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Abstract

In this paper, we describe our submission to
the BabyLM Challenge 2023 shared task on
data-efficient language model (LM) pretraining
(Warstadt et al., 2023). We train transformer-
based masked language models that incorpo-
rate unsupervised predictions about hierarchi-
cal sentence structure into the model architec-
ture. Concretely, we use the Structformer archi-
tecture (Shen et al., 2021) and variants thereof.
StructFormer models have been shown to per-
form well on unsupervised syntactic induction
based on limited pretraining data and to yield
performance improvements over a vanilla trans-
former architecture (Shen et al., 2021). Eval-
uation of our models on 39 tasks provided by
the BabyLM challenge shows promising im-
provements of models that integrate a hierarchi-
cal bias into the architecture at some particular
tasks, even though they fail to consistently out-
perform the baseline model on all tasks.1

1 Introduction

Transformer-based Language Model (LM) perfor-
mance is heavily influenced by three scaling factors:
the number of model parameters, the pretraining
dataset size, and the amount of computing. For
optimal performance, all three factors must be si-
multaneously scaled up (Kaplan et al., 2020). This
scaling law has introduced several challenges in
advancing research on neural language modeling.
One major obstacle lies in the unequal distribu-
tion of resources across languages. Consequently,
the current approach of transformer-based models
falls short of achieving equally high-performance
levels for models dedicated to different languages
(Choudhury and Deshpande, 2021).

Moreover, we see a considerable difference
when comparing the way LMs learn how humans
acquire language. One difference concerns the data

1Implementation and models checkpoints can
be found here: https://github.com/omarTronto/
structformer-babylm

that is input to learning: LMs such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019b)
or GPT-3 (Brown et al., 2020) are exposed to bil-
lions of tokens during training, far surpassing what
an individual human is exposed to when learning
a language (Warstadt and Bowman, 2022). This
fundamental discrepancy raises important consid-
erations when drawing parallels between language
learning in machines and humans.

To improve the data-efficiency of LMs, one di-
rection is to adapt the model architecture. An effec-
tive approach in this endeavor involves incorporat-
ing an inductive bias into the models’ architectures,
which could potentially facilitate acquiring more
knowledge from the same amount of data com-
pared to standard models. However, the specific
type of inductive bias to be added is still under
exploration. Recently, there have been efforts to in-
vestigate the use of syntactic hierarchical inductive
biases as a potential improvement (Mulligan et al.,
2021; Papadimitriou and Jurafsky, 2023).2

One of these potential solutions is the Struct-
Former architecture (Shen et al., 2021), a trans-
former that is trained on the masked language
modeling task. An additional convolutional neu-
ral network (CNN) component produces unlabeled
dependency and constituency trees as a byprod-
uct and influences the self-attention mechanism of
the transformer layers. The model has obtained
demonstrated competitive results in structure in-
duction evaluations and a decrease in perplexity
over a vanilla transformer baseline (Vaswani et al.,
2017). However, it is an open question whether the
inductive bias learned in this architecture enhances
performance on downstream NLP tasks.

We pretrain the StructFormer architecture on a
dataset from a different domain that had not been
tested on that model before. Moreover, we use a

2Note that we don’t want to claim that humans integrate
such an inductive bias and therefore can learn language with
less data, compared to large LMs.

327

https://github.com/omarTronto/structformer-babylm
https://github.com/omarTronto/structformer-babylm


more sophisticated tokenizer in comparison to the
most frequent words dictionary used to train the
models in the original experiment. Additionally,
we modify the model architecture to investigate
whether injecting a hierarchical bias in the middle
layers of the transformer architecture (rather than
after the embedding layer) leads to improved down-
stream performance. Eventually, we evaluate seven
model variants through the evaluation pipeline of
the shared task and submit our best-performing
model to the shared task challenge.

1.1 The BabyLM Challenge

The BabyLM Challenge is a shared task with the
aim of data-efficient language modeling for En-
glish. Participants pretrain a LM from scratch on
data that corresponds to the amount of linguistic
data available to a child. The task is a great set-
ting for conducting our experiments. It provides
us with a pretraining dataset, a thorough evalua-
tion pipeline, and, furthermore, an environment
where we can compare our models’ performance
to other interesting architectures from the systems
participating in the shared task.

