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Abstract

Building multi-modal language models has
been a trend in the recent years, where addi-
tional modalities such as image, video, speech,
etc. are jointly learned along with natural lan-
guages (i.e., textual information). Despite the
success of these multi-modal language mod-
els with different modalities, there is no exist-
ing solution for neural network architectures
and natural languages. Providing neural archi-
tectural information as a new modality allows
us to provide fast architecture-2-text and text-
2-architecture retrieval/generation services on
the cloud with a single inference. Such so-
lution is valuable in terms of helping begin-
ner and intermediate ML users to come up
with better neural architectures or AutoML ap-
proaches with a simple text query. In this
paper, we propose ArchBERT, a bi-modal
model for joint learning and understanding
of neural architectures and natural languages,
which opens up new avenues for research in
this area. We also introduce a pre-training
strategy named Masked Architecture Model-
ing (MAM) for a more generalized joint learn-
ing. Moreover, we introduce and publicly re-
lease two new bi-modal datasets for training
and validating our methods. The ArchBERT’s
performance is verified through a set of nu-
merical experiments on different downstream
tasks such as architecture-oriented reasoning,
question answering, and captioning (summa-
rization). Datasets, codes, and demos are avail-
able as supplementary materials1.

1 Introduction

Existing machine learning models are mostly based
on uni-modal learning, where a single modality is
learned for the desired tasks. Example scenarios
include image classification with image-only data;
or language translation with text-only data (Raffel

1https://developer.huaweicloud.com/
develop/aigallery/notebook/detail?id=
e6a924c7-735a-4e02-a25b-4416b77b6315

Figure 1: Bi-modal understanding of neural architec-
tures and natural languages with sample applications.

et al., 2020; Akbari et al., 2022; Brown et al., 2020).
Despite the success of existing uni-modal learning
methods at traditional single-modal tasks, they are
usually insufficient (Baltrušaitis et al., 2018) to
model the complete aspects of human’s reasoning
and understanding of the environment.

The alternative solution for this problem is to use
multi-modal learning, where a model can jointly
learn from multiple modalities such as text, image,
or video to yield more abstract and generalized rep-
resentations. As a result, a better understanding of
various senses in information can be achieved and
many new challenges that concern multi-modality
can be handled. Such solution also enables the
possibility of supplying a missing modality based
on the observed ones. As an example, in text-
based image generation, we aim to generate photo-
realistic images which are semantically consistent
with some given text description (Bao et al., 2022).

One of the most popular multi-modal solutions
is multi-modal language models (LMs), where an
extra modality (e.g., image or video) is jointly used
and learned along with the natural languages (i.e.,
textual information). Some of the recent multi-
modal LMs include ViLBERT for image+text (Lu
et al., 2019), VideoBERT for video+text (Sun et al.,
2019), CodeBERT for code+text (Feng et al., 2020),
and also GPT-4 (OpenAI, 2023).

Although many multi-modal LMs with differ-
ent modalities have been introduced so far, there
is no existing solution for joint learning of neural

https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e6a924c7-735a-4e02-a25b-4416b77b6315
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e6a924c7-735a-4e02-a25b-4416b77b6315
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e6a924c7-735a-4e02-a25b-4416b77b6315
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network architectures and natural languages. Pro-
viding neural architectural information as a new
modality allows us to perform many architecture-
oriented tasks such as Architecture Search (AS),
Architecture Reasoning (AR), Architectural Ques-
tion Answering (AQA), and Architecture Caption-
ing (AC) (Figure 1). The real-world applications of
such solution include fast architecture-2-text and
text-2-architecture retrieval/generation services on
the cloud with a single inference. Such solution is
valuable in terms of helping users to come up with
better neural architectures or AutoML approaches
with a simple text query especially for beginner
and intermediate ML users. For instance, AC can
be used for automatically generating descriptions
or model card information on a model hub (i.e.,
machine learning models repository). Furthermore,
AR is helpful when a model is uploaded to a repos-
itory or cloud along with some textual description
provided by the user, where the relevancy of the
user’s description for the given model can be auto-
matically verified. If not verified, alternative auto-
generated descriptions by a architecture-2-text so-
lution can be proposed to the user.

In this paper, we propose ArchBERT as a bi-
modal solution for neural architecture and nat-
ural language understanding, where the seman-
tics of both modalities and their relations can be
jointly learned (Figure 1). To this end, we learn
joint embeddings from the graph representations
of architectures and their associated descriptions.
Moreover, a pre-training strategy called Masked
Architecture Modelling (MAM) for a more gen-
eralized and robust learning of architectures is
proposed. We also introduce two new bi-modal
datasets called TVHF and AutoNet for training and
evaluating ArchBERT. To the best of our knowl-
edge, ArchBERT is the first solution for joint learn-
ing of architecture-language modalities. In addi-
tion, ArchBERT can work with any natural lan-
guages and any type of neural network architec-
tures designed for different machine learning tasks.
The main contributions of this paper are as follows:

• A novel bi-modal model for joint learning of
neural architectures and natural languages

• Two new bi-modal benchmark datasets for
architecture-language learning and evaluation

• A new pre-training technique called MAM

• Introducing and benchmarking 6 architecture-
language-related downstream applications

2 Related Works

Multi-modal models are used in many sub-fields
in machine learning. For example, Michelsanti
et al. (2021) and Schoneveld et al. (2021) intro-
duced the audio-visual models trained on input
acoustic speech signal and video frames of the
speaker for speech enhancement, speech separa-
tion, and emotion recognition. Multi-modal models
used in biomedical (Venugopalan et al., 2021; Vale-
Silva and Rohr, 2021), remote-sensing (Hong et al.,
2020; Maimaitijiang et al., 2020), and autonomous
driving (Xiao et al., 2020) applications have also
proven to provide more accurate prediction and
detection than the unimodal models.

Among different types of multi-modal LMs in
the literature, transformer-based ones have shown
significant performance, especially for vision-and-
language tasks like visual question answering, im-
age captioning, and visual reasoning. In Visual-
BERT (Li et al., 2019), a stack of transformers
is used to align the elements of text and image
pairs. ViLBERT (Lu et al., 2019) extended BERT
to a multi-modal double-stream model based on co-
attentional transformer layers. In LXMERT (Tan
and Bansal, 2019), three encoders including lan-
guage, object relation, and cross modality encoders
are used. A single-stream vision-language model
was introduced in VL-BEIT (Bao et al., 2022),
where unpaired and paired image-text modalities
were used for pre-training.

