the CHILDES (MacWhinney, 2000), a small
dataset of transcribed, child-directed speech to train
a variation of RoBERTa (Liu et al., 2019). Notably,
the CHILDES dataset is one the components of the
dataset used in this study.

Small-Scale Language Models The process of
creating transformers with fewer parameters and
less computational demands has been an active
area of research. A number of techniques for com-
pressing transformers exist, but knowledge distilla-
tion is probably the most common. In knowledge
distillation, a full-sized teacher model is used to
train a smaller student network. DistilBERT (Sanh
et al., 2019), TinyBERT (Jiao et al., 2019), MiniLM
(Wang et al., 2020) and MobileBERT (Sun et al.,
2020) are popular examples of compact transform-
ers distilled using full sized BERT models as teach-
ers. These methods produce effective smaller mod-
els, but they can’t directly address the amount of
input data required, and the training process still
requires a using a full-sized teacher model trained
with a large text corpus.

Multiplex Networks and Language Multiplex
networks have been explored as a way of modeling
the language acquisition process in human children
(Stella et al., 2017, 2018). Citraro et al. (2023) used
a complex network that incorporated phonetic, co-
occurance, frequency, length, polysemy, (among
others) to explore potential mental strategies for
early word learning. Ciaglia et al. (2023) recently
brought aspects of NLP into multiplex networks by
including word-level embedding knowledge, which
we build on here.

3 Data & Benchmarks

In this section we describe the datasets we use both
for pretraining and for downstream evaluation of
our models. As this paper was intended as part of
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Dataset Domain Words- Words- Reference
10M 100M

CHILDES Child-directed speech 0.44M 4.21M MacWhinney (2000)
British National Corpus (BNC) Dialogue 0.86M 8.16M Consortium (2007)
Children’s Book Test Children’s books 0.57M 5.55M Hill et al. (2016)
Children’s Stories Text Corpus Children’s books 0.34M 3.22M Edenbd (2021)
Standardized Project Gutenberg Written English 0.99M 9.46M Gerlach and Font-Clos (2018)
OpenSubtitles Movie subtitles 3.09M 31.28M Lison and Tiedemann (2016)
QCRI Educational Domain Corpus Video subtitles 1.04M 10.24M Abdelali et al. (2014)
Wikipedia Wikipedia 0.99M 10.08M Wikimedia
Simple Wikipedia Wikipedia (Simple) 1.52M 14.66M Wikimedia
Switchboard Dialog Act Corpus Dialogue 0.12M 1.18M Stolcke et al. (2000)

Table 1: Composition of the BabyLM Datasets, from Warstadt et al. (2023).

the BabyLM competition, we use only the datasets
provided by the organizers and their evaluation
pipeline to assess our results. Although this infor-
mation is described in Warstadt et al. (2023) and its
associated references, we provide a brief summary
in the interest of completeness and readability.

BabyLM Datasets The pretraining data pro-
vided for the BabyLM competition consists of two
datasets with roughly 10 million and 100 million
words. We will refer to these as the BabyLM-10M
and the BabyLM-100M datasets. These datasets
are meant to be developmentally plausible and are
inspired by language input for children. The com-
positions of the datasets are described in Table 1
with references for each source dataset. The 10M
word dataset is a uniform sample of the 100M word
dataset.

GLUE and SuperGLUE Many of the datasets
we use for fine-tuning and evaluation, are drawn
from the GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019) benchmarks. Each con-
sists of a suite of natural language understanding
tasks and they are among the most commonly used
benchmarks for evaluating natural language under-
standing. From GLUE, we use 7 of the 9 tasks
in the suite. COLA, a grammatical acceptabil-
ity task and SST-2, a sentiment classification task,
are both single sentence tasks. QQP and MRPC
are both two-sentence paraphrase tasks. Finally,
MNLI, QNLI and RTE are natural language infer-
ence tasks. From SuperGLUE we use three tasks:
BoolQ and MultiRC are both question answering
tasks, and WSC is a co-reference task.

