
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 38–57
December 6–7, 2023. ©2023 Association for Computational Linguistics

38

On the Effects of Structural Modeling for Neural Semantic Parsing

Xiang Zhanga and Shizhu Heb and Kang Liub and Jun Zhaob

aSchool of Artificial Intelligence, University of Chinese Academy of Sciences
bThe Laboratory of Cognition and Decision Intelligence for Complex Systems,

Institute of Automation, CAS
{xiang.zhang,shizhu.he,kliu,jzhao}@nlpr.ia.ac.cn

Abstract

Semantic parsing aims to map natural language
sentences to predefined formal languages, such
as logic forms and programming languages, as
the semantic annotation. From the theoretic
views of linguistic and programming language,
structures play an important role in both lan-
guages, which had motivated semantic parsers
since the task was proposed in the beginning.
But in the neural era, semantic parsers treat-
ing both natural and formal language as se-
quences, such as Seq2Seq and LLMs, have
got more attentions. On the other side, lots of
neural progress have been made for grammar
induction, which only focuses on natural lan-
guages. Although closely related in the sense
of structural modeling, these techniques hadn’t
been jointly analyzed on the semantic parsing
testbeds. To gain the better understanding on
structures for semantic parsing, we design a
taxonomy of structural modeling methods, and
evaluate some representative techniques on se-
mantic parsing, including both compositional
and i.i.d. generalizations. In addition to the
previous opinion that structures will help in
general, we find that (1) structures must be
designed for the specific dataset and general-
ization level, and (2) what really matters is not
the structure choice of either source or target
side, but the choice combination of both sides.
Based on the finding, we further propose a met-
ric that can evaluate the structure choice, which
we believe can boost the automation of gram-
mar designs for specific datasets and domains.

1 Introduction

Semantic parsing is the task to transduce source
sentences in natural languages (NL), into the target
representations, which are usually artificial formal
languages (FL), such as Lisp, λ-calculus, and SQL.
Theoretically natural languages are processed in
structures (Chomsky, 2009), and the formal lan-
guages are also defined to have a context-free syn-
tax (Linz and Rodger, 2022). Therefore inevitably

semantic parsers such as the CCG-based are aware
of source structures, and adopt the compositional
semantics 1 of the targets. But they usually parse
to λ-calculus (Venant and Koller, 2019) and do not
support programming languages.

Semantic
Parsing Encoder Decoder

Make me a meeting with
my team . We need a room

(Yield :output (Create-
CommitEventWrapper :
event (…

Yield :output

Create…
Grammar Induction

Make me We need…

a …

Figure 1: Structural modeling in two tasks. We’re going
to analyze how the progress in grammar induction could
help neural semantic parsing.

In the neural era, Seq2Seq based parsers add
supports to any sequential languages, but they can
make grammar errors despite the effectiveness.
Grammar-based parsers are proposed to ensure the
grammatical correctness by decoding the rule se-
quences of the target AST. Recently, the develop-
ment of the Text-to-SQL has motivated specialized
parsers to support the SQL language. But the NL
structures on the source side are seldom handled
and left to pretrained large models.

On the contrary, NL structures are the key issues
of treebanks like PTB and supervised parsers. The
grammar induction field has also invented many
methods to induce grammars with restricted forms
from unsupervised training data. These parsers can

1Typical compositions are β-reductions in the λ-calculus
and the unification in the functional grammar.

39

infer trees for new sentences, but don’t process the
semantic annotations obviously.

Unfortunately, no investigations had been con-
ducted on the combination of the success of the two
fields. Our research question (RQ) is thus as fol-
lows: Is structural modeling of the natural lan-
guage or the formal language useful for neural
semantic parsing? To answer the question, we use
the encoder-decoder architecture with the attention
mechanism to connect structures of two sides, due
to its success of modeling token-level correlations.
Our investigations are kept diverse in several impor-
tant factors, such as the dataset variety, categories
of structures, and generalization levels (I.I.D., com-
positional, or zero-shot). Under every possible
combination of these factors, results are believed
more faithful than single datasets (Finegan-Dollak
et al., 2018).

Our evaluations add new knowledge to prior in-
sights (Oren et al., 2020). We find it’s not safe to
claim the effectiveness for specific structural mod-
els for either NL or FL. The structures of NL and
FL must be evaluated as a whole, and their effects
even vary across datasets and generalization levels.
Therefore, we make the conclusion that the com-
bination of structural choices are more important
than the structural choice on either the source or
target side. The result is consistent with the one of
the findings from Guo et al. (2020) in that different
grammars, leading to different tree structures, have
significantly different performance when keeping
the same semantic representations and datasets.

These arguments in total suggest we can ex-
pect improvements from searching for better struc-
tural combinations on specific application domains.
However, grammar search is not trivial but can be
highly expensive. Inspired by the recent works in
Large Language Models (LLMs) which can handle
the code inputs well, we propose the metric, Dis-
Struct, for evaluating the structural combination of
the source and target sides based on the representa-
tions given by the LLMs and the optimal transport.
The metric can be interpreted as the discrepancy
between the specific training and testing splits un-
der the structural choices. The metric is shown
negatively correlated with the parser performance.
It thus will help the automation of the grammar
search theoretically.

In summary, we make three contributions as:

• We’re the first to classify and compare repre-
sentative structural models for neural semantic

parsing, to our best knowledge.

• By evaluating the models against a few diverse
testbeds, we find that structural combinations
are more important than structural choice of
either the natural or formal languages.

• We propose a metric of the structural combi-
nations that is negatively correlated with the
model performance which can speed up the
structure searching.

2 Evaluation Framework

2.1 Datasets
As suggested by Finegan-Dollak et al. (2018), we
conduct the experiments on a variety of datasets,
which are different in sizes, anonymized query
amounts, nested query depths, and involved SQL ta-
ble amounts. We use the ATIS, GEO, Scholar, Ad-
vising (Oren et al., 2020), COGS (Kim and Linzen,
2020), and SMCalFlow-CS (Yin et al., 2021). The
selection also covers several semantic representa-
tions. Table 1 gives the statistics. For the gen-

Dataset Split # Examples
(train / dev / test)

ATIS (SQL) I.I.D. 3014 / 405 / 402
ATIS (SQL) Program 3061 / 375 / 373

Advising (SQL) I.I.D. 3440 / 451 / 446
Advising (SQL) Program 3492 / 421 / 414

Geo (SQL) I.I.D. 409 / 103 / 95
Geo (SQL) Program 424 / 91 / 91

Scholar (SQL) I.I.D. 433 / 111 / 105
Scholar (SQL) Program 454 / 97 / 98

COGS (λ-calculus) I.I.D. 24160 / 3000 / 3000
COGS (λ-calculus) Linguistic 24160 / 3000 / 21000

SMC16 (Lispress) Domain 25424 / 1324 / 1325
SMC32 (Lispress) Domain 25440 / 1324 / 1325
SMC64 (Lispress) Domain 25472 / 1324 / 1325

SMC128 (Lispress) I.I.D. 25536 / 1324 / 1325
SMC128 (Lispress) Domain 25536 / 1324 / 1325

Table 1: The number of examples in each dataset. Dif-
ferent kinds of generalizations are explained in Sec-
tion 2.1. SMCk denotes the SMCalFlow-CS dataset
with k few-shot examples added into the training set.
We manually shuffle the SMC-128 to build an I.I.D. split.
The representation of each dataset is in the parenthesis.

eralization levels, three have been proposed for
the Question Answering task, i.e., the I.I.D., com-
positional, and zero-shot generalization(Gu et al.,
2021). For semantic parsing, usually only the
first two levels are considered. The I.I.D. gener-
alization is just a uniformly random shuffle and

40

split of the entire corpus. For the compositional
generalization (CG), there isn’t a standard split
procedure currently. In our work, ATIS, GEO,
Scholar, and Advising adopt the program-based
split, which anonymize SQL queries as program
templates and split the data at the template level.
The COGS constructs CG examples in a linguis-
tic view. The SMCalFlow-CS adopts the domain-
based split, which uses single-domain questions
for training, and questions requiring multi-domain
knowledge for testing.2

2.2 Problem Formalization

We are focusing on encoder-decoder models to map
a source sentence X into the target formal language
Y . Basic forms of X,Y are provided as linear
sequences, i.e. X = (x1, x2, . . . , xn) and Y =
(y1, y2, . . . , ym), where each xi and yj are tokens.
Trees of source and target sides are denoted as S, T
with respectively X and Y as their leaf nodes. For
both S, T , three structural choices are available:
absent, latent, and given. An absent structure is a
pure sequence. Latent structure means the tree is
not observed and jointly learned from the training
data. Given structures rely on external parsers. The
combination of choices of S, T yields a total of 9
probabilistic models as in Table 2.

Model Form S Choices T Choices

P (Y | X) Absent Absent
P (Y, T | X) Absent Latent
P (T | X) Absent Given

P (S | X)P (Y | S,X) Latent Absent
P (S | X)P (Y, T | S,X) Latent Latent
P (S | X)P (T | S,X) Latent Given

P (Y | S,X) Given Absent
P (Y, T | S,X) Given Latent
P (T | S,X) Given Given

Table 2: Probabilistic forms for all Seq2Seq-style mod-
els in comparison. Structures of both side can be one
of three choices. If S is latent, training another model
P (S | X) is necessary to infer S.