Video is another modality that is used with lan-
guage in multi-modal models. VideoBERT (Sun
et al., 2019) is a single-stream video-language
model, which learns a joint visual-linguistic rep-
resentation from input video-text pairs. VIOLET
(Fu et al., 2021) is another example that employs
a video transformer to model the temporal dynam-
ics of videos, and achieves SOTA results on video
question answering and text-to-video retrieval. Pro-
gramming language is also an emerging modality
that has been used along with language. For ex-
ample, CodeBERT (Feng et al., 2020) is a multi-
stream model, which uses LMs in each stream,
where the input code is regarded as a sequence of
tokens. On the other hand, GraphCodeBERT (Guo
et al., 2021) proposes a structure-aware pre-training
technique to consider the inherent structure of the
code by mapping it to a data flow graph.

There are several prior works that combine more
than two modalities. In Multimodal Transformer
(MulT) (Tsai et al., 2019), cross-modal attention
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Figure 2: Overall framework of ArchBERT.

modules are added to the transformers to learn rep-
resentations from unaligned multi-modal streams,
including the language, the facial gestures, and the
acoustic behaviors. VATT (Akbari et al., 2021)
also used video, audio, and text transformers along
with a self-supervised learning strategy to obtain
multi-modal representations from unlabeled data.

It is worth mentioning that ChatGPT (OpenAI,
2022) can be used for information retrieval, ques-
tion answering, and also summarization over the
textual descriptions of well-known neural architec-
tures such AlexNet (Krizhevsky et al., 2017) or
Faster-RCNN (Ren et al., 2015). However, unlike
ArchBERT, it does not have a bi-modal understand-
ing of both neural architectures (i.e., graphs) and
natural languages, especially for newly proposed
architectures and models.

3 Proposed Method: ArchBERT

The overall ArchBERT framework is shown in Fig-
ure 2. The major components of ArchBERT in-
clude a text encoder, an architecture encoder, a
cross encoder, and a pooling module.

First, the input text represented by a sequence
of n words W “ twi|i P r1, nsu is tokenized to a
sequence of n tokens T “ tti|i P r1, nsu. Then,
the text encoder Et is utilized to map them to some
word/token embeddings denoted by Mt P Rpnˆdq
with the embedding size of d: Mt “ EtpT q.

On the other hand, the architecture encoder is re-
sponsible for encoding the input neural architecture.
In this procedure, the computational graph of the
input architecture is first extracted and represented
with a directed acyclic graph G “ tV,A, Su where
V “ tvi|i P r1,msu denotes a sequence of m
nodes representing the operations and layers (e.g.,
convolutions, fully-connected layers, summations,
etc.) and A P t0, 1umˆm denotes a binary adja-
cency matrix describing the edges and the connec-
tivity between the nodes. In addition to the nodes
and edges, we also extract the shape of the param-

eters associated with each node (i.e., input/output
channel dimensions and kernel sizes), denoted by
S “ tpsi P N4q|i P r1,msu.

The nodes and the shapes are separately encoded
using the node and shape embedders Ev and Es,
respectively. The adjacency matrix along with the
summation of the resulting nodes and shapes em-
beddings are then given to a Graph Attention Net-
work (GAT) (Veličković et al., 2018) for computing
the final architecture (graph) embeddings denoted
by Mg P Rpmˆdq with the embedding size of d:

Mg “ GAT pEvpV q ` EspSq, Aq (1)

In general, GAT is designed to operate on graph-
structured data in which a set of graph features
(node+shape embeddings in our case) is trans-
formed into higher-level features. Given the adja-
cency matrix, the GAT model also allows all nodes
to attend over their neighborhoods’ features based
on a self-attention strategy.

For joint learning of textual and architectural
embeddings and share learning signals between
both modalities, a cross transformer encoder, Ec, is
used to process both embeddings in parallel. These
embeddings are then average-pooled to fixed-size
1D representations Jt P Rp1ˆdq and Jg P Rp1ˆdq:

tJt, Jgu “ EcptMt,Mguq (2)

As in S-BERT (Reimers and Gurevych, 2019),
we use the cosine similarity loss as a regression ob-
jective function to learn the similarity/dissimilarity
between architectures and language embeddings.
First, the cosine similarity between Jt and Jg are
computed. Given a target soft score y P r0, 1s
(i.e., 0: dissimilar, 1: similar), the following mean
squared-error (MSE) loss is then employed:

LSIM “ }y ´
Jt.Jg

maxp}Jt}2.}Jg}2, εq
}2, (3)

which minimizes the cosine distance between Jt
and Jg pairs labeled as similar, while maximizes
the distance for the dissimilar ones.
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3.1 Masked Architecture Modeling (MAM)
In the literature, a well-known pre-training objec-
tive function called Masked Language Modeling
(MLM) is widely used by BERT-based models for
learning language representations (Devlin et al.,
2019). Inspired by MLM, we introduce a new
objective called Masked Architecture Modeling
(MAM) to provide more generalized learning and
understanding of the graph embeddings correspond-
ing to the neural architectures by ArchBERT.

Inspired by BERT (Devlin et al., 2019), we ran-
domly mask 15% of the nodes with a special mask
token and re-produce the masked nodes under the
condition of the known ones. The MAM objective
function is then defined as:

LMAM “ ´EVi„V log ppVi|V̂ q, (4)

where V̂ is the masked version of V . In other
words, V̂ includes the contextual unmasked tokens
surrounding the masked token Vi. In practice, the
corresponding probability distribution is obtained
by the MAM head HM . The MAM head defines
the distribution by performing the softmax func-
tion on the logits Fm P Rpmˆ|E|q mapped from the
graph embeddings Jg as follows: Fm “ HM pJgq,
where E is the entire vocabulary of nodes (or nodes
corpus) set. Given LSIM and LMAM , the follow-
ing weighted loss is then used for optimizing and
pre-training the ArchBERT model:

L “ LSIM ` αLMAM . (5)

3.2 Architectural Question Answering (AQA)
The pre-trained ArchBERT can be utilized for the
AQA task that is defined as the procedure of an-
swering natural language questions about neural ar-
chitectures. In other words, we can enable the Arch-
BERT model to predict the answers to architecture-
related questions when the architecture and the
question are matched.

For this task, we can fine-tune ArchBERT as a
fusion encoder to jointly encode the input neural
architecture and the question. To this end, the ques-
tion and the architecture are first encoded using the
text and architecture encoders, respectively. Both
embeddings are then cross-encoded and pooled in
order to calculate the final joint embeddings Jt and
Jg. The element-wise product is then computed to
interactively catch similarity/dissimilarity and dis-
crepancies between the embeddings. The resulting
product is fed into AQA head for mapping to the
logits Fq P R|A| corresponding to |A| answers:

Fq “ HqpJt.Jgq (6)

As in (Anderson et al., 2018), the AQA in our
work is formulated as a multi-label classification
task, which assigns a soft target score to each an-
swer based on its relevancy to |A| answers. A
binary cross-entropy loss (denoted by LAQA) on
the target scores is then used as objective function.