BLiMP The Benchmark of Linguistic Minimal
Pairs (BLiMP) is a set of 67,000 pairs of sentences
designed to test a language model’s grasp of En-
glish grammar introduced in Warstadt et al. (2020a).
The full BLiMP set consists of 67 sets of 1,000

pairs of English sentences covering 12 different
grammatical phenomena. The sentences were gen-
erated from grammars created by linguists with
each pair containing one grammatically correct and
one incorrect sentence that differ by only a single
edit. On aggregate, the creators found that humans
agreed with the labels over 96 percent of the time.
For each pair, a language model trained with causal
language modeling, e.g. GPT-3, is considered to
be successful if it assigns a higher likelihood to
the grammatically correct sentence. BLiMP was
concieved as a zero-shot task and many popular
language models can be evaluated on BLiMP with-
out fine-tuning using either the log-likelihood or
the pseudo-log-likelihood scoring method (Wang
and Cho, 2019; Salazar et al., 2020). Unfortunately,
the ELECTRA model (Clark et al., 2020) that we
use in our experiments is not one of them and we
therefore adopt a minimal fine-tuning approach to
the BLiMP task. To keep with the zero-shot spirit
of the task as much as possible, we cast BLiMP
as binary choice task with only enough training to
remove large variances from run to run. The details
of the fine-tuning regime that we used can be found
in Section 5.2.

MSGS The MSGS dataset, pronounced mes-
sages, was introduced in Warstadt et al. (2020b)
with the goal of studying the inductive biases of
NLP models. The task challenges models to clas-
sify sentences based on either surface features, e.g.
Does the sentence contain the word "the"?, or lin-
guistic features, Does the sentence contain an ir-
regular past-tensed verb?. In total the set contains
4 surface features and 5 linguistic features. By pair-
ing a sentences containing a surface feature and a
linguistic feature, the task tests a model’s prefer-
ence for surface features versus more meaningful
linguistic features. The MSGS dataset contains 20
tasks, one for each possible combination of surface
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Figure 1: The ELECTRA model is a Generator-
Discriminator ensemble. The Discriminator is tasked
with determining if the Generator properly guessed a
masked word; borrowed from (Clark et al., 2020).

and linguistic features, as well as 9 control tasks
whose sentences contain only a surface or linguis-
tic feature being tested. From this set we use 5
control tasks and 6 from the set of combinations.
A more detailed description of these tasks can also
be found in Section 5.2.

4 Method

4.1 ELECTRA-Tiny

In this subsection we describe ELECTRA (Clark
et al., 2020), the language model that forms the
basis of our experiments. In place of masked
language modeling, ELECTRA pretrains a trans-
former encoder stack, structurally identical to
BERT’s, by corrupting some input tokens through
replacing them with plausible alternative words
sampled from a small generator network. A larger
discriminator model then predicts whether each
token is corrupted or not. After training, the gener-
ator is discarded and the discriminator is used for
downstream tasks. See Figure 1 for an illustration
of the ELECTRA model. Clark et al. (2020) show
that this strategy leads to better results with less
data and less compute than causal language model-
ing or standard masked language modeling, making
it a natural choice for use in these experiments.

We make use of two architectural variations of
ELECTRA. ELECTRA-Small is a scaled down ver-
sion of the base model that was also introduced in
Clark et al. (2020). This small version of ELEC-
TRA has embedding vectors of dimension 128, 12
layers and a hidden size of 256. Following the
original transformer architecture in (Vaswani et al.,
2017), the intermediate size of each layer’s feed-
forward network is 4 times the model’s hidden size,
or 1024. In total, it contains only 14 million param-
eters and can be trained end to end using a single
GPU. The other model we use is an even smaller
variation that we call ELECTRA-Tiny and it was
introduced and evaluated in Fields and Kenning-

Figure 2: Relative size comparison of ELECTRA-Small
(blue) with ELECTRA-Tiny (red). ELECTRA-Tiny has
smaller embeddings, hidden size, and intermediate size,
but has more hidden layers.

ton (2023). ELECTRA-Tiny is very small, con-
taining only 6.7 million parameters, approximately
half as many as ELECTRA-Small. The tiny vari-
ation of ELECTRA however, is not simply scaled
down with the same proportions. The model has
an embedding size of 96, a hidden size of 196 and
rather than a 4-fold expansion of the feed-forward
network’s intermediate layer, reduces the layer’s
size to 128. Finally, to compensate for the models
decreased width, it contains 18 layers. The combi-
nation of an efficient pretraining method and small
model sizes make these models ideal for our pur-
poses. Figure 2 shows how ELECTRA-Small and
ELECTRA-Tiny compare in their underlying sizes.