Note we only consider the deterministic parsers
instead of the generative ones. The models must
predict at least one variable of the target side, given
at least one variable of the source side. We’ve
noticed several works using generative grammars
(Qiu et al., 2021; Kim, 2021; Shaw et al., 2021)

2Others like length-based and divergence-based splits
(Shaw et al., 2021; Keysers et al., 2020) are not included
for comprehensiveness due to limited computation resources.

based on the notions of synchronized and quasi-
synchronized CFGs. Due to the prevalence of de-
terministic semantic parsers, we leave generative
models in the future work.

2.3 Selected Structural Models

We briefly list the concrete models for structural
choices in Table 3. The implementations and hyper-
parameters are left in the Appendix. Referring the
original papers is also recommended for details.

S Model

Absent
Bidirectional LSTM
BERT (Devlin et al., 2019)
Electra (Clark et al., 2020)

Latent

ON-LSTM (Shen et al., 2019)
DIORA (Drozdov et al., 2019)
PCFGs (Kim et al., 2019a; Yang et al., 2021)
Perturb & Parse (PnP) (Corro and Titov, 2019b)

Given Berkeley Parser + GCN

T Model

Absent LSTM
Latent ON-LSTM (Shen et al., 2019)
Given Handcrafted EBNF Grammars + LSTM

Table 3: Models for corresponding S and T choices.

Among the S choices, PnP gives a latent depen-
dency tree, while others including the Berkeley
Parser (Kitaev et al., 2019; Kitaev and Klein, 2018)
produce constituency trees. For the T choices, all
methods are focusing on constituency trees because
formal languages have been defined with CFGs.

Note if T is given, we manually construct the
grammar for COGS and SMCalFlow-CS, and use
the grammar induced by Oren et al. (2020) for other
datasets3. We use a parser generator to load gram-
mars and follow the grammar-based parsing (Kr-
ishnamurthy et al., 2017; Yin and Neubig, 2018) to
use LSTM to model the production rule sequence.

2.4 Evaluation Method

We use the Exact Match (EM) to measure accura-
cies. For absent and latent T choices, the genera-
tion target must be the same tokens as Y . When
the oracle T is given, the model must similarly
generate the same rule sequences of that T .

We have to report the aggregated results be-
cause the experiment number is proportional to
#datasets × #generalization-levels × #S-models

3The CFG grammar of dataset are in the Appendix E to G.

41

× #T -models × #random-seeds4. The merit of re-
sults aggregation is its robustness. For example,
once we find the ON-LSTM as the decoder useful,
it is expected to generalize and work well under
a variety of settings. Winning or losing on one
setting is not critical.

For analysis, we assign each experiment result
with factor labels, and the results will be aggre-
gated under the perspective of factors. The factors
we considered are representation types, S-choices,
T-choices, and syntactic tree types. For example,
when focusing on T-choices, we can compare ac-
curacies of the 3 labels on a specific dataset and
split. Each number is mean-aggregated over all S
models, like the “GROUP BY” in SQL. The ag-
gregation view will help us focus on what we’re
interested in and not get lost in enormous results.

3 Results Analysis

3.1 Lateral Structural Modeling

We first focus on aggregations for single factors
on compositional generalization (CG). Each factor
label corresponds to aggregated accuracies on 9
datasets, which are plotted as a single box.

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%
50.0%

S given-consti S latent-consti

S latent-dep S absent

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

T absent T latent T given

Figure 2: Accuracies viewed in S and T choices. Each
bar is a distribution across all 9 CG datasets.

Figure 2 shows the absent S structure outper-
forms others, followed with given S then the latent.
The constituency trees are also better than depen-
dency trees. On the target side, the latent T is on a
par with absent T , beating the given T by a large
margin. Results on both sides suggest no struc-
tural bias is the best choice. Furthermore, when we
zoom in the aggregation as in Figure 3, it’s clearly
the low performance of the latent S is caused by
many poor latent models. Incredibly, among the

4Following Oren et al. (2020), we run experiments on SQL
datasets with 5 random seeds because they’re small. Raw
accuracies without aggregation are listed in Appendix D.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

LSTM

ONLSTM

BERT

Electra

DIORA

C-PCFG

TD-PCFG

PnP

Berkeley Parser

Figure 3: Accuracies viewed in S models. Each bar is
the distribution of accuracies on 9 CG datasets.

latent S, the ON-LSTM works even as well as the
Electra, and only falls behind BERT perhaps due
to the parameter scales.

Takeaway Structural modeling CAN be useful.
But finding a good discrete structure is not trivial.
While handcrafted grammars of formal languages
can be harmful, supervised parsers for natural lan-
guages are not that bad. Overall, a latent structural
bias like ON-LSTM is the most promising.

3.2 Combinations of Source and Target

T absent T latent T given
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

S given-consti S latent-consti S latent-dep S absent

Figure 4: Accuracies viewed in combinations of each S
and T choice, on 9 CG datasets.

We further analyze results of each S and T choice
combination in Figure 4. The accuracy relations
are similar to the S and T choices in Figure 2, with
a few exceptions. First, when T structure is given,
there’s not much difference between the given and
latent S choices. Therefore, the handcrafted gram-
mars (the given T) are proven poor such that no
trivial structural bias for the NL can be found to co-
operate with it. Only with absent S structures can
the performance be improved at this time. Second,
when S is the latent dependency tree, the latent T
is the worst, contrary to the right boxplot in Fig-

42

ure 2. This suggests that a latent dependency tree
for S and a latent constituency tree for T are not
compatible.

Takeaway Some incompatible combinations of
the source and target choices of structural biases
can lead to a performance below the average of any
choice on its own.

3.3 Latent Source Structures

Section 3.1 shows that there’re big discrepancies
among the latent S models. We first compare the
PCFGs in Figure 5. The Compound PCFG (Kim
et al., 2019a) and TD-PCFG (Yang et al., 2021) are
chosen as two basic PCFG variants. In addition,
we build a reduced version for each of them by
summing out the non-terminals at each cell in the
parsing chart with a learnt prior, such that the cell
will only store the representation of a span, instead
of the representations of a span of every possible
non-terminal. This trick can reduce the chart size
from O(n2K) to O(n2), where K is the number
of nonterminals. Appendix A lists more details.

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%
16.0%
18.0%
20.0%

R-C-PCFG R-TD-PCFG C-PCFG TD-PCFG

T absent T latent T given

Figure 5: Accuracies for different PCFGs as encoders
against different T choices on the GEO datasets with
compositional generalization.

In general, the full rank C-PCFG performs better
than its counterpart TD-PCFG with decomposed
and less parameters. The reduced PCFGs can also
outperform the basic ones. With latent and given
T choices the C-PCFG works also well, but is not
as good as the reduced version. This suggests a
less constrained structural bias like the reduced
PCFGs not storing non-terminals in the chart can
be much better than the fully-fledged PCFGs. We
therefore only evaluates the reduced PCFGs on
other datasets because they have higher accuracies
and less memory consumption.

Figure 6 shows only the performance of latent
S models against different T choices. The ON-
LSTM clearly beats other encoders, followed by

T absent T latent T given
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

ON-LSTM DIORA R-C-PCFG R-TD-PCFG PnP

Figure 6: Accuracies for latent S models with differ-
ent target T choices. Each bar is the distribution of
accuracies on 9 CG datasets.

the DIORA encoder. Altogether with the Figure 5,
we can make some interesting conclusions. First,
by summing out non-terminals, reduced PCFGs
have outperformed the basic models. Then, the
DIORA discards non-terminals in its parameteriza-
tion, and only considers compositions over spans
with a chart-based parsing and an inside-outside al-
gorithm. And it has beaten the PCFGs, Finally, the
ON-LSTM which does not forcing syntactic trees
being of Chomsky Normal Form, has achieved the
best performance.

Takeaway Latent structural biases with less con-
straints would be better choices. Enforcing syn-
tactic categories may not be suitable for neural
semantic parsing.

3.4 Differences between Accuracies
The above findings tell us we have to find the com-
patible structural biases in general. In this section
we compare the structural choices among different
datasets. We focusing on the T choices and do not
aggregate results of datasets and S choices. Specif-
ically, we subtract the number of absent and latent
T accuracies with the number of given T accura-
cies. As long as the differences are positive, the
absent and latent T will be considered outperform-
ing the given T that is constructed from handcrafted
grammars. For the latent T, we only consider the
best 3 models from previous analysis, i.e., the ON-
LSTM, DIORA, and PnP. We consider both the
I.I.D. and compositional generalizations, as shown
in Figure 7.