3.3 Language Decoder
We can empower the pre-trained ArchBERT to
learn from and then benefiting for neural architec-
ture captioning (or summarization) task by attach-
ing a transformer decoder (Lewis et al., 2020) to
generate textual tokens one by one. In this regard,
an auto-regressive decoding procedure is employed
with the following loss function:

LDEC “ ´ETi„T log ppTi|Tăi, T̂ q, (7)

where T̂ is the masked version of the ground truth
text T , and Ti is the i-th token to be predicted. Tăi
denotes the set of all the tokens decoded before Ti.
Similar to MAM, the probability distribution over
the whole vocabulary is practically obtained by
applying softmax on the decoded feature (or logits)
Fd P Rpmˆ|C|q that is calculated by providing the
graph embeddings Jg to the decoder: Fd “ DtpJgq,
where C denotes the entire vocabulary set.

4 Datasets
For pre-training the ArchBERT model, a dataset
of neural architectures labeled with some relevant
descriptions is required. To the best of our knowl-
edge, there is no such bi-modal dataset in the lit-
erature. In this paper, we introduce two datasets
called TVHF and AutoNet for bi-modal learning
of neural architectures and natural languages. The
numerical and the statistical details of TVHF and
AutoNet datasets are summarized in Table 1.

Note that all the labels and descriptions in the
proposed datasets have been manually checked
and refined by human. There may be some mi-
nor noise in the dataset (i.e., an inevitable nature of
any dataset, especially the very first versions), but
in overall, the datasets are of sufficient quality for
our proof-of-concept experiments.

4.1 TVHF
In order to create this dataset, we collected 538
unique neural architectures form TorchVision (TV)
(Marcel and Rodriguez, 2010) and HuggingFace
(HF) (Wolf et al., 2019) frameworks. The descrip-
tions relevant to the architectures were extracted



91

Table 1: Statistical details of TVHF and AutoNet datasets (*: AQA, µ: mean, σ: standard deviation, M : median).

Dataset Split #Samples

Architecture Text

#Unique

Archs

#Unique

Nodes

#Nodes #Edges #Unique

Tokens

#Tokens Sequence Length

µ σ M µ σ M µ σ M µ σ M

TVHF
Train 24069 538 50 1146.61 1162.38 705 1281 1302.90 753 3507 16.16 11.22 14 97.60 77.76 81

Val 6018 538 50 1146.61 1162.38 705 1281 1302.90 753 2965 16.21 11.59 14 97.88 80.33 81

AutoNet
Train 103306 10000 28 371.50 312.61 266 401 322.99 241 769 43.81 8.62 45 333.67 74.80 345

Val 10338 1000 28 384.48 343.31 266 419 368.20 293.5 652 43.92 8.66 45 334.01 74.92 345

AutoNet*
Train 350000 10000 28 373.33 313.90 270 404 325.45 297 86 10.78 1.89 11 62.76 12.48 62

Val 35000 1000 28 358.3 301.98 261 390 324.31 285.5 86 10.79 1.89 11 62.76 12.45 62

from TV and HF frameworks as well as other on-
line resources such as papers and web pages (with
the vocabulary size |C|=31,764). To increase the
dataset size, the descriptions were split into indi-
vidual sentences each assigned to the related ar-
chitecture, which provided a collection of 2,224
positive samples, i.e., pairs of architecture with
their relevant descriptions (details in the appendix).

To assure the model learns both similarities and
dissimilarities, we also generated negative samples
by assigning irrelevant descriptions to the architec-
tures (resulting in a total of 27,863 negative sam-
ples). We randomly split the dataset (in total 30,087
samples) into 80% for train and 20% for validation.

For fine-tuning and evaluating ArchBERT on Ar-
chitecture Clone Detection (ACD), we establish an-
other dataset including pairs of architectures man-
ually hard-labeled with a dissimilarity/similarity
score (0 or 1). To this end, all combinations of two
architectures from TVHF were collected (in total
82.8K samples) and split into train/val sets (80%
and 20%). Details are provided in the appendix.

4.2 AutoNet

As described before, TVHF includes realistic
human-designed architectures, which are manu-
ally labeled with real descriptions. On the other
hand, we introduce the AutoNet dataset, which in-
cludes automatically generated architectures and
descriptions. AutoNet is basically the modified
and extended version of DeepNet1M (Knyazev
et al., 2021), which is a standardized benchmark
and dataset of randomly generated architectures for
the parameter prediction tasks.

In AutoNet, we extend the set of operations (lay-
ers) from 15 types (in DeepNet1M) to 85, which
include most of the recent operations used in com-
puter vision and natural language models. We fol-
lowed the same procedure in DeepNet1M and ran-

Figure 3: Sample graphs generated for ResNet18 (left)
and a random architecture from AutoNet (right).

domly generated 10K and 1K architectures for train
and validation sets, respectively.

For automatic generation of textual descriptions
related to each architecture, we created an extensive
set of sentence templates, which were filled based
on the information extracted from the structure,
modules, and existing layers of the corresponding
architecture. The same process was applied for
generating negative samples, but with the textual
information of the non-existing modules and layers
in the architecture. For each architecture, 10-11
textual descriptions were created, which resulted in
103,306 and 10,338 architecture and text pairs for
the train and validation sets (with the vocabulary
size |C|=30,980), respectively. The details of this
procedure are given in the appendix.

4.2.1 AutoNet-AQA

For fine-tuning and evaluating ArchBERT on AQA,
another dataset including triplets of architectures,
questions, and answers is needed. As in AutoNet, a
set of question/answer templates were used to auto-
matically generate the questions and answers. The
same procedure of generating neural architectures
as in AutoNet was employed. 10K and 1K archi-
tectures were respectively created for the train and
validation sets. For each architecture, 35 unique
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questions were generated, and the answers were
chosen from a list of |A| “ 51 unique answers.
In total, the train and validation sets respectively
include 350K and 35K samples.

The visualization of two sample graphs gener-
ated for ResNet18 from TVHF and a random archi-
tecture from AutoNet is shown in Figure 3. More
sample data along with the quality analysis of the
datasets are given in the appendix.

5 Experimental Results

In this section, the performance of ArchBERT on
the following downstream tasks is evaluated and
numerically analyzed.

• Architectural Reasoning (AR): it is the task of
determining if a statement regarding an architec-
ture is correct or not.

• Architecture Clone Detection (ACD): it in-
cludes the process of checking if two architec-
tures are semantically/structurally similar or not.

• Architectural Question Answering (AQA): as
given in Section 3, it is the process of providing
an answer to a question over a given architecture.

• Architecture Captioning (AC): it is the task of
generating descriptions for a given architecture.

Since there is no related prior works, we com-
pare our method with some uni-modal baselines for
each of the above tasks. An ablation study over dif-
ferent components of ArchBERT is also presented.