Dataset The shared task is conducted in two
tracks with different dataset sizes: a 100M words
corpus, and a 10M words corpus as a sample of the
larger corpus. The size is inspired by the assump-
tion that children are exposed to 2M-7M words per
year (Gilkerson et al., 2017). To account for the
fact that children mostly interact with spoken rather
than written language data, the datasets include a
high proportion of transcribed data from different
domains. For more details regarding the source
domains, please refer to Warstadt et al. (2023).

Evaluation A thorough evaluation pipeline that
comprises 39 different tasks is used to evaluate ev-
ery model participating in the shared task. These
tasks are supposed to represent a model’s perfor-
mance with respect to efficiency and applied NLP,
as well as cognitive science, and linguistics. A
group of 17 tasks, named BLiMP (Warstadt et al.,
2020a) are performed via zero-shot predictions,
while the other two groups of tasks; SuperGLUE
(11 tasks, Wang et al., 2019) and MSGS (11 tasks,
Warstadt et al., 2020b) need finetuning of the sub-
mitted models for classification. Refer to Appendix
A for the complete list of tasks.

2 Language Modeling and Hierarchical
Information

Transformer LMs use syntactic information in their
predictions. This has been shown by work on inter-
preting their internal representations as well as by
investigating the grammatical correctness of their
predictions (Mahowald et al., 2023; Kulmizev and
Nivre, 2022). However, the vanilla transformer ar-
chitecture that underlies both encoder and decoder-
based LMs does not encode hierarchical informa-
tion explicitly. Rather, objectives such as masked
language modeling and next-token prediction are
based on linear relationships between tokens. This
has inspired two lines of work that incorporate hi-
erarchical knowledge into LMs. The first group
of papers introduces models in which the training
objective involves syntactic labels explicitly (e.g.
Dyer et al., 2016; Sartran et al., 2022), The second
group introduces models in which hierarchical in-
formation is encoded implicitly as a byproduct of
a language modeling task (Shen et al., 2018, 2021;
Li et al., 2019; Kim et al., 2019; Choi et al., 2018;
Williams et al., 2018). We consider the second
group of models more relevant for this shared task
since it allows us to train models with a hierarchical
architecture bias on raw text data. In particular, we
use the StructFormer model (Shen et al., 2021), a
transformer in which one architecture component,
the parser network, predicts the position of each
token in the hierarchical structure of the sentence.
The prediction of the parser network puts soft con-
straints on the attention mask of the transformer
layers. The model is pretrained on the masked
language modeling task, and we view two experi-
mental contributions of Shen et al. (2021) as most
relevant for using this model: First, they show that a
StructFormer achieves lower perplexity on limited
training data than a transformer that replaces the
parser network with standard self-attention. Sec-
ond, the induced hierarchical structure corresponds
to unlabeled dependency trees. Concretely, evalua-
tion on the Penn Treebank (PTB) shows that 61.6%
of the undirected dependency edges are recovered.
We further implement a variant of the model in
which the parser network predicts hierarchical in-
formation based on hidden states that are contextu-
alized with classical transformer layers, rather than
using uncontextualized token embeddings as direct
input to the parser network (Sec. 3.2.4).
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3 Experiment

This section introduces the objectives of our ex-
periment, a description of the model architectures,
and the technical aspects of the pretraining and
evaluation process.

3.1 Objectives
In this work, we aim to validate the claim that
the performance of LMs, in particular on syntax-
sensitive tasks, can be improved through the im-
plicit integration of an inductive bias into the
model’s architecture that yields a hierarchical struc-
ture of the tokens. Concretely, we conduct experi-
ments towards pursuing the following three primary
objectives:

1. Assess the robustness of the finding that LM
performance is enhanced through the utiliza-
tion of a linguistically informed model archi-
tecture (Shen et al., 2021).

2. Investigate whether the claim that transformer
architectures better represent syntactic infor-
mation in their middle attention layers is
supported in a practical use case (Vig and
Belinkov, 2019; Arps et al., 2022; Müller-
Eberstein et al., 2022).

3. Develop models that surpass the performance
of the baseline models offered by the organiz-
ers of the shared task.

3.2 Methodology
In order to address the questions posed by the ex-
periment’s objectives, we train a tokenizer, develop
several model variants, and perform iterations of
model pretraining, finetuning, and evaluation. Due
to limited resources, we only conducted our ex-
periments on the 10M words dataset. Further-
more, from the model architectures provided by
the shared task, we chose the encoder-type models
due to their adaptability for integrating a hierarchi-
cal bias in the model architecture.