The most intuitive result in Figure 7 is that
among various datasets the given T is not con-
sistently bad. On the SMCalFlow, the given T is
outperformed by the absent and latent T , but the
margins are not that large on other datasets in the

43

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

smc128 advising atis cogs geo scholar

S-absent S-latent S-given

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

T-
ab

se
nt

T-
la
te
nt

smc128 advising atis cogs geo scholar

S-absent S-latent S-given

Figure 7: Differences subtracted the given T accuracies
from the latent and absent T, under each dataset and
each S-choice, with I.I.D. (Top) and compositional gen-
eralization (Down). Positive values mean that the latent
or absent T outperforms the given T, while negative
values suggest the given T is better.

I.I.D. setting. For the compositional generalization
(the lower subfigure), we can even see the given T
has not been outperformed on ATIS and GEO, but
is poor on Advising and Scholar. Moreover, on the
same dataset like ATIS and GEO, the handcrafted
grammar is harmful on I.I.D. but useful on C.G.
Also, the results on T choices are slightly different
under different S choices, which again supports the
compatibility argument in previous sections.

Takeaway Grammars of the formal languages
can’t be simply classified as useful or not. There
must be an optimal grammar, depending on the
datasets and generalization levels.

3.5 Discussions

After analyzing the structural modeling methods in
different views, we’re trying to answer our basic
research question (RQ) based on the findings to
make the answers and even the question itself much
clearer.

RQ: Is structural modeling of the natural lan-
guage or the formal language useful for neural
semantic parsing? Yes AND no. It depends on
the models. In general we find that models with-

out structures (BERT) and with latent structures
(ON-LSTM) are better for the natural language,
but other structures are not useful. Specifically,
the ON-LSTM is even better than the finetuned
Electra as the encoder. For the formal languages,
we find the latent structural model (ON-LSTM) is
much better, but the handcrafted grammar-based
decoding is poor (Section 3.1).

Why are the structural models that different?
We hypothesize that the differences are rooted in
the strictness of structural constraints of the models.
For constituency trees, we find the more structural
restrictions required by the model, the worse per-
formance it would be (Section 3.3). Among these
models, ON-LSTM neither differentiates syntactic
categories, nor requires the Chomsky Norm Form
tree, and has outperformed other models.

Since the ON-LSTM is proven effective, can
we use it all the time? No. We’re not recom-
mending ON-LSTM for all situations. Because the
compatibility of structural choices is more impor-
tant. If the encoder is a structural model based
on dependency trees, the ON-LSTM decoder will
not perform well neither. What is really crucial is
the encoder-decoder choices combined as a whole
(Section 3.2).

Shall we use the best combination, the ON-
LSTM for both the encoder and decoder? Not al-
ways. We further find the same structural combina-
tion could be not the same effective on all datasets
and all generalization levels (Section 3.4). On the
GEO with the compositional generalization, ON-
LSTM performs worse than handcrafted grammars.
In fact, the absent T can be seen a special struc-
ture, the right-branching tree with autoregressive
decoders like RNNs. For example, an SQL query
sequence is equivalent to the tree like (SELECT
(* (FROM (tableA (WHERE (...))))). Therefore,
the question is in fact asking what kind of trees are
better, for the natural and formal languages, com-
bined as a whole, under a specific dataset and a
generalization level. We’re going to handle this in
Section 4. But, if the datasets and generalizations
are not our concerns, the BERT or ON-LSTM as
the encoder with the ON-LSTM decoder is recom-
mended according to the above findings.

4 Metric for Structural Evaluation

Taking sequences as the right-branching trees, the
models we’ve discussed can all parse an example
(x, y) to its structures (s(x), t(y)). But the gener-

44

alization performance is not only determined by
some smart structural choices. It also depends on
the dataset and the generalization level. However,
it’s expensive to manually design good structures,
or to optimize a parameterized structural policy.
Because on one hand we have to train and then
evaluate a parser every time we need to confirm
the effectiveness of that policy. On the other hand,
even a parser jointly learning mappings and latent
structures may work poorly according to above
findings.

Inspired by the recent success on large language
models (LLMs) (Sun et al., 2022) such as the
Codex (Chen et al., 2021) which can read and
write programming source codes well, we propose
a learning-free metric for the structures based on
the representations generated by LLMs, such that
it’s correlated with the performance.

Specifically, to evaluate a pair of structural mod-
els (s, t) for a dataset D = (x, y)i, we first define
the distance between a parallel sequence (x, y),

ex, ey =LLM(x), LLM(y) (1)

es, et =f(s(x), ex), f(t(y), ey) (2)

ds,t,D =E(x,y)∈D[emd(us, ut, cost(es, et))] (3)

where ex ∈ Rn×k, ey ∈ Rm×k are the k-
dimensional representations generated by some
LLM that can understand both natural and formal
languages, s(·), t(·) are the parsers or policies that
output tree structures for x, y, and the f computes
the representation of each tree node. We define
the leaf nodes have the same representations in
ex, ey, and internal nodes get their representations
by mean-pooling of its children nodes. us ∈ Rl

and ut ∈ Rr are discrete uniform distributions,
where l, r are node numbers of s(x), t(y) respec-
tively. The emd function returns the Earth Moving
Distance (Peyré et al., 2019) of us, ut under the
cost matrix defined by euclidean distances of es, et.
ds,t,D is the minimal transport cost from X to Y
for the entire dataset D. We utilize the POT tool-
box (Flamary et al., 2021) to compute the optimal
transport. Then given the training and testing sets
Dtrain, Dtest, the DisStruct metric is defined as

M(s, t) =
|E[ds,t,Dtrain]− E[ds,t,Dtest]|
σ[ds,t,Dtrain]σ[ds,t,Dtest]

(4)

where the expectation E and standard deviation σ
are implemented by re-running with a few random
seeds. In our evaluation, we sample 50 examples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Ac
cu

ra
ci

es

DisStruct Metric

ChatGLM-6B Falcon-7B Baichuan-7B

Linear (ChatGLM-6B) Linear (Falcon-7B) Linear (Baichuan-7B)

Figure 8: Fitting the metrics of different (S, T) choices
to the accuracies on different datasets and generaliza-
tions. We include the absent S and both absent and given
T, showing whether the metric can reflect the differences
between the grammar-based and the sequence-based
structures of the formal languages. Metrics computed
with 3 chosen LLMs are all shown negatively correlated
with the performance.

for the expectation in Eq.(3), and rerun 10 times
for Eq.(4).

Intuitively, given structural choices (s, t), the
DisStruct evaluates the distances of x and y of a
single example, and computes the distance discrep-
ancies between Dtrain, Dtest. Therefore, we can
expect higher performance by finding lower metric
values from some (s, t) pair. Figure 8 illustrates the
correlations. Although every (s, t) can yield a met-
ric value, we plot only two kinds of pairs (absent,
absent) and (absent, given) and investigate whether
the metric can tell apart the differences between
the grammar-based and the sequence-based struc-
tures. With three recent LLMs5 that we can load
with less than 24GB GPU, the metrics are shown
all negatively correlated with the performance as
expected.

Since each fitted linear model has a low R2 value
(i.e., plots far from the fitted line), we examine
the results by datasets. As long as the metric can
indicate performance for datasets, it’ll be possible
to probe or search structural choices for a specific
dataset we’re interested in. For each dataset under
a generalization level, we only have 2 points. We
computed the slope of the line determined by the

5ChatGLM-6B (Du et al., 2022): https://github.
com/THUDM/ChatGLM-6B; Falcon-7B (Almazrouei et al.,
2023): https://huggingface.co/tiiuae/falcon-7b;
Baichuan-7B: https://huggingface.co/baichuan-inc/
baichuan-7B.

https://github.com/THUDM/ChatGLM-6B
https://github.com/THUDM/ChatGLM-6B
https://huggingface.co/tiiuae/falcon-7b
https://huggingface.co/baichuan-inc/baichuan-7B
https://huggingface.co/baichuan-inc/baichuan-7B

45

0

2

4

6

8

10

12

14

16

18

<-0.2 [-0.2,0) [0,0.2) >0.2

ChatGLM-6B Falcon-7B Baichuan-7B

Figure 9: On each dataset and generalization level (to-
tally 13 here), we compute metrics for two pairs, i.e.
(absent, absent) and (absent, given), corresponding to
two points in Figure 8. We plot the histogram for the
slope of each line determined by the two points. The
slopes are negative and are also low when positive, sug-
gesting the metrics are possibly indicative for specific
datasets and generalization level.

two points, and plot the histogram of the slopes
in Figure 9. Hopefully, the slopes are negative at
more than 50% times, and are also relatively small
even it’s positive. We also find the metrics based on
ChatGLM-6B and Falcon-7B are more ideal than
Baichuan-7B.

5 Related Works

Many representations have been used for semantic
parsing. Popular representations include seman-
tic roles, FOL or λ-calculus (Zettlemoyer and
Collins, 2005, 2007; Wong and Mooney, 2007),
λ-DCS (Liang et al., 2013), FunQL (Kate et al.,
2005; Guo et al., 2020), application-specialized
query graphs (Yih et al., 2015; Chen et al., 2018;
Hu et al., 2018), and programming languages like
SQL (Xu et al., 2018), Java (Iyer et al., 2018; Alon
et al., 2020), and Python (Yin and Neubig, 2017;
Rabinovich et al., 2017). Linguists also design
meaning representations such as AMR (Banarescu
et al., 2013), ERS (Flickinger et al., 2014), and
UMR (Van Gysel et al., 2021). Abend and Rap-
poport (2017) had reviewed many semantic repre-
sentations in a linguistic-centric perspective, and
Li et al. (2022) had proposed a metric to evaluate
different representations. Our discussions are not at
representation level (only the lispress, λ-calculus,
and SQL are used), but on structure effects under
maybe a fixed representation.