In this work, we employ the BERT-Base model
(with 12 heads) as our ArchBERT’s cross encoder.
We pre-trained ArchBERT on both TVHF and Au-
toNet datasets with a batch size of 80, embedding
size of d=768, and the Adam optimizer with learn-
ing rate of 2e-5 for 6 hours. The training on TVHF
and AutoNet was respectively done for 20 and 10
epochs. Since there is a large scale difference be-
tween the LSIM and LMAM loss values in the
weighted loss in Equation 5, whereLMAM"LSIM ,
we set α=5e-2 to balance the total loss value (ob-
tained experimentally). A batch size of 80 is used
for all the tests with the pre-trained ArchBERT.

5.1 Uni-Modal Baselines

For the AR baseline, we compare the architecture
name with an input statement, which is considered
as "correct" if the architecture name appears in the
statement, otherwise it is "incorrect". Note that
unlike this baseline, ArchBERT does not need the
architecture name to infer about the statements.

For the ACD uni-modal baseline (Figure 4-left),
the architecture encoder is first used to separately
map both input architectures, denoted by tG1, G2u,
into the graph embeddings tM1

g ,M
2
g u (Equation

1). The cross encoder and pooling module are then
applied to obtain the fixed-size joint representations
tJ1

g , J
2
g u (Equation 2). The cosine similarity loss in

Equation 3 is finally performed on tJ1
g , J

2
g u pairs

along with a provided hard-label. For this baseline,
we trained ArchBERT with architecture-only pairs
(without text encoder) from TVHF-ACD train set.

For the AQA uni-modal baseline (Figure 4-
middle), we train a text-only ArchBERT (with-
out architecture encoder), where the context is ob-
tained from the textual information and summary
of the input architecture, e.g., layer names (i.e.,
using Pytorch model summary function). The ex-
tracted information is considered as the input con-
text on which the question answering procedure
is performed. The tokenized input question and
context, denoted by tT q, T cu, are mapped into to-
ken embeddings tM q

t ,M
c
t u, which are then cross-

encoded and average-pooled to obtain the joint em-
beddings tJq

t , J
c
t u (Equation 2). As in Equation 6,

the element-wise product of tJq
t , J

c
t u is given to

the AQA head to obtain the logits required for the
binary cross-entropy loss described in Section 3.2.

For the AC uni-modal baseline (Figure 4-right),
we trained ArchBERT (without text encoder) fol-
lowed by the decoder from scratch (no bi-modal
pre-training of ArchBERT). The detailed AC pro-
cedure is described in Section 3.3.

5.2 Architectural Reasoning (AR)

For this task, the input text and the architecture
are given to ArchBERT to create the pooled em-
beddings. The cosine similarity score between
these embeddings is then computed. If the score
is greater than some threshold τ (i.e., 0.5), the
statement on the architecture is determined as “cor-
rect”, otherwise “incorrect”. We evaluate the per-
formance of the pre-trained ArchBERT on this task
over the TVHF validation set. As summarized in
Table 2, an accuracy and F1 score of 96.13% and
71.86% were respectively achieved. F1 scores are
reported to deal with the class imbalance.

As reported in Table 2, a F1 score of 55.93% is
achieved by the AR baseline, which is about 16%
lower than ArchBERT.



93

Figure 4: Uni-Modal Baselines (left: ACD, middle: AQA, right: AC).

5.3 Architecture Clone Detection (ACD)

To perform this task, both input architectures are
given to ArchBERT’s architecture encoder fol-
lowed by the cross-encoder and pooling module
to obtain the pooled embeddings. The cosine simi-
larity of the embeddings is then computed. If the
similarity score is greater than a threshold (i.e.,
0.5), the two architectures are considered similar,
otherwise dissimilar.

We first evaluate the pre-trained ArchBERT’s
performance on the TVHF-ACD validation set. Al-
though the pre-trained model has not specifically
learned to detect similar/dissimilar architectures, it
still achieves a good accuracy of 86.20% and F1
score 60.10% (Table 2). However, by fine-tuning
the pre-trained ArchBERT with TVHF-ACD train
set, significantly improved accuracy and F1 score
of 96.78% and 85.98% are achieved.

Two baselines including Jaccard similarity (San-
tisteban and Tejada-Cárcamo, 2015) and a uni-
modal version of ArchBERT are used to compare
with our bi-modal ArchBERT on ACD task. For
Jaccard, the similarity of the architecture pairs is
computed by taking the average ratio of intersec-
tion over union of the nodes and edges (V and A).
The pairs are considered as "similar" if the similar-
ity score is greater than 0.5, otherwise “dissimilar".
As shown in Table 2, the pre-trained and fine-tuned
ArchBERT models respectively outperform this
baseline with 14% and 40% higher F1 scores. The
ACD uni-modal baseline also achieves F1 score of
84%, i.e., 2% lower than fine-tuned ArchBERT.

5.4 Architectural Question Answering (AQA)

For this, ArchBERT along with the attached AQA
head (composed of a two layer MLP) is fine-tuned
with the AutoNet-AQA dataset using a batch size
of 140 over 10 epochs (for about 10 hours). We use

Table 2: The performance of ArchBERT and its com-
ponents on different tasks and datasets (AR: Architec-
tural Reasoning, ACD: Architecture Clone Detection,
AQA: Architectural Question Answering, CR: Cross
Encoder, MAM: Masked Architecture Modeling).

Task Dataset Model Acc(%) F1(%)

AR TVHF

ArchBERT 96.13 71.86
-w/o Shape 95.44 69.16
-w/o Edge 95.52 68.98
-w/o Edge+Shape 95.12 65.80
-w/o MAM 95.18 64.27
-w/o CR 94.42 57.03
Baseline 89.03 55.93

ACD TVHF

ArchBERT 86.20 60.10
-w/o Shape 85.44 60.20
-w/o Edge 76.70 47.96
-w/o Edge+Shape 82.90 56.45
-w/o MAM 78.80 49.59
-w/o CR 69.89 42.35
Jaccard 80.22 45.96
ArchBERT-ft 96.78 85.98
Baseline (uni) 96.24 84.01

AQA AutoNet

ArchBERT 72.73 73.51
-w/o MAM 66.08 66.16
-w/o CR 60.32 63.33
Baseline (uni) 55.82 61.84

the Adam optimizer with an initial learning rate
of 2e-5. At the inference time, we simply take a
sigmoid over the AQA head’s logits (with the same
batch size of 140). As given in Table 2, ArchBERT
achieves an accuracy of 72.73% and F1 score of
and 73.51% over the AutoNet-AQA validation set.

For the AQA baseline, an F1 score of 61.84%
was obtained on AutoNet-AQA, which is «12%
lower than the proposed bi-modal ArchBERT.

