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Abstract

Semantic parsing aims to map natural language
sentences to predefined formal languages, such
as logic forms and programming languages, as
the semantic annotation. From the theoretic
views of linguistic and programming language,
structures play an important role in both lan-
guages, which had motivated semantic parsers
since the task was proposed in the beginning.
But in the neural era, semantic parsers treat-
ing both natural and formal language as se-
quences, such as Seq2Seq and LLMs, have
got more attentions. On the other side, lots of
neural progress have been made for grammar
induction, which only focuses on natural lan-
guages. Although closely related in the sense
of structural modeling, these techniques hadn’t
been jointly analyzed on the semantic parsing
testbeds. To gain the better understanding on
structures for semantic parsing, we design a
taxonomy of structural modeling methods, and
evaluate some representative techniques on se-
mantic parsing, including both compositional
and i.i.d. generalizations. In addition to the
previous opinion that structures will help in
general, we find that (1) structures must be
designed for the specific dataset and general-
ization level, and (2) what really matters is not
the structure choice of either source or target
side, but the choice combination of both sides.
Based on the finding, we further propose a met-
ric that can evaluate the structure choice, which
we believe can boost the automation of gram-
mar designs for specific datasets and domains.

1 Introduction

Semantic parsing is the task to transduce source
sentences in natural languages (NL), into the target
representations, which are usually artificial formal
languages (FL), such as Lisp, λ-calculus, and SQL.
Theoretically natural languages are processed in
structures (Chomsky, 2009), and the formal lan-
guages are also defined to have a context-free syn-
tax (Linz and Rodger, 2022). Therefore inevitably

semantic parsers such as the CCG-based are aware
of source structures, and adopt the compositional
semantics 1 of the targets. But they usually parse
to λ-calculus (Venant and Koller, 2019) and do not
support programming languages.
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Figure 1: Structural modeling in two tasks. We’re going
to analyze how the progress in grammar induction could
help neural semantic parsing.

In the neural era, Seq2Seq based parsers add
supports to any sequential languages, but they can
make grammar errors despite the effectiveness.
Grammar-based parsers are proposed to ensure the
grammatical correctness by decoding the rule se-
quences of the target AST. Recently, the develop-
ment of the Text-to-SQL has motivated specialized
parsers to support the SQL language. But the NL
structures on the source side are seldom handled
and left to pretrained large models.

On the contrary, NL structures are the key issues
of treebanks like PTB and supervised parsers. The
grammar induction field has also invented many
methods to induce grammars with restricted forms
from unsupervised training data. These parsers can

1Typical compositions are β-reductions in the λ-calculus
and the unification in the functional grammar.
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infer trees for new sentences, but don’t process the
semantic annotations obviously.

Unfortunately, no investigations had been con-
ducted on the combination of the success of the two
fields. Our research question (RQ) is thus as fol-
lows: Is structural modeling of the natural lan-
guage or the formal language useful for neural
semantic parsing? To answer the question, we use
the encoder-decoder architecture with the attention
mechanism to connect structures of two sides, due
to its success of modeling token-level correlations.
Our investigations are kept diverse in several impor-
tant factors, such as the dataset variety, categories
of structures, and generalization levels (I.I.D., com-
positional, or zero-shot). Under every possible
combination of these factors, results are believed
more faithful than single datasets (Finegan-Dollak
et al., 2018).

Our evaluations add new knowledge to prior in-
sights (Oren et al., 2020). We find it’s not safe to
claim the effectiveness for specific structural mod-
els for either NL or FL. The structures of NL and
FL must be evaluated as a whole, and their effects
even vary across datasets and generalization levels.
Therefore, we make the conclusion that the com-
bination of structural choices are more important
than the structural choice on either the source or
target side. The result is consistent with the one of
the findings from Guo et al. (2020) in that different
grammars, leading to different tree structures, have
significantly different performance when keeping
the same semantic representations and datasets.

These arguments in total suggest we can ex-
pect improvements from searching for better struc-
tural combinations on specific application domains.
However, grammar search is not trivial but can be
highly expensive. Inspired by the recent works in
Large Language Models (LLMs) which can handle
the code inputs well, we propose the metric, Dis-
Struct, for evaluating the structural combination of
the source and target sides based on the representa-
tions given by the LLMs and the optimal transport.
The metric can be interpreted as the discrepancy
between the specific training and testing splits un-
der the structural choices. The metric is shown
negatively correlated with the parser performance.
It thus will help the automation of the grammar
search theoretically.