3.2.1 Tokenizer
We use the same tokenizer across all variations
of our models. Specifically, we train a Byte Pair
Encoding (BPE) tokenizer (Sennrich et al., 2016;
Gage, 1994) from scratch on the 10M BabyLM cor-
pus. Since BPE tokenizers require specifying the
vocabulary size as a hyperparameter before training
on the corpus, we carefully determined an appro-
priate size. Our goal was to obtain a tokenizer that

Vocabulary Size Least Frequent Tokens Frequency

8K sought, arts, stolen, ATOR 230
10k accounts, seated, lemn, feathers 165
12k sailors, goss, reun, irlines 126
16k sophisticated, olleyball, AMES, poorly 80
32k jets, estus, iesselin, UCLA, mannik 26

Table 1: Tokenizer Vocabulary Size Experiments

accurately represents tokens in our relatively small
dataset while adhering to best practices for LMs.
To achieve this, we train the tokenizer on the same
corpus with different vocabulary sizes. We then
observed the resulting vocabularies and identified
the least frequent tokens within each (Table 1).

Based on our analysis, a vocabulary size of 32K
tokens provides a fair representation relative to the
corpus size for the least frequent tokens. Addition-
ally, Geiping and Goldstein (2022) found that a
BPE tokenizer with 32K tokens yielded the best
results.

3.2.2 Baseline model
To achieve objective 1, we pretrained a standard
transformer architecture that we call transformer-
base, using our custom-trained tokenizer and fol-
lowing the same model and training hyperparam-
eters to minimize any effects due to uncontrolled
variables.

3.2.3 Hyperparameters
Due to resource limitations, and to assure fair
comparisons between models, we use one set of
pretraining and finetuning hyperparameters: We
chose the default hyperparameters settings that
were used to pretrain the shared task baseline mod-
els (Warstadt et al., 2023). In order to speed up
the evaluation of finetuning tasks, we made mod-
ifications to the finetuning hyperparameters that
were used to evaluate the baseline models. Our
main hyperparameters are reported in Appendix B.
We pretrain all models with the same batch size
and the same number of steps. We use the training
pipeline that Warstadt et al. (2023) introduced to
train their baseline modes to minimize any effects
due to uncontrolled variables.

However, one variable that could not be fixed
during the experiment is the number of trainable
parameters in each model. When adding a convo-
lution parser network to a particular model, the in-
crease in the number of parameters in that model is
inevitable (parameter counts are listed in Appendix
B). We are aware that this can have misleading ef-
fects on the results and conclusions, however, we
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still think that the experiment in its current setting
can show interesting behaviors that may encourage
further investigation in a fully controlled experi-
ment.

3.2.4 Model Architectures
We develop two primary variants of model archi-
tectures for our experiment.

StructFormer This variant (Figure 1) closely fol-
lows the architecture in Shen et al. (2021). In brief,
it incorporates a parser network that consists of
4 convolution layers. The input to the parser net-
work is token embeddings, and the output is prob-
ability distributions for dependencies between to-
kens. These distributions are then integrated into
the multi-head self-attention mechanism of a stan-
dard transformer model. For a complete description
of the architecture, we refer readers to Shen et al.
(2021). We name models of this variant by the
prefix structformer.

StructRoBERTa The second variant (Figure 1)
is similar to the StructFormer, but instead of em-
ploying a standard transformer, it utilizes a base
RoBERTa encoder (Liu et al., 2019b). We modify
the HuggingFace (Wolf et al., 2020) implementa-
tion, which has a few differences from the vanilla
transformer implementation, mainly adding nor-
malization and dropout layers after the embeddings
layer, and also adding an additional intermediate
block within each layer. The models following
this architecture will be identified with the prefix
structroberta.

Vanilla transformer For transformers without
parser networks, we reuse the implementation by
Shen et al. (2021) which follows the standard trans-
former introduced by Vaswani et al. (2017), except
that a layer normalization is added in front of each
layer.

Variants Subsequently, for each of the main vari-
ants, structformer and structroberta, we create two
sub-variants to explore a different placement of the
parser network within the architecture (Figure 2).
This decision is based on insights from previous
experiments, which indicate that syntactic informa-
tion tends to be better represented in the middle
layers of the transformer (Liu et al., 2019a; Vig and
Belinkov, 2019; Arps et al., 2022).