5.5 Architecture Captioning (AC)

To analyze ArchBERT’s performance on AC, the
pre-trained ArchBERT (without text encoder) at-
tached with a language decoder is fine-tuned on
both TVHF and AutoNet with a batch size of 30 for
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Table 3: ArchBERT’s performance on Architecture
Captioning (AC) (CR: Cross Encoder, MAM: Masked
Architecture Modeling, R1: Rouge1-Fmeasure, R2:
Rouge2-Fmeasure, RL: Rouge-Lsum-Fmeasure).

Dataset Model R1 R2 RL

TVHF
ArchBERT 0.18 0.05 0.17
-w/o MAM 0.17 0.05 0.15
Baseline (uni) 0.18 0.07 0.17

AutoNet
ArchBERT 0.48 0.36 0.46
-w/o MAM 0.45 0.34 0.43
Baseline (uni) 0.40 0.30 0.38

10 epochs. The fine-tuning process for TVHF and
AutoNet respectively took about 0.5 and 6 hours.
Adam optimizer with an initial learning rate of 2e-5
was used. For the language decoder, a single-layer
transformer decoder (with 12 heads and hidden size
of d=768) followed by 2 linear layers is used.

At the inference, the beam search (with the size
of 10) was employed to auto-regressively gener-
ate the output tokens, which were then decoded
back to their corresponding words. The same batch
size of 30 was used for the evaluation. The re-
sults over the TVHF and AutoNet validation sets
are summarized in Table 3, where Rouge-Lsum-
Fmeasure (RL) (Lin, 2004) scores of 0.17 and
0.46 were respectively achieved. Unlike AutoNet,
TVHF dataset includes more complicated neural
architectures along with high-level human-written
textual descriptions, which makes the architecture
captioning more challenging. As a result, lower
performance is achieved.

The uni-modal AC baseline achieves an RL of
0.38 on AutoNet, which is 8% lower than the pro-
posed bi-modal ArchBERT (i.e., pre-trained on
both architectures and text, and fine-tuned for AC).

5.6 Architecture Search (AS)

ArchBERT is also applicable to Architecture
Search (AS) downstream task. The task is to de-
sign a semantic search engine to receive a textual
query from the user, search over a database of nu-
merous neural architectures (or models), and return
the best matching ones. As for any semantic search
engine, an indexed database of all searched archi-
tecture embeddings is needed, within which the
architecture search is performed. For the search
procedure over such database using ArchBERT,
the text query is encoded by the text encoder, and
then is cross-encoded to make sure the previously-
learned architectural knowledge is also utilized for
computing final text embeddings. The pooled text

Table 4: Qualitative results on various tasks (X: Cor-
rect/Similar, 7: Incorrect/Dissimilar, *: wrong preds).

Architecture Text AR ACD

ResNet18 image classifier with
residual layers X

Fasterrcnn
(ResNet50)

text classifier using
bert-based models 7

7

Bert-base object detection
for photos 7

RoBERT
(small)

text classifier using
bert-based models X

X

Vit_b_16 bert-like image
classification 7˚

Fasterrcnn
(mobilenet)

object detection for
photos X

7

ConvNext
(tiny)

a very large convnext
architecture X˚

Bert-mini language model with
attention layers X

7

Figure 3’s right
architecture
(AutoNet)

AC: "this model separable convolution
which divides a single convolution into
two convolutions"
AQA: What type of pooling is used
in this architecture?
Prediction: ’MaxPool2d’, ’AvgPool2d’

embeddings are then compared with all the architec-
ture embeddings stored in the database to find the
best matching (most similar) architectures. We did
not report any numerical analysis for AS due to the
lack of related validation set. However, qualitative
demo is available in the supplementary materials.

5.7 Qualitative Results

In Table 4, ArchBERT’s predictions on AR and
ACD tasks over some samples from TVHF vali-
dation set are given. In addition, we present the
predictions on AC and AQA tasks over the right ar-
chitecture in Figure 3 (i.e., a sample from AutoNet
validation set). Sample cases for which ArchBERT
makes wrong predictions are also given in the table
(marked with *), e.g., AR’s prediction for Vit_b_16
and ConvNext-tiny architectures.

5.8 Ablation Study

We conduct ablation study to analyze the effect
of ArchBERT’s different modules such as MAM,
Cross Encoder, and graph elements on the perfor-
mance of AR, ACD, AQA, and AC tasks. The
results are summarized in Tables 2 and 3.

First, we remove the MAM head and its loss
from the pre-training and fine-tuning stages. The
performance of the pre-trained model without
MAM is evaluated on AR and ACD with the TVHF
dataset. As seen in Table 2, excluding MAM in pre-
training results in a significant F1 drops by 7.59%
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Figure 5: Visualization of example relevant architecture and text embeddings in a 2D space (projected via PCA).

and 10.51% on AR and ACD tasks, respectively.
The effect of MAM on finetuend ArchBERT for
AQA and AC downstream tasks is also evaluated
and reported in in Tables 2 and 3. It is shown that
using MAM provides F1 score improvements of
7.35% and 0.03% on AQA and AC, respectively.

We also study the ArchBERT’s performance
when the Transformer cross encoder is not used for
encoding the architectures. In this case, the embed-
dings obtained from the architecture encoder are
directly used for training and evaluating the model
by bypassing the cross encoder. The corresponding
results on AR, ACD, and AQA tasks are given in
Table 2. From the results, when the cross encoder
is removed, the performance of both the pre-trained
and fine-tuned models decreases. This reveals the
importance of the cross encoder in joint encoding
and learning of the text and architecture. As seen
in the table, the F1 scores on AR, ACD, and AQA
tasks are substantially reduced by 14.83%, 17.75%,
and 10.18%, respectively, if the cross encoder is
not utilized for architecture encoding.

We also ran a set of ablations over different
graph items. For AR, F1 scores of 71.86% (Arch-
BERT), 69.16% (w/o shape), 68.98% (w/o edge),
and 65.80% (w/o shape+edge) are achieved. For
ACD, F1 scores of 60.10% (ArchBERT), 60.20%
(w/o shape), 47.96% (w/o edge), and 56.45% (w/o
shape+edge) are obtained. It is seen that using all
graph items provides the best results. For ACD, the
shape has no effect on F1 score, but excluding it
gives «1% lower accuracy.

The ArchBERT’s performance on out-of-
distribution data will be presented in the appendix.

5.9 Embeddings Visualization

As discussed before, ArchBERT learns to minimize
the cosine distance between relevant text and archi-

tecture embeddings, while maximizing the distance
for the irrelevant ones. To convey this concept, we
visualize the joint embeddings of example relevant
texts and architectures (i.e., Jt and Jg in Equation
2) form TVHF dataset in Figure 5. The points in
the figure are obtained by projecting the embed-
dings to a 2D space via PCA (Jolliffe, 2005). As
shown in Figure 5, the text embeddings are mapped
to the points near by their relevant architectures.
This implies that ArchBERT has learned to mini-
mize the distance between the related pairs of texts
and architectures (i.e., positive samples) and obtain
similar embeddings for them. On the other hand,
the points for the irrelevant descriptions and archi-
tectures are projected far from each other, which
shows the success of ArchBERT in maximizing the
distance between unrelated pairs.