Classic semantic parsers used to assign cate-
gories to linguistic or semantic fragments, and com-

pose them in a bottom-up fashion. Some typical im-
plementations are based on CCG (Zettlemoyer and
Collins, 2005), SCFG (Wong and Mooney, 2006),
Hyperedge Replacement Grammar (Chiang et al.,
2013), and AM Algebra (Groschwitz et al., 2017,
2018; Weißenhorn et al., 2022). Other parsers do
not define linguistic categories, but use feature en-
gineering or types to guide composing algorithms
(Liang et al., 2013; Pasupat and Liang, 2015).

Neural parsers like Seq2Seq (Xiao et al., 2016)
adopt end-to-end mappings but can make grammar
errors. Seq2Tree (Dong and Lapata, 2016) is then
proposed to generate grammatically valid trees for
untyped λ-calculus. Grammar-based decoding (Kr-
ishnamurthy et al., 2017; Yin and Neubig, 2018)
turns to generate rule sequences converted from
the target AST. Some parsers design intermediate
patterns for an easier abstraction over the targets
(Zhang et al., 2017; Dong and Lapata, 2018; Guo
et al., 2019; Ding et al., 2019; Iyer et al., 2019;
Choi et al., 2021; Chen et al., 2020). The abstrac-
tion layer can be seen as handcrafted structures for
the targets. We only consider CFG-based struc-
tures due to their generality. Similarly, graph-based
targets and parsers are also beyond our discussing.
LLMs as semantic parsers (Qiu et al., 2022; Zhuo
et al., 2023) are found not performing well on the
COGS dataset before structural discussions. We
leave some results and discussions in Appendix C.

Recently the compositional generalization has
attracted much focus (Jambor and Bahdanau, 2022;
Liu et al., 2021; Herzig and Berant, 2021). But
they either devise special parsers other than the
encoder-decoder architecture, or handle represen-
tations like FunQL, therefore not direct applicable
to other general parsers. Zheng and Lapata (2022)
reports the entanglement problem where Seq2Seq
models entangle irrelevant semantic factors during
generation. Yin et al. (2021) induces token and
span level alignments. Our structural discussions
are orthogonal to their model improving works.

6 Conclusion

By evaluations on a variety of settings, we find the
structural modeling is not guaranteed to give better
performance. We conclude that structural biases
for sources and targets must be chosen as a whole,
and that choices also depend on the specific dataset
and generalization level. We propose the DisStruct
metric to facilitate structure finding, which is nega-
tively correlated with the performance.

46

Limitations

We’ve discussed a variety of structural models, but
may lack the tuning of hyperparameters for each
model to work at its best. For example, the number
of nonterminals and preterminals are important for
PCFGs, but we use a small number compared with
the grammar induction task on PTB due to our
small dataset size. Also, it is a reasonable guess
that BERT and ELECTRA as encoders are inferior
than large language models such as T5, Falcon,
and ChatGPT. We have not conduct experiments
on datasets simply because of limited computation
resources. Also we note that LLMs can be used as
the decoder-only models, and generate targets via
in-context learning or zero-shot prompts. We left
the results in the Appendix C because structural
models or representations we concerning are not
involved in the paradigm.

Furthermore, our study is all English-based
datasets. Considering the large differences be-
tween language families, the structure model of
constituency and dependency trees in our study
may have different effects. Universal structures
such as the Universal Dependencies (de Marneffe
et al., 2021) may be considered for future research.

Finally, DIORA and PCFGs in our study require
approximately 4 times more GPU memories than
other encoders (excluding the BERT and ELEC-
TRA of course). This may be caused by the CKY-
style computation which is O(n3s2) in time where
n is the sentence length and s is the number of
syntactic categories. This will leads to more GPU
consumption to compute the tensor graph. We’re
also wondering if a sample-based learning algo-
rithm could work instead of the inside algorithm.

Ethics Statement

Since our study is objective, we have reviewed our
datasets. The contents of the datasets are publicly
available for years and obtainable without checking
the membership of any group. In addition, some
datasets had adopted careful preprocessing such
as anonymization which replaced real-world entity
names with placeholders. The dependent code re-
sources are managed in public repositories. And
so will ours. So far we believe our work does not
have ethical concerns.

Acknowledgements

This work was supported by National Key R&D
Program of China (No.2022ZD0118501) and the

National Natural Science Foundation of China
(No.62376270, No.U1936207, No.61976211).
This work was supported by the Strategic Prior-
ity Research Program of Chinese Academy of Sci-
ences (No.XDA27020100), Youth Innovation Pro-
motion Association CAS, Yunnan Provincial Ma-
jor Science and Technology Special Plan Projects
(No.202202AD080004).

References
Omri Abend and Ari Rappoport. 2017. The state of

the art in semantic representation. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 77–89, Vancouver, Canada. Association for
Computational Linguistics.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav.
2020. Structural language models of code. In Pro-
ceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 245–256. PMLR.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Bo Chen, Xianpei Han, Ben He, and Le Sun. 2020.
Learning to map frequent phrases to sub-structures of
meaning representation for neural semantic parsing.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34(0505):7546–7553.

Bo Chen, Le Sun, and Xianpei Han. 2018. Sequence-
to-action: End-to-end semantic graph generation for
semantic parsing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 766–777,
Melbourne, Australia. Association for Computational
Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz

https://doi.org/10.18653/v1/P17-1008
https://doi.org/10.18653/v1/P17-1008
https://proceedings.mlr.press/v119/alon20a.html
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.1609/aaai.v34i05.6253
https://doi.org/10.1609/aaai.v34i05.6253
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071

47

Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 924–932,
Sofia, Bulgaria. Association for Computational
Linguistics.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2021. RYANSQL: Recur-
sively applying sketch-based slot fillings for complex
text-to-SQL in cross-domain databases. Computa-
tional Linguistics, 47(2):309–332.

Noam Chomsky. 2009. Syntactic structures. In Syntac-
tic Structures. De Gruyter Mouton.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Caio Corro and Ivan Titov. 2019a. Differentiable
perturb-and-parse: Semi-supervised parsing with a
structured variational autoencoder.

Caio Corro and Ivan Titov. 2019b. Learning latent trees
with stochastic perturbations and differentiable dy-
namic programming. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5508–5521, Florence, Italy. Asso-
ciation for Computational Linguistics.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jiwei Ding, Wei Hu, Qixin Xu, and Yuzhong Qu. 2019.
Leveraging frequent query substructures to generate

formal queries for complex question answering. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2614–
2622, Hong Kong, China. Association for Computa-
tional Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1129–1141, Minneapolis, Minnesota.
Association for Computational Linguistics.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort,
Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kil-
ian Fatras, Nemo Fournier, Léo Gautheron, Nathalie

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://aclanthology.org/P13-1091
https://aclanthology.org/P13-1091
https://doi.org/10.1162/coli_a_00403
https://doi.org/10.1162/coli_a_00403
https://doi.org/10.1162/coli_a_00403
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ
https://doi.org/10.18653/v1/P19-1551
https://doi.org/10.18653/v1/P19-1551
https://doi.org/10.18653/v1/P19-1551
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1263
https://doi.org/10.18653/v1/D19-1263
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033

48

T. H. Gayraud, Hicham Janati, Alain Rakotoma-
monjy, Ievgen Redko, Antoine Rolet, Antony Schutz,
Vivien Seguy, Danica J. Sutherland, Romain Tave-
nard, Alexander Tong, and Titouan Vayer. 2021. Pot:
Python optimal transport. Journal of Machine Learn-
ing Research, 22(78):1–8.

Dan Flickinger, Emily M. Bender, and Stephan Oepen.
2014. Towards an encyclopedia of compositional
semantics: Documenting the interface of the English
Resource Grammar. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 875–881, Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Jonas Groschwitz, Meaghan Fowlie, Mark Johnson, and
Alexander Koller. 2017. A constrained graph algebra
for semantic parsing with AMRs. In IWCS 2017
- 12th International Conference on Computational
Semantics - Long papers.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831–1841, Melbourne,
Australia. Association for Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond i.i.d.:
Three levels of generalization for question answer-
ing on knowledge bases. In Proceedings of the Web
Conference 2021, WWW ’21, page 3477–3488, New
York, NY, USA. Association for Computing Machin-
ery.

Jiaqi Guo, Qian Liu, Jian-Guang Lou, Zhenwen Li,
Xueqing Liu, Tao Xie, and Ting Liu. 2020. Bench-
marking meaning representations in neural semantic
parsing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1520–1540, Online. Association for
Computational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao.
2018. Answering natural language questions by

subgraph matching over knowledge graphs. IEEE
Transactions on Knowledge and Data Engineering,
30(5):824–837.

Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer.
2019. Learning programmatic idioms for scalable
semantic parsing. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5426–5435, Hong Kong, China. Association
for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643–1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Dora Jambor and Dzmitry Bahdanau. 2022. LAGr:
Label aligned graphs for better systematic general-
ization in semantic parsing. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3295–3308, Dublin, Ireland. Association for Compu-
tational Linguistics.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney.
2005. Learning to transform natural to formal lan-
guages. In Proceedings of the 20th national confer-
ence on Artificial intelligence - Volume 3, AAAI’05,
page 1062–1068, Pittsburgh, Pennsylvania. AAAI
Press.

Daniel Keysers, Nathanael Schärli, rli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In Proceedings of ICLR.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. In Advances in Neural
Information Processing Systems, volume 34, page
26302–26317. Curran Associates, Inc.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,
Chris Dyer, and Gábor Melis. 2019b. Unsupervised
recurrent neural network grammars. In Proceedings

http://www.lrec-conf.org/proceedings/lrec2014/pdf/562_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/562_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/562_Paper.pdf
https://aclanthology.org/W17-6810
https://aclanthology.org/W17-6810
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.18653/v1/2020.emnlp-main.118
https://doi.org/10.18653/v1/2020.emnlp-main.118
https://doi.org/10.18653/v1/2020.emnlp-main.118
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.1109/TKDE.2017.2766634
https://doi.org/10.1109/TKDE.2017.2766634
https://doi.org/10.18653/v1/D19-1545
https://doi.org/10.18653/v1/D19-1545
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/2022.acl-long.233
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://proceedings.neurips.cc/paper/2021/hash/dd17e652cd2a08fdb8bf7f68e2ad3814-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dd17e652cd2a08fdb8bf7f68e2ad3814-Abstract.html
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114

49

of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 1105–1117, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516–1526, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Zhenwen Li, Jiaqi Guo, Qian Liu, Jian-Guang Lou, and
Tao Xie. 2022. Exploring the secrets behind the learn-
ing difficulty of meaning representations for semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3616–3625, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Percy Liang, Michael I. Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Peter Linz and Susan H Rodger. 2022. An introduction
to formal languages and automata. Jones & Bartlett
Learning.

Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu, Bei
Chen, Jian-Guang Lou, Lijie Wen, Nanning Zheng,
and Dongmei Zhang. 2021. Learning algebraic re-
combination for compositional generalization. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 1129–1144, On-
line. Association for Computational Linguistics.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2482–2495, Online. Association
for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport: With applications to data sci-
ence. Foundations and Trends® in Machine Learn-
ing, 11(5-6):355–607.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Pawel Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2021. Improving composi-
tional generalization with latent structure and data
augmentation. CoRR, abs/2112.07610.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9157–9179, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrating
tree structures into recurrent neural networks. In In-
ternational Conference on Learning Representations.

Tian-Xiang Sun, Xiang-Yang Liu, Xi-Peng Qiu, and
Xuan-Jing Huang. 2022. Paradigm shift in natural
language processing. Machine Intelligence Research,
19(3):169–183.

Jens E. L. Van Gysel, Meagan Vigus, Jayeol Chun, Ken-
neth Lai, Sarah Moeller, Jiarui Yao, Tim O’Gorman,
Andrew Cowell, William Croft, Chu-Ren Huang,
Jan Hajič, James H. Martin, Stephan Oepen, Martha
Palmer, James Pustejovsky, Rosa Vallejos, and Ni-
anwen Xue. 2021. Designing a uniform meaning
representation for natural language processing. KI -
Künstliche Intelligenz, 35(3):343–360.

Antoine Venant and Alexander Koller. 2019. Seman-
tic expressive capacity with bounded memory. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 65–79,

https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://aclanthology.org/2022.emnlp-main.237
https://aclanthology.org/2022.emnlp-main.237
https://aclanthology.org/2022.emnlp-main.237
https://doi.org/10.1162/COLI_a_00127
https://doi.org/10.1162/COLI_a_00127
https://doi.org/10.18653/v1/2021.findings-acl.97
https://doi.org/10.18653/v1/2021.findings-acl.97
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
http://arxiv.org/abs/2112.07610
http://arxiv.org/abs/2112.07610
http://arxiv.org/abs/2112.07610
https://aclanthology.org/2022.emnlp-main.624
https://aclanthology.org/2022.emnlp-main.624
https://aclanthology.org/2022.emnlp-main.624
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
https://doi.org/10.1007/s11633-022-1331-6
https://doi.org/10.1007/s11633-022-1331-6
https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/10.18653/v1/P19-1008
https://doi.org/10.18653/v1/P19-1008

50

Florence, Italy. Association for Computational Lin-
guistics.

Pia Weißenhorn, Yuekun Yao, Lucia Donatelli, and
Alexander Koller. 2022. Compositional generaliza-
tion requires compositional parsers.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2006. Learning
for semantic parsing with statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Main Conference,
pages 439–446, New York City, USA. Association
for Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the 45th Annual
Meeting of the Association of Computational Lin-
guistics, pages 960–967, Prague, Czech Republic.
Association for Computational Linguistics.

Zhaofeng Wu. 2022. Learning with latent structures
in natural language processing: A survey. CoRR,
abs/2201.00490.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1341–1350,
Berlin, Germany. Association for Computational Lin-
guistics.

Xiaojun Xu, Chang Liu, and Dawn Song. 2018. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv:1711.04436
[cs].

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021.
PCFGs can do better: Inducing probabilistic context-
free grammars with many symbols. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1487–1498,
Online. Association for Computational Linguistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),

pages 1321–1331, Beijing, China. Association for
Computational Linguistics.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2810–2823, Online.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678–687, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666, Arlington, Virginia, United States. AUAI
Press. Event-place: Edinburgh, Scotland.

Yuchen Zhang, Panupong Pasupat, and Percy Liang.
2017. Macro grammars and holistic triggering for ef-
ficient semantic parsing. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1214–1223, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Hao Zheng and Mirella Lapata. 2022. Disentangled
sequence to sequence learning for compositional gen-
eralization. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4256–4268, Dublin,
Ireland. Association for Computational Linguistics.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C
Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan. 2020. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradi-
ents. Advances in Neural Information Processing
Systems, 33.

https://doi.org/10.48550/arXiv.2202.11937
https://doi.org/10.48550/arXiv.2202.11937
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/N06-1056
https://aclanthology.org/N06-1056
https://aclanthology.org/N06-1056
https://aclanthology.org/P07-1121
https://aclanthology.org/P07-1121
https://aclanthology.org/P07-1121
http://arxiv.org/abs/2201.00490
http://arxiv.org/abs/2201.00490
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P16-1127
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
http://dl.acm.org/citation.cfm?id=3020336.3020416
http://dl.acm.org/citation.cfm?id=3020336.3020416
http://dl.acm.org/citation.cfm?id=3020336.3020416
https://doi.org/10.18653/v1/D17-1125
https://doi.org/10.18653/v1/D17-1125
https://doi.org/10.18653/v1/2022.acl-long.293
https://doi.org/10.18653/v1/2022.acl-long.293
https://doi.org/10.18653/v1/2022.acl-long.293

51

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh
Shiri, Weiqing Wang, Gholamreza Haffari, and Yuan-
Fang Li. 2023. On robustness of prompt-based se-
mantic parsing with large pre-trained language model:
An empirical study on codex. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1090–
1102, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

A Structure Modeling

We’ll make extensions for Seq2Seq models. In
the classical Seq2Seq, the encoder module is in
charge of encoding source input X = {xi}ni=1 and
prepares for the attention mechanism a memory
H = {hi}ni=1 of states, where each hi are usu-
ally aligned to each input token xi. The decoder
is obliged to generate tokens Y = {yj}mj=1 by re-
ferring the memory H for each yj . The last state
hn in memory is usually chosen to initialize au-
toregressive decoders. We will explain how H is
constructed for encoders, and how Y is chosen for
decoders.

A.1 Encoders

If the source structure is Absent, we take the input
X as a plain sequence and choose the BiLSTM as
the encoder. Due to their impressive performance,
we also use the BERT (Devlin et al., 2019) and
ELECTRA (Clark et al., 2020) language models
from the Transformers library (Wolf et al., 2020).
The encoder memory H is then the encoder outputs
of each word in X .

If the source structure is Given, we use Berkeley
Parser to get the constituency tree T of X . After
removing the POS tags, T consists of words xi as
leaf nodes and the syntactic categories as internal
nodes, such as NP, PP, and WHNP. We use two-
layer GCN to encode nodes following the structure,
and collect all the node hidden states as the atten-
tion memory H .

For latent structures, we choose representa-
tive grammar induction methods, namely ONL-
STM (Shen et al., 2019), DIORA (Drozdov et al.,
2019), PCFGs (Kim et al., 2019a; Yang et al.,
2021), and Perturb-and-Parse (Corro and Titov,
2019b) Both constituency and dependency trees are
considered. And most latent structures are learnt in
two ways, by relaxation or sampling (Wu, 2022),
where the former is usually optimized by maximiz-
ing the marginal probability of X as Eq.5, and the
latter is optimized by sampling a structure S and

passing to the downstream decoders (Eq.6).

max
θ

Pθ(X) =
∑
S

Pθ(S,X) (5)

max
θ

Pθ(Y | X) = ES∈P (S|X)P (Y | S,X) (6)

To wrap these up, the Perturb-and-Parse will give a
sampling-based dependency trees, while others are
the relaxation-based constituency trees.