In our approach, we divide the initial ncontext

layers of either the transformer or RoBERTa com-
ponent in structformer or structroberta respectively.

Embeddings Layer

Convolution Layers
Transformer Layers

or
RoBERTa Layers

p(x)

Dependency

Distributions

Figure 1: StructFormer and StructRoBERTa Architec-
tures (s1)

We label these ncontext layers as the Front Atten-
tion Layers, while the remaining attention layers
are labeled as Rear Attention Layers. The input em-
beddings pass through the Front component, gener-
ating embeddings that are subsequently fed into the
parser network. The parser network, in turn, out-
puts dependency distributions that are integrated
into the Rear component of the architecture.

Embeddings Layer

Embeddings

Convolution Layers

p(x)

Dependency Distributions

Rear
Attention Layers

Front
Attention Layers

Figure 2: In-between Parser Architectures (s2), dotted
lines indicate intervening the encoder layers at two po-
sitions, where the parser network connects the two split
parts of the encoder
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To distinguish between the two sub-variants, we
append the suffix s1 to models with the parser net-
work before the attention layers (Figure 1), and
the suffix s2 to models with the parser network
in-between the middle attention layers (Figure 2).

To achieve objective 3, we introduce two addi-
tional models, structrobertas1′ and structrobertas2′ ,
to enhance the evaluation scores so we could sub-
mit the best attainable results to the shared task.
These two models are basically an upgrade in the
number of convolution layers (from 4 to 6) of
the parser network in structrobertas1 and struc-
trobertas2 respectively.

4 Results

After completing the pretraining process of the
7 investigated models, a comprehensive linguis-
tic evaluation is conducted for the seven models
under study. The shared task evaluation pipeline
is used for this purpose. Detailed evaluation
results are presented in Tables 2 3, 4, and 5.
We compare the scores of the following models:
transformer-base (TFbase), structformers1 (SFs1),
structformers2 (SFs2), structrobertas1 (SRs1),
structrobertas2 (SRs2), structrobertas1′ (SRs1′)
and structrobertas2′ (SRs2′). We are particularly
interested in assessing to which extent the intro-
duction of a hierarchical bias improves a model’s
performance on a specific task. Therefore, in addi-
tion to the scores of the individual models, we also
report the differences in scores as follows:

• ∆SFs1 = Score(SFs1)− Score(TFbase)

• ∆SFs2 = Score(SFs2)− Score(TFbase)

• ∆SRs12 = Score(SRs1)− Score(SRs2)

• ∆SRs1′ = Score(SRs1′)− Score(SRs1)

• ∆SRs2′ = Score(SRs2′)− Score(SRs2)

All numerical values in the result tables are mea-
sures of accuracy unless explicitly stated otherwise.

4.1 Pseudo-perplexity
We report the corpus-level pseudo-perplexity
(PPPL, Salazar et al., 2020) on the test split
of the BabyLM shared task dataset3 (Table 2).
PPPL is computed by masking out each token
in turn and collecting the log-likelihoods. This
evaluation contributes to objective 1 in our exper-
iment. Shen et al. (2021) found that structformer

3We use Kauf and Ivanova (2023)’s implementation for
computing PPPL scores and remove the 100 longest sen-
tences from the dataset to reduce the computation time.

models incorporating hierarchical inductive bias
achieve lower PPPL than their baseline trans-
former model. We want to assess this finding on
the BabyLM dataset and using our custom-trained
tokenizer. SFs1 shows lower PPPL compared to
TFbase, which follows the previous findings. How-
ever, the model with a parser network within the
middle layers shows a higher PPPL than the base-
line TFbase. The addition of more convolution lay-
ers at the parser network shows an improvement
at SRs2′ but surprisingly shows a deterioration at
SRs1′ .

4.2 BLiMP

BLiMP is a challenging benchmark comprising
a set of tests designed to evaluate the linguistic
knowledge of LMs with a specific focus on linguis-
tic phenomena encompassing syntax, morphology,
and semantics (Warstadt et al., 2020a). Originally,
the benchmark consisted of 12 tasks (see Appendix
A). Additionally, in the shared task (Warstadt et al.,
2023), 5 more tasks were added to BLiMP as held-
out tasks, aiming to assess the generalization ca-
pabilities of the submitted models. The random
chance accuracy for all original BLiMP tasks is 50,
while chance was not reported for the additional 5
supplement tasks.