6 Conclusion

In this paper, we proposed ArchBERT, a bi-modal
solution for joint learning of neural architectures
and natural languages. We also introduced a new
pre-training technique called Masked Architecture
Modeling (MAM) for a better generalization of
ArchBERT. In addition, two new bi-modal bench-
mark datasets called TVHF and AutoNet were pre-
sented on which the proposed model was trained
and evaluated for different downstream tasks. Five
architecture-language-related tasks and applica-
tions were introduced in this work to verify the per-
formance of ArchBERT. This work has opened up
new avenues for research in the area of architecture-
language joint understanding, particularly the pro-
posed benchmarks. Potential research directions
to this work include text-based neural architecture
generation and bi-modal learning of languages and
other graph-structured modalities such as knowl-
edge graphs and social network graphs.
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A Appendix

A.1 Code, Dataset, and Demo

In order for the results to be reproducible, we share
our test code (plus the pre-trained model files) with
detailed instructions in the supplementary materi-
als. The code also includes the scripts for generat-
ing both TVHF and AutoNet datasets.

We also uploaded 6 video files demonstrating
the performance of ArchBERT on the following
downstream tasks: architecture search (AS), archi-
tectural reasoning (AR), architecture clone detec-
tion (ACD), bi-modal architecture clone detection
(BACD), architectural question answering (AQA),
and architecture captioning (AC).

All the code and demo files are also available
here2.

BACD task is similar to ACD, except that a sup-
porting text, which is considered as an extra criteria
to refine the results, is also provided along with the
two given architectures. The average similarity
of the architectures’ embeddings with the help of
the text embeddings is evaluated to check if the
architectures are similar or not.

The video recordings were taken from a web
application we built to demonstrate the real-world
application of our method. Example screenshots of
the AR and BACD demos are shown in Figure 6.

A.2 ArchBERT’s Performance on OOD Data

In order to study the behaviour of ArchBERT on
out-of-distribution (OOD) data, we establish an-
other set of experiments on individual TV and HF
datasets that have different distributions. In this
regard, we pre-train ArchBERT on each of TVHF,

2https://developer.huaweicloud.com/
develop/aigallery/notebook/detail?id=
e6a924c7-735a-4e02-a25b-4416b77b6315

TV-only, and HF-only datasets, and evaluate their
performance on each other. The corresponding
experimental results are summarized in Table 5.

As observed in the table, the models trained on
TV and HF subsets do not generalize to each other
due to the difference in their data distributions,
which results in poor performance. The distribution
plots for TV and HF subsets are shown in Figure
8. As given in Table 5, the highest scores on each
of TV and HF subsets are obtained by the model
trained with the entire TVHF training dataset. In
order to improve the performance of our model on
OOD, some techniques such as zero-shot or few-
shot learning can be employed, which is a potential
research direction for this work.

A.3 Embeddings Visualization

In Figure 5, an embedding visualization of some
architecture-text pairs was illustrated. In Figure
7, the visualizations for two different architectures
from TVHF dataset are individually presented. The
points on the figures are obtained by projecting the
final ArchBERT’s embeddings onto a 2D space via
PCA. As shown in the plots, unlike the relevant
text embeddings (marked with `), the irrelevant
ones (marked with ˆ) are projected far from the
corresponding architecture embedddings.

A.4 Data Generation

The procedure of creating TVHF dataset along with
negative samples are given in Algorithm 1. To
generate the negative data samples, a pre-trained
S-BERT model (Reimers and Gurevych, 2019) is
used to calculate the similarity score between all
possible pairs of unique descriptions. If the max-
imum similarity score between each unique sen-
tence and all other sentences of each unique neural
architecture is smaller than a threshold 0.5, that sen-

Figure 6: Screenshots from the demos. Left: Architectural Reasoning (AR); Right: Bi-Modal Architecture Clone
Detection (BACD).

https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e6a924c7-735a-4e02-a25b-4416b77b6315
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e6a924c7-735a-4e02-a25b-4416b77b6315
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e6a924c7-735a-4e02-a25b-4416b77b6315
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e6a924c7-735a-4e02-a25b-4416b77b6315
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(a)

(b)

Figure 7: Visualization of example pairs of (ir)relevant
architecture and text embeddings in a 2D space (pro-
jected via PCA).

F1 on Validation set
Train set Task TV HF TVHF

TV
AR 85.05 3.82 28.78
ACD 58.88 22.85 23.30

HF
AR 9.19 64.26 42.43
ACD 15.42 59.98 54.57

TVHF
AR 85.32 64.39 71.86
ACD 62.77 60.01 60.10

Table 5: ArchBERT’s performance on OOD data.

tence is chosen as an irrelevant description for that
specific neural architecture. Note that 93% of the fi-
nal TVHF train set contains negative samples. The
above-mentioned procedure of generating many
negative candidates per each positive sample was
inspired by the multiple negatives sampling idea
described by Henderson et al. (2017). Having mul-
tiple negatives was proved to be effective when
used with dot-product and cosine similarity loss
function (Equation 3 in the main paper).

For TVHF-ACD dataset, all possible pairs of
neural architectures were compared based on their
structures. A hard score of 1 or 0 is then assigned
to a similar or dissimilar pair of architectures, re-
spectively. For TorchVision architectures with the
same architectural base (e.g., ResNet family), a
hard score of 1 is assigned to the pair. For Hugging-
Face models, the configuration files were compared
and in case of having similar specifications, a hard
score of 1 has been assigned to those architectures.
In overall, the TVHF-ACD dataset includes 11%
of similar pairs of architectures.

For AutoNet dataset, all unique layers of each ar-
chitecture are first extracted. To do so, an algorithm
is developed to take an architecture as input and
recursively extracts all unique modules and their
class path within that architecture. These unique
layers are then used along with a list of various
pre-defined templates to randomly generate mean-
ingful descriptions with different words and sen-
tence structures. The algorithm is then used with
modules that are not included in the architecture to
generate irrelevant descriptions that are considered
as negative data samples. Each architecture has
about 10-11 different descriptions about 30% of
which are the positive ones. The same extracted
layers and procedures are also used for automati-
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Figure 8: Distribution plots of TV and HF train and validation sub-datasets compared with each other.

cally generating the question and answer pairs, but
with a different set of templates for questions.

Algorithm 1 TVHF dataset generator

Input: Threshold β, architectures G,
pos_samples T p

Output: list of architectures plus their positive
and negative descriptions
for each unique neural architecture Gj P G do

for each unique description T p
i P T

ppGjq do
if max(SBERT(T p

i , T p
„i)) ď β then

Add Ti to TnpGjq (list of neg_samples
for jth architecture)

end if
end for

end for
return {G, (T p, Tn)}

A.5 Distribution Plots for TVHF and
AutoNet

Figure 9 shows the distribution plots of the TVHF,
AutoNet, and AutoNet-AQA datasets. For each
dataset, the plots of the training and validation dis-
tributions of the number of nodes, the number of
edges, the number of textual tokens, and the se-
quence length of the descriptions are illustrated.