ONLSTM Specifically, ONLSTM6 shares the
interface with classical RNNs, and invents the or-
dered neuron that can be interpreted as hierarchical
structures. So we use it just as the replacement for
BiLSTM. The memory H is also the states of se-
quence X , and the optimization only uses gradients
from the decoders.

DIORA DIORA7 aims to learn latent binary
trees following the inside-outside algorithm. Em-
beddings of X are composed bottom-up for filling
the inside chart with inside states. The composi-
tion cijk of two sub-span states h(xi:j) and h(xj:k)
is parameterized by an MLP fh. Every possible
composition is scored with another MLP fs. As
DIORA falls into the relaxation-based category,
each span state is a summation (Eq. 7) of all possi-
ble compositions with the normalized scores (Eq.
8).

hin(xi:k) =
∑
j

sikj fh
(
hin(xi:j), h

in(xj:k)
)

(7)

sikj = softmax
(
fs

(
hin(xi:j), h

in(xj:k)
))

j
(8)

where softmax(·)j means the j-th normalized
score after the softmax function. Similarly, the
outside pass will fill the outside chart to given any
span xj:k an outside state hout(xi:k), which is com-
posed by each possible parent and sibling span and
summed up with the normalized score. The out-
side composer and scorer are different MLPs. The
attention memory H for DIORA encoders is full
of representations of X , where each word is repre-
sented by the concatenation of inside and outside
states as hi = [hin(xi:i+1);h

out(xi:i+1)], where
the inside state of one-word spans h(xi:i+1) are
actually the word embeddings. Note that DIORA
comes up with its own training objective, which

6https://github.com/yikangshen/
Ordered-Neurons

7We use the original DIORA model from S-DIORA repo.
https://github.com/iesl/s-diora

https://aclanthology.org/2023.eacl-main.77
https://aclanthology.org/2023.eacl-main.77
https://aclanthology.org/2023.eacl-main.77
https://github.com/yikangshen/Ordered-Neurons
https://github.com/yikangshen/Ordered-Neurons
https://github.com/iesl/s-diora

52

maximizes the reconstruction probabilities from
each one-word span as Eq.9.

max
θ

Ldiora =
∑
i

logPθ(xi|hout(xi:i+1)) (9)

PCFGs Two notable modern PCFGs8 are C-
PCFG (Kim et al., 2019a) and TD-PCFG (Yang
et al., 2021). Rules are restricted to Chomsky nor-
mal form, including S → A,A → BC, and P →
x, where S is the fixed start token, A is a nontermi-
nal, P generating a single terminal word x is called
a preterminal, and B,C can be either nonterminal
or preterminal. Embeddings and neural networks
are used to parameterize the rule distributions as
πS→A, πP→x, πA→BC .

C-PCFG adopted a novel variational model to
infer a global state z of X , and let the neural nets
predict π by concatenation z to each symbol embed-
dings. We use BiLSTM for the variational model.
And TD-PCFG decomposed the large tensor of
πA→BC into the sum of products of lower rank ten-
sors, largely extending the number of nonterminals
and preterminals.

To use PCFGs as encoders, we first build up the
PCFG models on the source sequence X . Since
C-PCFG is built with a variational inference model,
the loss involves a reconstruction loss as Eq.5 and
a KL divergence. The former with a summation
can be computed efficiently by the inside algorithm,
and the latter is easy to obtain because the prior of
z is kept Gaussian.

We choose to include all the span representations
hi:k in the attention memory H . The representa-
tions are computed similar to the bottom-up inside
algorithm. The algorithm fills an inside chart with
probability scores sikA

.
= P (xi:k | A) for every

span xi:k with each nonterminal A.

sikA =
∑
B

∑
C

∑
j

wijkABC (10)

wijkABC = πA→BC · sijB · sjkA (11)

Similarly, the span representation hi:k is also a
weighted sum (Eq.12) of all hijkABC , which means
the compositional representation for span xi:k as
the category A, split at the point j, with left and
right sub-spans being categories B and C.

hi:k =
∑

A,B,C,j

hijkABC · wijkABC · πs(A) (12)

8https://github.com/sustcsonglin/TN-PCFG

Note that we uses πs, s ∈ N as a prior to sum over
A, which can be interpreted as treating the span
xi:k as a valid sentence.

To compute compositions of span hi:j and
hj:k, Instead of concatenating embeddings of
A,B,C, hi:j , hj:k and transforming with an MLP,
we factorize the computation of hijkABC with dif-
ferent MLPs to avoid broadcasting to the unrelated
dimensions as Eq.13.

hijkABC = fh(A) + fls(B) + frs(C)

+ fl(hi:j) + fr(hj:k) (13)

Note that we can rearrange Eq.12 and Eq.13 jointly
to save up space, by moving items together and
summing out irrelevant dimensions in advance.
And for TD-PCFG which decomposes the tensor
πA→BC =

∑
l u

l
A · vlB · wl

C , the similar form of
Eq.12 and Eq.13 and the efficiency trick can also
be adopted. Formulae related to TD-PCFG are
omitted here to save up space.

Perturb-and-Parse The model (abbr. PnP) fo-
cuses on sampling trees from the distribution of
dependency structures. Words embeddings e(X) ∈
Rn×d of X ∈ Rn are transformed to arc weights as
Eq. 14, from which the Eisner’s algorithm (Eisner,
1996) infers the tree S. The gumbel-softmax trick
is adopted for differentiable sampling (Eq.15), and
the argmax operation in Eisner’s algorithm is re-
placed with the softmax following Corro and Titov
(2019a). In this way, during training the output of
Eisner’s algorithm is not yet a valid but soft depen-
dency tree, indicating the probabilities that there’s
an arc between two words xi and xj . But we switch
to the default argmax during testing.

W = fhead(e(X)) · ftail(e(X))T (14)

Z ∼ G(0, 1) (15)

S = Eisner(W + Z) (16)

After the source tree S is inferred, we use two GCN
layers to pass messages among nodes following the
structures, where each node is a word in X . We use
all the node representations to build the attention
memory H . The PnP model is simply trained with
the downstream tasks (Corro and Titov, 2019b).

A.2 Decoders
If the target structure is Absent, we simply model it
with an LSTM. And we do not use any pretrained
language model as the decoder. For datasets with
very long targets and slow for training, such as

https://github.com/sustcsonglin/TN-PCFG

53

the ATIS and Advising, we use the Transformer
decoder instead of LSTM.

For latent target structures, we only use ONL-
STM as the source side because it shares the same
interface with RNNs. Other extensive works are
not tested, because the SQLs are usually much
longer than the natural language, and the grammar
induction works are seldom evaluated on such long
sentences (Drozdov et al., 2019). Furthermore, se-
mantic representations are born with well-defined
structures, it’s not intuitive to learn latent structures
from data.

For target structures that are given, we use the
grammar induced by Oren et al. (2020) as discussed
in Section 2. We manually convert the grammar
into ENBF form and use the parser generator Lark
to parse SQLs in the dataset. After that, we follow
the order of left-most derivation to traverse the
AST parses of SQLs as in TranX (Yin and Neubig,
2018), and the rule sequences are modeled by an
LSTM. We denoted this method as Grammar-based
Decoders as Oren et al. (2020).

Although the models above are enough to ful-
fill the taxonomy in Section 2, we’ve also tried
but failed to use C-PCFG and RNNG (Dyer et al.,
2016) as decoders. The generative RNNG is
such expressive that make SQL grammar errors
often, like a WHERE clause followed by another.
URNNG (Kim et al., 2019b) requires an external
(UCB Parser specifically) inference model to con-
strain the expressive power of RNNG. For C-PCFG,
we hypothesize lacking of attention mechanism
is crucial. We hypothesize the execution guided
decoding might be helpful and necessary, but it’s
beyond our discussion in structures.

B Experiment Hyperparameters

We explain the details of models and hyperparame-
ters here. We use the same setting for all datasets,
and keep most parameters the same across models.

For hyperparameters applicable to all models,
we use AdaBelief optimizer (Zhuang et al., 2020),
and set the learning rate to 1e-3, and betas to 0.9
and 0.999. We do not use weight decays for all
models. We fix the batch size to 16. The learning
rate scheduler is based on NoamLR from the Al-
lenNLP package, with the model size set to 400 and
warmup steps to 50. We use the pretrained GloVe
embeddings of 100 dimensions for the source side.
For BERT hyperparameters, the learning rate is set
1e-5 and no LR schedulers.

Model #examples Accuracy

ChatGLM-6B 3000 6.27%
text-davinci-003 3000 0.83%

gpt-3.5-turbo 300 31.33%

Table 4: The in-context learning results of LLMs on the
I.I.D. generalization of COGS. The testing set has the
size 3000. The text-davinci-003 and gpt-3.5-turbo are
evaluate on their May-15 2023 version. We didn’t con-
duct a complete testing due to the accumulated accuracy
and the cost.