According to the BLiMP scores in Table 3,
within the Set A models, the models incorporat-
ing hierarchical inductive bias (SFs1 and SFs2) do
not show consistent outperformance or underperfor-
mance in comparison to the baseline model TFbase.

However, on average, the SFs1 model is on
par with and occasionally outperforms the TFbase

model. In particular, SFs1 excels in the follow-
ing tests: Argument Structure, Determiner Noun
Agreement, Filler Gap, Irregular Forms, Quanti-
fiers, and Subj. Verb Agreement. Conversely, SFs1

underperforms the TFbase in the tasks of QA Con-
gruence Easy, Subject Aux Inversion and Turn Tak-
ing. We hypothesize that this is because syntactic
knowledge is helpful for the former list of tasks, but
to a lesser degree for the latter, for example, Turn
Taking, which focuses on knowledge of discourse
and dialogue structure, in particular of referential
properties of NPs, which is not reflected in the syn-
tactic structure. A sample pair from this data set is
"Should you quit?" – "No, I shouldn’t." (good) ver-
sus "Should she quit?" – "No, I shouldn’t." (bad).
The negative and the positive data points have the
same syntactic structure and the dependents are
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Set A Set B

TFbase SFs1 SFs2 SRs1 SRs2 SRs1′ SRs2′

Perplexity 32.84 26.48 38.26 21.15 23.15 37.11 22.48

Table 2: Perplexity Results

Set A Set B

TFbase SFs1 SFs2 ∆SFs1
∆SFs2

SRs1 SRs2 SRs1′ SRs2′ ∆SRs12
∆SR

s1′ ∆SR
s2′

Anaphor Agreement 88 88 74 0 -14 89 87 90 87 -2 1 0
Argument Structure 68 69 68 1 0 69 72 73 68 3 4 -4
Binding 68 68 66 0 -2 72 70 70 67 -2 -2 -3
Control Raising 66 66 64 0 -2 69 70 68 63 1 -1 -7
Det. Noun Agreement 87 90 86 3 -1 92 93 93 88 1 1 -5
Ellipsis 79 79 72 0 -7 70 71 77 70 1 7 -1
Filler Gap 63 70 63 7 0 69 67 74 64 -2 5 -3
Irregular Forms 76 90 86 14 10 83 92 85 84 9 2 -8
Island Effects 44 44 37 0 -7 49 45 52 43 -4 3 -2
NPI Licensing 58 58 55 0 -3 55 59 68 53 4 13 -6
Quantifiers 73 78 73 5 0 71 68 68 71 -3 -3 3
Subj. Verb Agreement 64 70 60 6 -4 75 75 76 66 0 1 -9
Hypernym 50 50 50 0 0 48 48 50 49 0 2 1
QA Congruence Easy 59 56 56 -3 -3 64 69 66 64 5 2 -5
QA Congruence Tricky 38 35 35 -3 -3 28 34 28 28 6 0 -6
Subject Aux Inversion 82 78 81 -4 -1 70 71 76 70 1 6 -1
Turn Taking 67 65 55 -2 -12 61 59 60 61 -2 -1 2
Average 66.5 67.9 63.6 1.4 -2.9 66.7 67.7 69.1 64.5 0.9 2.4 -3.2

Table 3: BLiMP Results

perfectly fine as argument fillers.
While the model with a parser network in-

between the middle layers SFs2, underperforms
TFbase on average, but interestingly it demonstrates
a noteworthy improvement in the specific task of
Irregular Forms. Remarkably, similar to SFs1, SFs2

significantly outperform TFbase in this particular
task. The task of Irregular Forms involves aspects
of lexical decisions but the syntax of course also
plays a role.

Within the RoBERTa model variations in Set B,
again the model with a parser network in-between
the middle layers SRs2 fails to improve over the
one with a parser network ahead of the encoder
layers SRs1 in most of the tasks. It even gets worse
with the upgrade in the number of convolution lay-
ers within the parser network at SRs2′ . On the other
hand, the upgrade in the number of convolution lay-
ers at SRs1′ shows also an upgrade in accuracies
over SRs1. Generally, SRs1′ achieves the best re-
sults among all the investigated models on average.

Moreover, the Set B models exhibit improve-
ments over Set A models in the tests of Binding,
Det. Noun Agreement, Subject Verb Agreement,
and QA Congruence Easy.