4.2 Enriching ELECTRA-Tiny with
Multimodal Knowledge: Multiplex
Networks

A multiplex network is a type of conceptual net-
work that consists of multiple layers, where each
layer represents a different type of relationship or
interaction between nodes. In a multiplex network,
the nodes can be the same across layers (which
means nodes can be duplicated across different lay-
ers), but the relationships between them may vary.
Figure 3 shows an example of a multiplex network
that has five nodes composed of two layers.

A multiplex network can be represented as a
multilayer graph, where the nodes are connected
by edges in each layer and potentially across differ-
ent layers. The layers can capture different aspects
or modalities of the interactions between the en-
tities. For example, in Ciaglia et al. (2023), the
authors used a small vocabulary of words as the
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nodes, where the layers of their multiplex network
were represented by free association (i.e., when
presented with a word, participants were asked to
write the first word that comes to mind), visual rela-
tionships, sensory relationships, and distributional
semantic relationships.

In any weighted multiplex network, the connec-
tions between nodes can have different types or
strengths, depending on the layer and the weight
on the edge. This allows for a more comprehen-
sive representation of the relationships between
nodes, as different layers capture different aspects
of the relationships. Multiplex networks can pro-
vide richer information than a standard network
that is made up of only one layer.

Ciaglia et al. (2023)’s network was composed
of layers derived from word embeddings, free as-
sociation, visual and sensorimotor vectors. Their
work only included a vocabulary of 531; we extend
their work by dramatically increasing the vocabu-
lary covered in the multiplex network. Important
for our work here is to only use layers that are cog-
nitively plausible for a language learning child to
have as they speak their initial words. As the em-
bedding and free association layers were derived
using adult written text and adult participants re-
spectively, we leave them out of our model here and
focus only on the visual and sensorimotor layers;
modalities that children certainly have access to
and from which they build their language learning.

Figure 3: From Bródka et al. (2018). A visual represen-
tation of a multiplex network demonstrating intercon-
nected layers. The dotted lines represent the interlayer
connections (node relationships across layers) while the
solid lines represent intralayer connections (node rela-
tionships within a layer).

Visual Layer: Words-as-Classifiers To repre-
sent the visual layer, we use the word-as-classifiers

(WAC) model of grounded lexical semantics (Ken-
nington and Schlangen, 2015). We train a binary
logistic regression classifier that learns the fitness
of identifying a visual aspect (e.g., redness) on im-
ages for each vocabulary word (e.g., images of dogs
for the word dog) and randomly sampled negative
images from other words. We use 100 positive
images for each word with a ratio of 3 negative
examples for each positive example. Each image
is encoded as a vector for training using the CLIP
model (Radford et al., 2021). Once each classi-
fier for each word is trained, we take the learned
coefficients and bias term as the vector (size 513)
representing the word.

Sensorimotor Layer: Lancaster Sensorimo-
tor Norms The Lancaster dataset (Lynott et al.,
2020) uses the Lancaster Norms rating as a mea-
sure of perceptual and action strength on about 40K
English words. Sensorimotor information plays a
fundamental role in cognition and provides a use-
ful connection between words and understanding.
For example, the word kick has a strong sensorimo-
tor grounding in leg and foot movement, the word
sour is grounded in taste, and the word ping is
grounded in auditory processing. For each word in
the dataset, raters were asked to rate how strongly
that word is associated with a specific perceptual
modality including touch, hearing, smell, taste, vi-
sion, and interoception, and five action effectors
including mouth/throat, hand/arm, foot/leg, head
excluding mouth/throat, and torso. The dataset re-
ports the mean and standard deviation of the ratings,
as well as ways of aggregating the ratings, which
we use as a vector (size of 39) for each word.

Constructing the Multiplex Network Kenning-
ton (2021) used the WAC and Lancaster vectors as
the embedding layer for a language model in their
experiments. We use the same modalities here, but
we first combine the two modalities into a multi-
plex network and then extract the embeddings from
the network to use for the embedding layer. This
approach, we argue, is more cognitively plausible
because words are associated by vision and sensori-
motor modalities at a more categorical level, which
is the basis of cognition (Harnad, 2017).