We set the encoder hidden size to 300 for most
models, except 150 for Diora and PnP, and 200
for PCFGs and Tree encoders. Sequence encoders
and the inference model of C-PCFG are bidirec-
tional (BiLSTM and ONLSTM). All encoders are
1-layer except the 2-layer GCN used for Tree and
PnP encoders. Decoder is fixed to LSTM but Trans-
former for PCFGs/BERT/Electra. LSTM decoder
is 1-layer and the hidden size is 200 for PCFGs
models and 300 for others.The attention scores are
computed by dot products. Transformer decoders
are 2-layers and uses 300 for hidden size, and 10
for attention heads. All encoder dropout is 0 and
decoder dropout is 0.5.

Training on GEO and Scholar uses 150 epochs
for PCFGs and Tree encoders, 300 for tree en-
coders and 400 for others. All models trained for
ATIS and Advising uses 30 epochs. On COGS and
SMCalFlow-CS datasets, the models are trained
for 15 epoches because of the large size. In prac-
tice, most models are trained in 4 to 12 hours, with
an Xeon E5-2680 CPU and a single GeForce RTX
3090 GPU.

C Few-shot Parsing with LLMs

We just use the LLMs on the I.I.D. generalization
of COGS dataset. We first build an index on the
natural language of the training set, and then search
for the closest 10 examples (x′, y′), with each test-
ing x. The prompt is typically built as “Input: x′.
Output: y′.” for each example (x′, y′), appended
by the testing example as “Input: x. Output:”. In
this way we’re trying to utilize the in-context learn-
ing ability of LLMs for semantic parsing. and the
accuracy is evaluated by Exact Match (EM) of the
outputs against the gold targets. However, the per-
formance is not ideal.

The lower two LLMs with the similar scale even
have a pretty much performance difference. Note
a plain Seq2Seq model can generalize well in the

54

I.I.D. setting, we find this performance not accept-
able. We have sampled and analyzed the errors of
ChatGLM, and there’re some typical errors, such
as (1) missing declarations of a variable; (2) output
too long sequences which can be over ten times
than the gold target; (3) inventing undefined the
neo-davidsonian predicates; (4) misunderstanding
the passive and active roles. We hypothesize that
LLMs must be finetuned on these unseen repre-
sentations like neo-davidsonian λ-calculus. And
at least there’re still much study to do before dis-
cussing the structural biases for LLMs.

D Accuracies for Model Combinations

We list the complete accuracies for each encoder
and decoder combinations in Table 5 and Table 6.
For the encoders, rcpcfg and rtdpcfg are the re-
duced version of C-PCFG and TD-PCFG respec-
tively. The pnp is the Perturb-and-Parse model.
The syn-parser is the supervised Berkeley Parser
with a GCN to encode. For the decoders, the seq
denotes an LSTM as the decoder, and the prod
denotes the grammar-based decoding of rule se-
quences modeled by an LSTM. Please refer to Ap-
pendix A and Section 2 for an introduction.

We’ve defined several S and T choices. For en-
coders, the bilstm, bert, and electra are absent
S. The ON-LSTM, DIORA, R-C-PCFG, R-TD-
PCFG, and PnP are latent S. And only the syn-
parser belongs to given S. For decoders, the seq,
ON-LSTM, and prod represent the absent, latent,
and given T, respectively.

E EBNF Grammar for SQL

For grammar-based decoding, AST parses of SQLs
are required. We use the Lark Python package
which is a parser generator like the classical flex
and bison. We use the grammar induced by Oren
et al. (2020) and manually convert it to the Lark for-
mat, which is an implementation of EBNF. Other
grammars from MySQL and SQLite are not used
in this work.

The lexer definitions we use are as follows.
SPACES: /[\u000B\x09\x0d\x0a\x20]/
SINGLE_LINE_COMMENT: "--"

(/[^\x0d\x0a]/)* ("\x0D")? "\x0A"
WS: SINGLE_LINE_COMMENT | SPACES
%ignore WS

SCOL: ";"
COMMA: ","
STAR: "*"
WHERE: "WHERE"
SELECT: "SELECT"

DISTINCT: "DISTINCT"
LIMIT: "LIMIT"
GROUP: "GROUP"
ORDER: "ORDER"
BY: "BY"
HAVING: "HAVING"
AS: "AS"
AND: "AND"
OR: "OR"
DOT: "."
ASC: "ASC"
DESC: "DESC"
LPAR: "("
RPAR: ")"
LIKE: "LIKE"
NOT: "NOT"i
IN: "IN"
BETWEEN: "BETWEEN"
NULL: "NULL"
IS: "IS"
PLUS: "+"
MINUS: "-"
DIV: "/"
EQUAL: "="
NEQ: "<>"
GTE: ">="
LTE: "<="
GT: ">"
LT: "<"
UPPER: "UPPER"
LOWER: "LOWER"
FROM: "FROM"

The parser definitions are as follows.
statement: query SCOL | query
query: select_core groupby_clause

orderby_clause limit
| select_core groupby_clause

orderby_clause
| select_core groupby_clause limit
| select_core orderby_clause limit
| select_core groupby_clause
| select_core orderby_clause
| select_core

select_core: select_with_distinct
select_results from_clause
WHERE where_clause

| select_with_distinct
select_results from_clause

select_with_distinct: SELECT DISTINCT
| SELECT

select_results: select_result COMMA
select_results
| select_result
| function binaryop non_literal_number

select_result: STAR
| TABLE_NAME DOT STAR
| col_ref
| function AS COL_ALIAS
| function
| col_ref AS COL_ALIAS

from_clause: FROM source
source: single_source COMMA source

| single_source
single_source: source_table

| source_subq
source_table: "TABLE_PLACEHOLDER" AS TABLE_NAME
source_subq: LPAR query RPAR AS SUBQ_ALIAS

| LPAR query RPAR
limit: LIMIT non_literal_number

55

encoder decoder smc16 smc32 smc64 smc128 advising atis cogs geo scholar

bilstm
seq 28.4 19.8 40.0 52.6 5.9 15.1 0.0 26.2 26.1

onlstm 28.2 26.2 34.7 48.2 5.2 15.3 7.4 22.9 25.7
prod 14.1 27.6 31.1 26.9 7.8 16.3 0.0 26.6 21.6

onlstm
seq 32.1 32.5 20.2 52.3 6.8 22.8 6.2 25.9 31.0

onlstm 31.4 39.7 46.3 48.8 5.0 24.7 3.1 26.2 32.4
prod 9.7 27.3 32.7 31.3 6.3 22.2 3.0 30.8 27.4

bert
seq 29.2 37.9 42.2 51.1 9.1 29.8 2.6 29.5 33.1

onlstm 27.3 42.0 44.8 55.8 9.8 19.3 0.0 35.8 33.3
prod 16.2 28.3 32.4 42.3 7.6 31.2 0.0 31.0 27.8

electra
seq 29.4 37.7 50.0 41.7 4.7 29.0 0.0 23.7 21.0

onlstm 27.5 31.8 32.0 53.3 7.0 18.6 0.0 18.5 21.8
prod 13.1 18.2 25.4 36.7 6.0 30.9 0.9 25.5 17.5

diora
seq 26.9 19.3 28.5 33.3 3.9 18.5 27.3 24.2 26.1

onlstm 28.1 18.2 27.6 47.9 5.1 17.9 21.1 25.1 27.3
prod 8.5 21.8 22.5 32.1 3.3 15.4 8.2 29.7 19.6

rcpcfg
seq 23.2 21.4 23.7 40.2 2.8 11.0 0.0 17.6 14.9

onlstm 22.2 18.3 32.3 26.2 0.0 14.7 12.9
prod 17.3 16.2 20.2 12.2 1.7 11.8 0.0 17.8 15.5

rtdpcfg
seq 21.5 24.1 19.9 23.2 0.7 1.4 0.0 16.9 16.1

onlstm 9.4 23.3 26.6 32.1 0.0 12.5 12.9
prod 6.3 17.3 14.5 15.7 1.5 3.4 0.0 13.2 13.2

pnp
seq 19.5 20.1 29.6 24.8 6.3 12.3 0.0 18.5 22.9

onlstm 17.1 19.2 20.5 21.9 6.2 17.1 0.0 20.9 20.4
prod 6.8 12.5 18.9 24.5 3.3 16.4 0.0 25.7 19.8

syn-parser
seq 23.8 27.2 28.8 39.2 11.4 16.4 0.0 22.0 30.4

onlstm 24.3 27.6 37.4 40.9 9.3 16.0 0.0 21.3 30.6
prod 6.8 17.1 21.1 31.7 7.8 17.4 0.0 23.7 21.4

Table 5: The accuracies of each datasets on their compositional generalization levels. For the ATIS, GEO, Scholar
and Advising, average results of 5 random seeds are reported.

| LIMIT value
where_clause: LPAR where_clause RPAR where_conj

| LPAR where_clause RPAR where_or
| LPAR where_clause RPAR
| unaryop where_clause
| expr where_conj
| expr where_or
| expr
| source_subq binaryop non_literal_number

where_conj: AND where_clause
where_or: OR where_clause
groupby_clause: GROUP BY group_clause