It is not so clear how to interpret the results of the
two Question Answering (QA) Congruence tasks,
where the baselines achieve only very low scores.
For the QA Congruence Easy task, which tests for
detecting selectional preference violations on ob-

ject fillers in answers (e.g., "What did you sell? - A
chair." (good) versus "What did you sell? - Sarah."
(bad)), knowing about the syntactic structure of the
first sentence probably helps to apply selectional
restrictions and thereby assessing the quality of the
second as a possible reply. This might be the reason
why we see an improvement in model performance
in the SR models when adding implicit hierarchi-
cal information that reflects syntactic dependencies.
The QA Congruence Tricky task is similar, except
that the selectional preference that is violated in
the negative data points does not refer to the direct
object. Furthermore, the object is dropped in most
examples and sometimes the (incorrect) argument
filler would be a plausible direct object (e.g., "Who
ate? - Sarah ate." (good) versus "Who ate? - Pasta
ate." (bad)). This is why the task is tricky. In this
context, it is important to keep in mind that our
StructFormer models learn only unlabeled depen-
dencies and therefore cannot distinguish between
object and subject. This means that for Pasta ate, a
structure would be implicitly predicted where pasta
is a dependent of ate, which is perfectly fine seman-
tically (as a direct object). This might be a reason
why the structformer models struggle with this test
and partly lead to a decrease in the performance,
compared to our baseline, since the unlabeled de-
pendency tree actually licenses the negative data
points.
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4.3 SuperGLUE

SuperGLUE consists of eleven diverse tasks (see
Appendix A) which evaluate various performance
aspects. These tasks include sentiment analysis, lin-
guistic acceptability judgments, entailment detec-
tion, and semantic similarity evaluations of words
within contexts, among others (Wang et al., 2019).

The scores (see Table 4) in most of the tasks
fall in a narrow range across all the investigated
models. The incorporation of hierarchical inductive
bias does not show clear improvements in most of
the tasks. A noticeable result that is observed for
the models with a parser network within the middle
layers (s2) is the result of the MRPC task, where
s2 models consistently outperform the s1 models
in both sets for this particular task. The upgrade
in the number of convolution layers also does not
show a clear improvement in most of the tasks for
both SRs1′ and SRs2′ models.

Notably, in the case of the WSC task, we ob-
serve that all models’ predictions heavily favored
one specific class. This raises concerns about the
success of the finetuning process for this particular
task.

4.4 MSGS

The MSGS tasks, listed in Appendix A, were intro-
duced by the shared task as held-out tests specifi-
cally designed to evaluate generalization capabil-
ities. Detailed information and further insights
about these tasks are expected to be disclosed in an
upcoming publication. MSGS tasks are measured
using the Matthews correlation coefficient (MCC).
MCC is used in machine learning as a measure
of the quality of binary (two-class) classifications,
introduced by Matthews (1975)

The MSGS results (Table 5), resemble to the Su-
perGLUE results. The models incorporating hierar-
chical inductive bias show contradicting behavior
across the different tasks. While for some tasks e.g
Control Raising (Control), Relative Position (Con-
trol), and Syntactic Category (Relative Position),
SFs1 and SFs2 are strengthening the correlation in
comparison to the baseline model, but with other
tasks e.g Lexical Content (Control), Main Verb
(Lexical Content) and Syntactic Category (Lexical
Content), SFs1 and SFs2 are shown weakening the
correlation.

4.5 Aggregation

Indeed, analyzing the performance changes across
39 tasks for 7 different models is a complex process.
To simplify the assessment and present a concise
summary of each model’s overall performance, we
report an aggregate score of all the 39 scores for
each model (Table 6). This aggregation approach
was internally computed by the shared task submis-
sion platform to represent each model with a single
score, providing a more straightforward evaluation
of the overall performance. Subsequently, we se-
lect the model with the best aggregate score SRs1′

to represent our submission in the shared task.

5 Discussion

Although the evaluation pipeline of the shared task
was meticulously designed to encompass a com-
prehensive analysis of pretrained LMs, covering
aspects of efficiency, applied NLP standards, cog-
nitive science, linguistics, and language acquisition
(Warstadt et al., 2023), it was discussed in Warstadt
et al. (2020a) that some tasks that involve semantic
phenomena such as Island Effects and NPI Licens-
ing are very difficult for LMs in general. Conse-
quently, the consistently low performance observed
across all models on these tests can be attributed to
this matter. As a result, we refrain from considering
the aggregate score as a single definitive metric for
representing how a model’s performance compares
to another. Instead, we advocate for a thorough in-
vestigation of individual tests while considering the
test’s objectives, dataset, and evaluation strategy.