To create the network, we had to determine if
two words had a relationship within a layer. To do
so, we computed the cosine distance between all
possible word pairs in each layer, forming relation-
ships between words (i.e., the nodes) if the cosine

51



Figure 4: Our Methodology: vectors from vision (red, top) and sensorimotor (purple, bottom) are compared
to each other using cosine distance. Word pairs that are above a specific threshold are added to the network,
where connections from different modalities are retained in a multiple network (e.g., ball and kick are similar
in sensorimotor vectors, whereas ball and sun are shaped similarly visually). Finally, we use the MultiVERSE
algorithm to map from the multiplex network to the vector embeddings used in ELECTRA-Tiny.

distance was above a specific threshold. The selec-
tion of these thresholds was motivated by the goal
of striking a balance between sparsity and density
in the network, taking into account computational
constraints associated with extracting the network
embeddings. We then used those resulting embed-
dings in the ELECTRA-Tiny model. The process
is depicted visually in Figure 4. In our experiments,
we use three networks: visual only (cosine distance
threshold of 0.94, vocabulary size of 21,235), sen-
sorimotor only (cosine distance threshold of 0.27,
vocabulary size of 22,054), and a multiplex combi-
nation of visual and sensorimotor (same thresholds
as individual layers, vocabuary size of 35,607).

From Multiplex Network back to Embeddings:
MultiVERSE We use the MultiVERSE algo-
rithm, introduced in Pio-Lopez et al. (2021) to map
from our multiplex network representation back
to embeddings to be used in a language model.
MultiVERSE is a network representation learn-
ing algorithm tailored for multiplex networks that
aims to capture complex interactions by consider-
ing interdependencies between layers. By employ-
ing a unified framework integrating the multiplex
network structure, node attributes, and meta-path-
guided random walks, MultiVERSE learns low-
dimensional node representations, clustering nodes
with similar relationships. Importantly, the Ran-
dom Walk with Restart algorithm explores different
layers in parallel (i.e., the layers are represented as
separate sub-networks instead of a complete net-
work), retraining multiplex relationships. In con-
trast, other well-known algorithms that map from
networks to embeddings, like node2vec (Grover
and Leskovec, 2016), do not adequately retain mul-
tiplex information from each individual layer, mak-

ing MultiVERSE a superior choice for mapping
multiplex network representations to meaningful
embeddings for downstream language model appli-
cations while maintaining the meaning from differ-
ent relationships in different layers. This resulted
in embeddings for many words in the ELECTRA
vocabulary, but for the words that were not repre-
sented, we simply used zero vectors.

5 Experiments

5.1 Experiment 1: GLUE and SuperGLUE
Tasks

In this experiment we determine to what extent
embeddings extracted from our multiplex network
can improve our small scale models on natural lan-
guage understanding tasks. We begin by pretrain-
ing ELECTRA-Tiny on the BabyLM-10M word
dataset described in Section 3 for 10 epochs us-
ing the Adam optimizer (Kingma and Ba, 2014),
with a lerning rate of 1e-5 and a batch size of 64.
Following Kennington (2021), our strategy is to
swap the learned word embeddings from the pre-
trained model with our own embeddings prior to
finetuning and evaluation. Using the MultiVERSE
algorithm we extract three sets of embeddings
from our network corresponding to the WAC visual
layer, the Lancaster Norm layer and the multiplex
combination of both layers. We then finetune the
ELECTRA-Tiny model with each embedding set as
well as a control model using ELECTRA’s learned
word embeddings. We fine-tune each model for ten
epochs with a learning rate of 5e-5, and a batch size
of 64. For the sake of comparison, we also trained
ELECTRA-Tiny on the 100M word dataset and the
original ELECTRA-Small (Clark et al., 2020) on
the 10M dataset.
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Model Data COLA RTE MultiRC QQP QNLI MNLI MNLI-mm SST2 Avg.
Tiny 10M 69.5 48.9 60.4 63.2 56.6 42.2 42.8 81.0 60.7
Tiny-L 10M 69.5 49.5 55.9 63.4 57.4 48.6 49.1 78.0 58.9
Tiny-V 10M 67.1 62.6 59.5 62.4 57.9 49.6 51.2 82.1 63.2
Tiny-LV 10M 67.1 62.6 59.5 62.4 57.9 49.6 51.2 82.1 63.2
Small 10M 69.3 50.5 56.3 62.2 57.0 39.5 39.0 81.3 59.9
Tiny 100M 69.5 54.5 56.0 64.3 58.8 51.5 51.5 81.7 62.8
Maj. Label 10M 69.5 53.1 59.9 53.1 35.4 35.7 35.7 50.2 52.6
OPT-125m 10M 64.6 60.0 55.2 60.4 61.5 60.0 57.6 81.9 63.4
RoBERTa 10M 70.8 61.6 61.4 73.7 77.0 73.2 74.0 87.0 71.4
T5-base 10M 61.2 49.4 47.1 66.2 62.0 48.0 50.3 78.1 60.9

Table 2: GLUE and SuperGLUE results for the initial datasets on our various models. Note that the last size
models in the table are baselines included for the sake of comparison.