HAVING expr
| GROUP BY group_clause

group_clause: expr COMMA group_clause
| expr

orderby_clause: ORDER BY order_clause
order_clause: ordering_term COMMA order_clause

| ordering_term
ordering_term: expr ordering

| expr
| COL_ALIAS ordering

ordering: ASC
| DESC

col_ref: SUBQ_ALIAS DOT COLUMN_NAME
| TABLE_NAME DOT COLUMN_NAME
| SUBQ_ALIAS DOT COL_ALIAS
| TABLE_NAME DOT COL_ALIAS

expr: in_expr
| value LIKE value

| value NOT LIKE value
| value BETWEEN value AND value
| value NOT BETWEEN value AND value
| value binaryop expr
| unaryop expr
| col_ref IS NOT NULL
| col_ref IS NULL
| source_subq
| value

in_expr: value NOT IN string_set
| value IN string_set
| value NOT IN expr
| value IN expr
| value IN LPAR arg_list RPAR

string_function: string_fname
LPAR col_ref RPAR

string_fname: LOWER | UPPER
parenval: LPAR expr RPAR
function: fname LPAR DISTINCT

arg_list_or_star RPAR
| fname LPAR arg_list_or_star RPAR
| "YEAR(CURDATE())"

arg_list_or_star: arg_list
| STAR
| "1"

arg_list: expr COMMA arg_list
| expr

non_literal_number: "1"
| "2"
| "3"

56

encoder decoder smc128 advising atis cogs geo scholar

bilstm
seq 57.8 86.2 61.8 94.3 70.7 67.8

onlstm 61.5 86.2 60.9 98.5 70.9 67.2
prod 24.1 82.3 57.5 56.4 71.5 66.0

onlstm
seq 62.9 82.1 63.6 99.3 71.2 66.3

onlstm 63.2 82.3 61.9 96.3 72.2 65.5
prod 19.8 80.5 58.9 95.2 71.3 61.0

bert
seq 51.8 89.9 67.0 97.4 75.8 69.3

onlstm 54.9 88.7 62.0 66.7 75.8 70.3
prod 25.1 87.1 65.3 46.7 75.7 68.5

electra
seq 50.0 90.1 66.7 96.2 72.2 71.6

onlstm 48.2 87.7 58.2 92.6 71.8 69.0
prod 23.2 86.8 66.4 83.0 69.8 65.6

diora
seq 55.6 66.3 52.0 85.1 70.7 64.4

onlstm 54.3 68.2 50.4 78.2 68.8 65.0
prod 16.3 61.5 50.9 56.5 68.9 62.7

rcpcfg
seq 50.0 81.7 58.0 96.2 48.2 57.1

onlstm 51.2 95.9 60.8 56.8
prod 18.0 80.1 58.3 88.3 59.6 52.1

rtdpcfg
seq 42.1 77.0 55.0 96.7 54.7 55.0

onlstm 45.6 94.5 61.5 56.2
prod 16.0 59.6 53.5 85.5 54.5 50.4

pnp
seq 43.9 83.6 56.5 60.4 67.6 66.7

onlstm 44.2 84.3 53.5 57.8 67.4 66.7
prod 14.9 81.9 53.2 61.9 66.2 65.8

syn-parser
seq 15.3 75.2 57.7 83.0 60.6 57.1

onlstm 49.4 75.0 52.7 92.2 62.1 56.2
prod 18.5 72.2 53.5 77.5 60.2 51.3

Table 6: The accuracies of each datasets with the I.I.D. generalization. Similar to the CG level, average results of 5
random seeds are reported for the ATIS, GEO, Scholar, and Advising datasets

| "4"
| "0"
| "5"
| "100"

string_set: "'" string_set_vals "'"
string_set_vals: value COMMA string_set_vals

| value
fname: "COUNT"

| "SUM"
| "MAX"
| "MIN"
| "AVG"
| "ALL"

boolean: "true"
| "false"

binaryop: PLUS
| MINUS
| STAR
| DIV
| EQUAL
| NEQ
| GTE
| LTE
| GT
| LT
| LIKE

unaryop: PLUS
| MINUS
| NOT

We put values in the grammar definition follow-

ing Oren et al. (2020). This good enough for our
usage. Note in a formal SQL grammar, the val-
ues for entities, tables, and columns are usually
included in the lexer definition and defined with
regular expressions. We leave the other defini-
tions in our code release because it’s too long (hun-
dreds of lines), including the nonterminals of value,
COL_ALIAS, SUBQ_ALIAS, TABLE_NAME, and
COLUMN_NAME.

F EBNF Grammar for COGS

We list our handcrafted grammar for COGS here.
start: preludes formulas

| formulas
| lambdas formulas
| PROPER_NOUN

lambdas: lambda DOT lambdas?
lambda: LAMBDA var
preludes: prelude SEMICOLON

| prelude SEMICOLON preludes
prelude: ASTERISK? NOUN LPAR var RPAR
var: LETTER

| LETTER UNDERSCORE NUMBER
formulas: formula

| formula AND formulas
formula: predicate LPAR params RPAR

57

predicate: NOUN
| NOUN DOT NOUN
| NOUN DOT NOUN DOT NOUN

params: param
| param COMMA params

param: var
| PROPER_NOUN

AND: "AND"
NOUN: WORD
LETTER: /[a-z]/
NUMBER: /\d+/
LPAR: "("
RPAR: ")"
WORD: /[a-z]+/
PROPER_NOUN: /[A-Z][a-z]+/
DOT: "."
COMMA: ","
SEMICOLON: ";"
ASTERISK: "*"
UNDERSCORE: "_"
LAMBDA: "LAMBDA"

G EBNF Grammar for Lispress

We list our handcrafted grammar for SMCalFlow-
CS, which uses the Lispress language. Although
the Lispress has an official parser in Python, we
still use a handcrafted grammar for consistency
with our work.
VALID_CHAR: /[a-zA-Z\d\"\#\(\)\+/

| /\.\:\<\>\=\?\[\]\~]/
QUOTE: "\""
LPAR: "("
RPAR: ")"
LBRA: "["
RBRA: "]"
COLON: ":"
DOT: "."
LET: "let"
DO: "do"
META: "^"
MACRO: "#"

SYMBOL_CHAR: /[a-zA-Z0-9\+\<\>\=\?\~]/
CAP_CHAR: /[A-Z]/
NONCAP_CHAR: /[a-z0-9\+\<\>\=\?\~]/

CAP_SYMBOL: CAP_CHAR SYMBOL_CHAR*
NONCAP_SYMBOL: NONCAP_CHAR SYMBOL_CHAR*
ANY_SYMBOL: SYMBOL_CHAR+

PLAIN_STRING: /(\\.|[^\\\"])+/

COMP_SYMBOL: /\?[^]+/
REAL_NUMBER: /\d+(\.\d+)/
INT_NUMBER: /\d+/
LONG_NUMBER: /\d+L/
TYPE_CONSTRUCTION: "apply"
STRING_TYPENAME: "String"
NUMBER_TYPENAME: "Number"
BOOLEAN_TYPENAME: "Boolean"

start: s_exp
s_exp: LPAR type_args? fn_call RPAR

| LPAR value RPAR
type_args: META LPAR (NUMBER_TYPENAME

| BOOLEAN_TYPENAME
| STRING_TYPENAME) RPAR

fn_call: kwarg_fn | arg_fn
kwarg_fn: kwarg_fn_name kwarg*
arg_fn: arg_fn_name arg*
kwarg_fn_name: CAP_SYMBOL

| CAP_SYMBOL LBRA ANY_SYMBOL RBRA
arg_fn_name: kw_name

| LET
| DO
| NONCAP_SYMBOL
| type_name DOT attribute

kwarg: kw_name arg
kw_name: COLON ANY_SYMBOL
arg: s_exp

| value
| variable

variable: NONCAP_SYMBOL
value: typed_literal | old_typed_literal
old_typed_literal: MACRO LPAR STRING_TYPENAME

QUOTE string_literal QUOTE RPAR
| MACRO LPAR STRING_TYPENAME QUOTE QUOTE RPAR
| MACRO LPAR NUMBER_TYPENAME number_literal RPAR
| MACRO LPAR BOOLEAN_TYPENAME boolean_literal RPAR
| MACRO LPAR type_name QUOTE string_literal QUOTE RPAR
typed_literal: boolean_literal
| META BOOLEAN_TYPENAME boolean_literal
| QUOTE string_literal QUOTE
| QUOTE QUOTE
| META STRING_TYPENAME QUOTE string_literal QUOTE
| META STRING_TYPENAME QUOTE QUOTE
| number_literal
| META NUMBER_TYPENAME number_literal
| type_name DOT TYPE_CONSTRUCTION
string_literal: PLAIN_STRING
number_literal: REAL_NUMBER | INT_NUMBER | LONG_NUMBER
boolean_literal: "true" | "false"
type_name: CAP_SYMBOL
attribute: NONCAP_SYMBOL