A.6 Sample Data from TVHF and AutoNet
In Table 6, example positive architecture-
description pairs (for both computer vision and
natural language processing problems) from TVHF
dataset are given.

Some sample pairs of architectures (with their
corresponding "similar" or "dissimilar" ground

truth labels) from TVHF-ACD dataset are also pre-
sented in Table 7.

In Table 9, we also provide data samples for
the BACD task, which includes quartets of two
architectures, supporting description, and the sim-
ilarity label. Note that the numerical analysis of
ArchBERT over BACD is not provided because our
BACD validation dataset is not finalized to be used
for this matter.

Table 8 also presents a few data samples from
AutoNet dataset used for fine-tuning and evaluating
ArchBERT on AC task. In Table 10, sample data
from AutoNet-AQA including the automatically
generated questions and ground truth answers for
AQA downstream task are given.

In Figures 10 and 11, the visualization of all
graphs generated for the neural architectures listed
in Tables 4, 8, and 10 are illustrated.

A.7 Dataset Quality Analysis

We provide dataset quality analysis based on four
criteria: reliability and completeness, label/feature
noise, feature representation, and minimizing skew
(Google, 2022).

A.7.1 Reliability and Completeness
The reliability of data refers to how trustable the
data is, whether it has duplicated values and if it
covers both positive and negative samples. As for
dataset completeness, it refers to how much of the
relevant information is included in the dataset for
dealing with the desired problem.

In our TVHF dataset, we have collected models
and their relevant descriptions as related bi-modal
data types for the ArchBERT model to learn neu-
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Figure 9: Distribution plots of TVHF, AutoNet, and AutoNet-AQA train/validation datasets.

ral architectures along with their corresponding
natural language descriptions. We considered the
reliability and completeness of our dataset by col-
lecting various models with different architectures
designed for different tasks such as image and text
classification, object detection, text summarization,
etc. Also, the descriptions that have been assigned
to each model were collected through blog posts,
articles, papers, and documentations containing
both high/low-level information related to that spe-
cific model. Due to the limited number of human-
designed models, to make our dataset large enough
for training purposes, we used each architecture
more than once, and each time we assigned a dif-
ferent unique description to it to avoid having du-
plicate architecture-description pairs in our dataset.
Moreover, we generated negative samples by as-
signing irrelevant descriptions to the architectures,
so that the model could learn both similarities and
dissimilarities.

As discussed in Section 4, some of the descrip-
tions in TVHF dataset did not include relevant tech-
nical information to the corresponding models. We
manually reviewed the descriptions and removed
such samples. We will further enhance the descrip-
tions associated with each model within the release
of the next version of our dataset.

A.7.2 Label/Feature Noise

Label noise refers to an imperfect annotation of
data that confounds the assessment of model per-
formance when training machine learning models.
Feature noise can be defined as the noise got into
the dataset through various factors such as incorrect
collection by humans or instruments. Inconsisten-
cies in data formats, missing values, and outliers
are examples of noise created by this process.

If noise in a dataset is defined as a wrong descrip-
tion for a model, our dataset is a noise-free dataset
because we annotated the samples manually.



102

Since the description of building blocks in the
AutoNet models are converted to textual descrip-
tions and question samples automatically, all the
generated samples are relevant and noise-free.

For our ACD dataset, we manually hard-labeled
the models based on their similarity with each an-
other. Therefore, there is no missed or wrongly
labeled example in the entire dataset.

A.7.3 Feature Representation
Mapping data to useful features while presenting
them to the model is defined as feature representa-
tion. In this case, we consider how data is presented
to the model and whether the numeric values need
to be normalized.

To show our data to the ArchBERT model, we
have been consistent in the following way. For ar-
chitectures, based on their computational graphs,
we extracted nodes, shapes, and edges, which the
major and sufficient items to represent an architec-
ture in our work. We then normalized these items
and passed them to the model. As for descriptions,
we represented each textual description with to-
kens, normalized them, and used them as inputs to
the model.

A.7.4 Minimizing Skew
One of the reasons that may cause getting different
results for computed metrics at training vs. valida-
tion stages is training/validation skew. It usually
happens when different features are presented to
the model in training and validation stages.

We have collected our data and presented them
to the model in the way that both training and vali-
dation stages receive the exact same set of features
coming from the same distribution. This guaran-
tees that our data is not skewed towards training or
validation stages.
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Table 6: Positive data samples from the TVHF dataset (TV: TorchVision, HF: HuggingFace).

Architecture Description Source
vit_b_16 adopted from BERT TV

segmentation.deeplabv3_resnet101
Improved version of DeepLab v2, with optimi-
zation of ASPP layer hyper parameters and
without a Dense CRF layer, for faster operation.

TV

resnet101

Residual Networks, or ResNets, learn
residual functions with reference to the
layer inputs , instead of learning unreferenced
functions.

TV

densenet121

A DenseNet is a type of convolutional
neural network that utilises dense connections
between layers, through Dense Blocks,
where we connect all layers (with matching
feature-map sizes) directly with each other

TV

resnext50_32x4d
ResNeXt is a homogeneous neural network
which reduces the number of hyper parameters
required by conventional ResNet.

TV

detection.keypointrcnn_resnet50_fpn 12 Million Parameters, 2 Billion FLOPs and
File Size is 47.08 MB. TV

DemangeJeremy/4-sentiments-with-flaubert This model is a fine-tuned version of
google/fnet-base on the GLUE WNLI dataset HF

ctoraman/RoBERTa-TR-medium-char Model architecture is similar to bert-medium
(8 layers, 8 heads, and 512 hidden size) HF

google/t5-efficient-base-dm1000
T5-Efficient-BASE-DM1000 is a variation of
Google’s original T5 following the T5 model
architecture.

HF

microsoft/unihanlm-base
a self-supervised Chinese-Japanese pre-trained
masked language model (MLM) with a novel
two-stage coarse-to-fine training approach.

HF

facebook/wmt21-dense-24-wide-en-x
WMT 21 En-X is a 4.7B multilingual
encoder-decoder (seq-to-seq) model trained
for one-to-many multilingual translation.

HF

Table 7: Positive and negative data samples from TVHF-ACD validation set (TV: TorchVision, HF: HuggingFace,
0: dissimilar, 1: similar).