Model Data MRPC RTE MultiRC QQP QNLI MNLI MNLI-mm SST2 Avg.
Tiny 10M 82.0 53.5 56.6 66.3 53.1 62.4 62.0 82.7 64.5
Tiny-L 10M 82.0 49.5 58.1 78.8 53.2 64.9 66.7 82.3 66.9
Tiny-V 10M 82.0 63.6 59.8 76.4 53.1 63.3 65.8 85.2 67.3
Tiny-LV 10M 81.6 54.5 57.0 76.5 59.4 66.3 67.2 84.4 67.1
Small 10M 82.0 50.5 58.1 73.2 53.1 60.3 60.7 81.1 64.5
Tiny 100M 82.0 53.5 50.9 79.3 61.3 67.4 67.6 86.6 67.2

Table 3: GLUE and SuperGLUE results for our various model using the held-out portion of data. Note that
the last two models in the table are baselines, provided for the sake of comparison.

Results For ease of comparison we present our re-
sults for initial datasets and the portion held out by
the BabyLM challenge organizers separately. The
results for each model on the various tasks are dis-
played in Tables 2 and 3. Table 2 also includes the
baseline values provided by the BabyLM organiz-
ers using the 10M dataset. Firstly, we note that the
standard ELECTRA-Tiny model performs nearly
identically with ELECTRA-Small when trained on
the 10M word dataset and the T5-base model that
was provided as a baseline by the BabyLM orga-
nizers. This indicates that larger models are not
necessarily superior when using a very small train-
ing corpus. The model using embeddings derived
from our Lancaster Norm layer showed little dif-
ference over the standard ELECTRA-Tiny model.
The model using embeddings from the WAC visual
layer, however, performed substantially better. In
particular, it produced the highest score that we
tested on the RTE textual entailment task. It also
performed nearly as well on the MNLI tasks as the
ELECTRA-Tiny model trained with ten times as
much data.

The model using embeddings extracted from the
combined layer performed nearly identically to the
model containing embeddings from the visual layer
on both data splits. This suggests that the model is
better able to use the visual information provided
via embeddings from the WAC layer of our multi-

plex than the embeddings extracted from the mul-
tiplex’s Lancaster Norm layer on natural language
understanding tasks. Whether the model benefits
more from visual information than sensorimotor
information or whether the disparity comes from
the nature of our multiplex network can’t be deter-
mined within the confines of this study. We can,
however, definitively say that the visual informa-
tion in our multiplex embeddings provide a signif-
icant boost to model performance in a low data
training regime. These results verify prior work
(Kennington, 2021), with some differences, that
suggest that mapping the visual and sensorimotor
sources of information to a network representation,
then back to embeddings provides rich and useful
information.

Several of the tasks produced identical scores for
each model that we evaluated, even the model that
was pretrained on the 100M dataset. Each varia-
tion yielded a score of 59.9 on BoolQ and 61.4 on
WSC using both the initial and held-out datasets.
Using the initial dataset each model scored 82.0
on MRPC. Each model also uniformly scored 69.5
on COLA using the held-out data. These results
aren’t displayed in the tables though their values
contribute to the figures listed in the Avg. column
of each table. Though this is somewhat surpris-
ing, we surmise that these scores would vary with
additional data and extending training times.
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Model Data BLiMP CR_LC CR_RP MV_LC MV_RP SC_LC SC_RP
Tiny 10M 60.1 66.2 66.7 66.6 67.0 67.5 66.6
Tiny-L 10M 63.1 66.0 66.6 66.6 66.8 70.6 58.9
Tiny-V 10M 64.1 66.5 66.9 66.6 66.4 67.5 72.0
Tiny-LV 10M 65.1 66.6 66.7 66.6 67.2 68.0 67.6
Small 10M 61.8 66.0 66.7 66.6 66.4 67.4 63.6
Tiny 100M 64.6 66.0 68.2 66.6 67.6 71.3 68.5
OPT-125m 10M N/A 66.5 67.0 66.5 67.6 80.2 67.5
RoBERTa 10M N/A 67.7 68.6 66.7 68.6 84.2 65.7
T5-base 10M N/A 66.7 69.7 66.6 66.9 73.6 67.8

Table 4: BLiMP and MSGS results for various models. Note that the last 5 models are baselines included for the
sake of comparison. BLiMP scores are note included for baselines provided by the BabyLM organizers as they are
not directly comparable to our scores produced through minimal fine-tuning.