Overall, the models incorporating hierarchical
inductive bias did not show significant improve-
ment in the scores of the BabyLM evaluation tasks,
however, some exceptions of the evaluation tasks
that show improvements in terms of scores when
using the structformer and structroberta models,
encourage a deeper investigation for patterns in the
outputs predictions that might lead to a different
conclusion. Namely, the tasks that we think are
worth more investigation are: Argument Structure,
Determiner Noun Agreement, Filler Gap, Irregular
Forms, Quantifiers, Subj. Verb Agreement, Control
Raising (Control), Relative Position (Control) and
Syntactic Category (Relative Position).

Contrary to our expectations, the modification of
placing the parser in-between the middle attention
layers has not demonstrated notable improvements
but rather a decline in performance compared to the
models with the parser placed right after the input
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Set A Set B

TFbase SFs1 SFs2 ∆SFs1
∆SFs2

SRs1 SRs2 SRs1′ SRs2′ ∆SRs12
∆SR

s1′ ∆SR
s2′

BoolQ 63 61 62 -2 -1 66 66 64 65 0 -2 -1
COLA (MCC) 0.16 0.19 0.14 — — 0.23 0.23 0.19 0.26 — — —
MNLI 71 71 70 0 -1 72 72 69 72 0 -3 0
MNLI-MM 72 73 72 1 0 73 73 70 73 0 -3 0
MRPC (F1) 75 75 79 0 4 76 81 77 75 5 1 -6
MultiRC 61 58 62 -3 1 62 59 59 54 -3 -3 -5
QNLI 81 77 78 -4 -3 71 72 66 74 1 -5 2
QQP (F1) 81 82 81 1 0 82 82 80 81 0 -2 -1
RTE 48 42 47 -6 -1 46 57 53 56 11 7 -1
SST2 87 85 82 -2 -5 87 82 86 83 -5 -1 1
WSC 61 61 61 0 0 61 59 61 61 -2 0 2

Table 4: (Super)GLUE Results. Values are not aggregated across each model due to the presence of different metrics
(Accuracy, F1 score, and MCC)

Set A Set B

TFbase SFs1 SFs2 SRs1 SRs2 SRs1′ SRs2′

Control Raising (Control) 0.54 0.56 0.69 0.57 0.56 0.69 0.56
Control Raising (Lexical Content) -0.45 -0.04 -0.02 -0.03 -0.07 -0.36 -0.14
Control Raising (Relative Position) -0.94 -0.89 -0.92 -1.00 -0.98 -0.77 -0.98
Lexical Content (Control) 1.00 0.88 0.6 1.00 0.98 1.00 0.78
Main Verb (Control) 0.93 0.96 0.84 0.85 0.98 0.96 0.98
Main Verb (Lexical Content) -1.00 -0.79 -0.84 -1.00 -1.00 -0.99 -1.00
Main Verb (Relative Position) -0.87 -0.78 -0.89 -0.98 -0.93 -0.83 -0.95
Relative Position (Control) 0.67 0.81 0.78 0.86 0.95 0.97 1.00
Syntactic Category (Control) 0.62 0.23 0.47 0.80 0.73 0.66 0.87
Syntactic Category (Lexical Content) -0.61 -0.17 -0.17 -0.42 -0.59 -0.26 -0.76
Syntactic Category (Relative Position) -0.32 -0.57 -0.44 -0.47 -0.47 -0.63 -0.52

Table 5: MSGS Results

Set A Set B

TFbase SFs1 SFs2 SRs1 SRs2 SRs1′ SRs2′

Aggregate Score 0.52 0.53 0.52 0.53 0.54 0.55 0.52

Table 6: Shared Task Leaderboard Results
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embedding layer. We can only speculate about why
this is so. It might be that it is an advantage to push
the model very early towards identifying structural
relations between words. More precisely to do so
at a stage where the contributions of the single
tokens are still separated from each other. The
parsing network placed between the middle layers
acts at a moment where single token contributions
are already blurred.

To understand the effect of placing the parser
network within the middle layers, we propose prob-
ing the layers of the Front and Rear modules and
comparing them to the corresponding layers in the
model where the parser network is placed ahead of
the attention layers. Such a comparative analysis
can provide valuable insights and either support
or contradict our hypothesis regarding the learn-
ing of syntactic features in the middle layers of
transformer models.