Architecture 1 Architecture 2 Label Source
vgg11 vgg19_bn 1 TV
mnasnet0_5 mnasnet0_75 1 TV
inception_v3 efficientnet_b3 0 TV
efficientnet_b1 regnet_x_800mf 0 TV
google/t5-efficient-large-kv128 google/t5-efficient-small-kv16 1 HF
jweb/japanese-soseki-gpt2-1b tartuNLP/gpt-4-est-large 1 HF
hakurei/gpt-j-random-tinier minimaxir/magic-the-gathering 0 HF
mwesner/bart-mlm tartuNLP/gpt-4-est-base 0 HF
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Table 8: Positive and negative data samples from AutoNet (Architecture: list of unique layers, 0: negative sample,
1: positive sample).

Architecture Description Label

’Conv2d’,
’PosEnc’,
’ReLU’,

’BatchNorm2d’,
’Linear’,

’Dropout’,
’LayerNorm’,

’GELU’,
’Dil_conv2d’,

’Zero’,
’MaxPool2d’,
’AvgPool2d’,

’AdaptiveAvgPool2d’

This architecture contains 2d max pooling layer which is a pooling
operation that calculates the maximum value, and Gaussian Error Linear
Units (gelu) activation function which is a smoother version of RELU.
It also has 2D Adaptive Average pooling layer.

1

This neural network has Layer normalization over input across the features
instead of batch dimension, and linear module which applies a linear
transformation to the incoming data. It also contains Dropout layer that is
used to drastically reduce the chance of overfitting during training.

1

This classification neural network includes 2D average pooling layer used
for calculating the average for each patch of the feature map and has
about 1.18 Million parameters. In Totall, this neural network architecture has
432 layers, and, it has 95 Conv2d, 1 PosEnc, 80 ReLU, 79 BatchNorm2d,
62 Linear, 46 Dropout, 30 LayerNorm, 15 GELU, 15 Dil_conv2d, 4 Zero,
2 MaxPool2d, 2 AvgPool2d, and 1 AdaptiveAvgPool2d layer.

1

This neural architecture has 2D frozen batch normalization module in which
the batch statistics and the affine parameters are fixed, and Anchor
Generator module which is a standard for 2D anchor-based detectors.
Additionally, this architecture contains stochastic depth layer which aims to
shrink the depth of a network during training.

0

This classifier includes 2D transposed convolution layer that applies convolution
with a fractional stride.

0

’Conv2d’,
’Hardswish’,

’GeLU’,
’AvgPool2d’,

’Sep_conv2d’, ’
AdaptiveAvgPool2d’,

’Dropout’

This classification neural architecture has Separable Convolution which
divides a single convolution into two or more convolutions to reduce the
number of parameters while producing the same output, and Hard Swish
activation function that replaces the computationally expensive sigmoid
with a piecewise linear analogue. This classifier also includes 2D average
pooling layer used for calculating the average for each patch of the feature
map.

1

This network includes Dropout layer that is used to drastically reduce
the chance of overfitting during training, and 2D Adaptive Average pooling
layer. This neural architecture has about 0.38 Million parameters.

1

This classification architecture includes generalized rcnn transform
module which performs input transformation before feeding the data
to a GeneralizedRCNN model, and Quantize stub module that is a
place holder for quantize operation. Another part of this neural network
is ReLU6 activation function which is a modification of the rectified linear
unit (relu) where the activation is limited to a maximum size of 6.

0

This architecture contains Layer normalization over input across the features
instead of batch dimension, and dequantization module which converts tensors
from quantized to floating point.

0
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Table 9: Positive and negative data samples for BACD task (TV: TorchVision, HF: HuggingFace, 0: dissimilar, 1:
similar).

Architecture 1 Architecture 2 Supporting text Label Source

resnet18 segmentation.fcn_resnet101
A model containing
residual connection

1 TV

mnasnet0_5 vgg19
An architecture for
image classification

1 TV

wide_resnet101_2 segmentation.deeplabv3_resnet50
An architecture for
image classification

0 TV

resnet34 alexnet
A model containing
residual connection

0 TV

ctoraman/
RoBERTa-TR-medium-char

ctoraman/
RoBERTa-TR-medium-wp-66k

Model architecture is
similar to bert-medium

1 HF

dbmdz/
electra-base-turkish-cased-discriminator

skplanet/
dialog-koelectra-small-generator

containing ELECTRA
for self-supervised
language representation
learning

1 HF

rmihaylov/
pegasus-base-cnn-dailymail-bg

TristanBehrens/js-fakes-4bars
A model for
summarization

0 HF

facebook/
m2m100-12B-avg-10-ckpt

google/t5-11b-ssm-nqo
A pre-trained model
for Question Answering

0 HF

Table 10: Data samples from AutoNet-AQA (Architecture: list of unique layers).

Architecture Question Ground Truth Answer

Conv2d,
BatchNorm2d,

ReLU,
Dil_conv2d,
Sep_conv2d,
AvgPool2d,

AdaptiveAvgPool2d,
Linear

what type of pooling module has been used in
this neural architecture?

AvgPool2d,
AdaptiveAvgPool2d

what 2d average pooling layer performs in
this neural network?

calculating the average for each
patch of the feature map

what 2d Dilated Convolution module does in
this network?

creating a wider kernel by inserting
spaces between the kernel elements

what 2d max pool kernel size has been used in
this network?

This model does not include
MaxPool2d

in general what kernel size are used in this
neural network model?

5*5,1*1,3*3

’Conv2d’,
’GELU’,

’MaxPool2d’,
’LayerNorm’,

’Linear’,
’Hardswish’

’Dil_conv2d’,
’LayerNorm’

what 2d max pooling module calculates in
this neural network?

calculating the maximum value
for each patch of the feature map

what type of normalization layer is used after
convolution in this neural network architecture?

LayerNorm

what type of activation layer has been used in
this neural network model?

GELU, Hardswish

what hard sigmoid module performs in this model?
This model does not include
Hardsigmoid

overall what kind of layers are included in this
neural network architecture?

’Conv2d’, ’GELU’, ’MaxPool2d’,
’LayerNorm’, ’Linear’, ’Hardswish’
’Dil_conv2d’, ’LayerNorm’
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(a) ResNet18 (b) Fasterrcnn-ResNet50-FPN (c) ConvNext-tiny

(d) Vit-16-b (e) BERT-base (f) RoBERT-small

(g) BERT-mini (h) Fasterrcnn-MobileNet-Large-FPN

Figure 10: Graphs generated for the architectures listed in Table 4



107

(a) Architecture with layers: Conv2d, Batch-
Norm2d, ReLU, Dil_conv2d, Sep_conv2d, Avg-
Pool2d, AdaptiveAvgPool2d, Linear

(b) Architecture with layers: Conv2d, PosEnc,
ReLU, BatchNorm2d, Linear, Dropout, LayerNorm,
GELU, Dil_conv2d, Zero, MaxPool2d, AvgPool2d,
AdaptiveAvgPool2d

Figure 11: Graphs generated for the architectures listed in Tables 8 and 10.