5.2 Experiment 2: BLiMP and MSGS
Syntactic Tasks

In this experiment we evaluate our models on a
set of tasks devoted to testing their grammatical
capacity and their inductive biases. Following the
BabyLM guidelines, we use the BLiMP dataset
to measure the grammatical capacity of our mod-
els. The evaluation pipeline for BabyLM treats
BLiMP as a zero-shot task using the method of
Wang and Cho (2019) or Salazar et al. (2020). Un-
fortunately, ELECTRA’s novel pretraining task is
not compatible with either method and produces
scores at chance levels for every model variation.
In order to make use of BLiMP, and to do so in the
closest way possible to the zero-shot paradigm, we
create a minimal fine-tuning regime for BLiMP. We
treat BLiMP as a binary choice task and train for 1
epoch with only ten percent of each of BLiMP’s 67
data subsets in the training split. We use the ADAM
optimizer (Kingma and Ba, 2014), with a learning
rate of 2e-5 and a batch size of 32. This allows us to
obtain consistent results using minimal finetuning.
We use the default methods and hyper-parameters
provided and finetune for ten epochs with a learn-
ing rate of 5e-5 and a batch size of 64. Per BabyLM,
we use 5 control tasks and 6 of the ambiguous eval-
uation tasks. Of the 5 controls, we have two surface
features, Lexical Content (LC) and Relative Posi-
tion (RP), and three linguistic features, Control
Raising (CR), Main Verb (MV) and Syntactic Cat-
egory (SC). The features are combined to form the
MSGS tasks in which our models are measured for
preference of linguistic features over surface fea-
tures via Matthews correlation (Matthews, 1975).

Results As our results for BLiMP are not di-
rectly comparable to the zero-shot baselines of
the BabyLM submissions, we list only the over-
all average BLiMP score over all 67 data subsets

it contains. In the third column of Table 4 we
see the BLiMP results for our various models. In
each case, the embeddings derived from our mul-
tiplex network improved the results over our base-
line ELECTRA-Tiny model trained on the 10M
dataset. This result is somewhat surprising in that
we had not expected concrete sensory information
to benefit an abstract task such a grammatical ac-
ceptability. Further, we noticed no similar effect
relative to the COLA task, the only grammatical
acceptability task conducted in the first experiment.
That said, we feel confident in claiming that our
models derive definite benefit from multi-modal
embeddings in a fine-tuning variation of BLiMP.

The results that we obtain for the various MSGS
tasks are less definitive. The results for the main
task are displayed in Table 4. None of our em-
beddings seem to have a significant effect, either
positive or negative, on model performance for the
main MSGS tasks. The only model that we trained
that showed a broad increase in performance was
the ELECTRA-Tiny model trained with the 100M
word dataset. When considered with our other re-
sults, this suggests that a model’s tendency to adopt
favorable inductive biases may primarily be a func-
tion of dataset size.

6 Conclusion

In this study, performed in response to the BabyLM
challenge, we have shown that small language mod-
els can be made more data efficient by enriching
their embeddings with sensory information. In par-
ticular, the embeddings derived from the Words
as Classifiers layer of our multiplex network im-
prove model performance on a variety of tasks from
GLUE, SuperGLUE and a version of BLiMP re-
cast as a fine-tuning task. Embeddings derived
from Lancaster Sensorimotor Norms likewise pro-
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vided useful information for the language models
that we evaluated on the BLiMP task, but were less
effective on the GLUE and SuperGLUE tasks. Our
results from the MSGS evaluations suggest that our
models don’t gain strong inductive biases toward
deep linguistic features as defined by the MSGS
task.

Limitations

Our choice to conduct our study on very small mod-
els means that our results cannot be assumed to gen-
eralize to much larger models. This of course limits
the applicability of the findings we have presented.
It also stands to reason that multimodal informa-
tion, like the kind we used to enrich our models,
could improve the performance of language models
trained on traditional large-scale datasets. Due to
the dataset restrictions of the BabyLM challenge,
this was also outside the scope of our study and is
left to future research.
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