Regarding the aim of achieving competitive
scores on the shared task challenge, the best score
we could get was from the model structrobertas1′ ,
this model is an upscaling of the structrobertas1.

6 Conclusion

In this paper, we extend the work of Shen et al.
(2021) to explore the capabilities of the Struct-
Former architecture as an example of employing
hierarchical bias in addressing the challenges posed
by relatively small LLM pretraining datasets. Fur-
thermore, we modify the StructFormer architecture
to examine whether integrating the hierarchical bias
within the middle attention layers leads to perfor-
mance improvements. To accomplish these objec-
tives, we pretrain seven model variants using the
same dataset and configuration settings. We evalu-
ate these models on 39 different tasks. The evalua-
tion outcomes reveal varying behavior across the
models, exhibiting inconsistencies in performance.
We could not show strong evidence that models
incorporating hierarchical bias are performing bet-
ter in the context of this shared task, nor could we
show practical evidence for the claim that syntac-
tic information is better represented in the middle
attention layers within the scope of our experiment.
We have noted substantial enhancements in certain
tasks when models incorporate hierarchical bias in
their architectural designs. Nonetheless, to ensure
the reliability of our findings and to eliminate po-
tential confounding factors related to the varying
number of parameters in each model, as well as the

distinct objectives and complexities of individual
tasks, we intend to carry out an in-depth analysis of
each model’s performance on a task-by-task basis.
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Appendix

A Evaluation Tasks

BLiMP

1. Anaphor Agreement

2. Argument Structure

3. Binding

4. Control Raising

5. Determiner Noun Agreement

6. Ellipsis

7. Filler Gap

8. Irregular Forms

9. Island Effects

10. Negative Polarity Items NPI Licensing

11. Quantifiers

12. Subject Verb Agreement

13. Hypernym

14. QA Congruence Easy

15. QA Congruence Tricky

16. Subject Aux Inversion

17. Turn Taking

SuperGLUE

18. Corpus of Linguistic Acceptability CoLA
(MMC)

19. Stanford Sentiment Treebank SST-2
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20. Microsoft Research Paraphrase Corpus
MRPC (F1)

21. Quora Question Pairs QQP (F1)

22. MultiNLI Matched MNLI

23. MultiNLI Mismatched MNLI-mm

24. Question NLI QNLI

25. Recognizing Textual Entailment RTE

26. Boolean Questions BoolQ

27. Multi-Sentence Reading Comprehension Mul-
tiRC

28. Winograd Schema Challenge WSC

MSGS

29. Main Verb (Control)

30. Control Raising (Control)

31. Syntactic Category (Control)

32. Relative Position (Control)

33. Lexical Content The (Control)

34. Main Verb Lexical Content The

35. Main Verb Relative Token Position

36. Control Raising Lexical Content The

37. Control Raising Relative Token Position

38. Syntactic Category Lexical Content The

39. Syntactic Category Relative Position

B Hyperparameters and Models
Configurations

In Table 7, we report the number of trainable param-
eters per model. In Table 8, we report all the impor-
tant hyperparameters values for all our pretraining
and finetuning experiments. Also, we report the
main configuration settings for all our models. Un-
less specified otherwise, these values were used
across all models.

Model # of trainable parameters

transformer-base 110M
structformers1 133M
structformers2 133M
structrobertas1 133M
structrobertas2 133M
structrobertas1′ 144M
structrobertas2′ 144M

Table 7: Number of trainable parameters per model

Training Hyperparameters

Batch size 96
Sequence Length 128
Optimizer AdamW
Weight Decay 0.1
Learning Rate (Linear) 1e-4
Max Steps 62K
Masking Probability 0.15

Finetuning Hyperparameters

Initial learning rate 5e-5
Batch size 120
Maximum epochs 10
Evaluate every (steps) 400
Patience 5
Random seed 12

Models configurations

Number of Attention Heads 12
Number of Attention Layers 12
Embeddings (Hidden) Size 768
FFN inner hidden size 3072
Attention Dropout 0.1
Front Attention Layers (where applicable) 4
Rear Attention Layers (where applicable) 8
Parser Convolution Layers (where applicable) 4
Convolution Kernel Size 9

Table 8: Pretraining and Finetuning Hyperparameters,
and Models Configurations Settings
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