In summary, we make three contributions as:

• We’re the first to classify and compare repre-
sentative structural models for neural semantic

parsing, to our best knowledge.

• By evaluating the models against a few diverse
testbeds, we find that structural combinations
are more important than structural choice of
either the natural or formal languages.

• We propose a metric of the structural combi-
nations that is negatively correlated with the
model performance which can speed up the
structure searching.

2 Evaluation Framework

2.1 Datasets
As suggested by Finegan-Dollak et al. (2018), we
conduct the experiments on a variety of datasets,
which are different in sizes, anonymized query
amounts, nested query depths, and involved SQL ta-
ble amounts. We use the ATIS, GEO, Scholar, Ad-
vising (Oren et al., 2020), COGS (Kim and Linzen,
2020), and SMCalFlow-CS (Yin et al., 2021). The
selection also covers several semantic representa-
tions. Table 1 gives the statistics. For the gen-

Dataset Split # Examples
(train / dev / test)

ATIS (SQL) I.I.D. 3014 / 405 / 402
ATIS (SQL) Program 3061 / 375 / 373

Advising (SQL) I.I.D. 3440 / 451 / 446
Advising (SQL) Program 3492 / 421 / 414

Geo (SQL) I.I.D. 409 / 103 / 95
Geo (SQL) Program 424 / 91 / 91

Scholar (SQL) I.I.D. 433 / 111 / 105
Scholar (SQL) Program 454 / 97 / 98

COGS (λ-calculus) I.I.D. 24160 / 3000 / 3000
COGS (λ-calculus) Linguistic 24160 / 3000 / 21000

SMC16 (Lispress) Domain 25424 / 1324 / 1325
SMC32 (Lispress) Domain 25440 / 1324 / 1325
SMC64 (Lispress) Domain 25472 / 1324 / 1325

SMC128 (Lispress) I.I.D. 25536 / 1324 / 1325
SMC128 (Lispress) Domain 25536 / 1324 / 1325

Table 1: The number of examples in each dataset. Dif-
ferent kinds of generalizations are explained in Sec-
tion 2.1. SMCk denotes the SMCalFlow-CS dataset
with k few-shot examples added into the training set.
We manually shuffle the SMC-128 to build an I.I.D. split.
The representation of each dataset is in the parenthesis.

eralization levels, three have been proposed for
the Question Answering task, i.e., the I.I.D., com-
positional, and zero-shot generalization(Gu et al.,
2021). For semantic parsing, usually only the
first two levels are considered. The I.I.D. gener-
alization is just a uniformly random shuffle and
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split of the entire corpus. For the compositional
generalization (CG), there isn’t a standard split
procedure currently. In our work, ATIS, GEO,
Scholar, and Advising adopt the program-based
split, which anonymize SQL queries as program
templates and split the data at the template level.
The COGS constructs CG examples in a linguis-
tic view. The SMCalFlow-CS adopts the domain-
based split, which uses single-domain questions
for training, and questions requiring multi-domain
knowledge for testing.2

2.2 Problem Formalization

We are focusing on encoder-decoder models to map
a source sentence X into the target formal language
Y . Basic forms of X,Y are provided as linear
sequences, i.e. X = (x1, x2, . . . , xn) and Y =
(y1, y2, . . . , ym), where each xi and yj are tokens.
Trees of source and target sides are denoted as S, T
with respectively X and Y as their leaf nodes. For
both S, T , three structural choices are available:
absent, latent, and given. An absent structure is a
pure sequence. Latent structure means the tree is
not observed and jointly learned from the training
data. Given structures rely on external parsers. The
combination of choices of S, T yields a total of 9
probabilistic models as in Table 2.

Model Form S Choices T Choices

P (Y | X) Absent Absent
P (Y, T | X) Absent Latent
P (T | X) Absent Given

P (S | X)P (Y | S,X) Latent Absent
P (S | X)P (Y, T | S,X) Latent Latent
P (S | X)P (T | S,X) Latent Given

P (Y | S,X) Given Absent
P (Y, T | S,X) Given Latent
P (T | S,X) Given Given

Table 2: Probabilistic forms for all Seq2Seq-style mod-
els in comparison. Structures of both side can be one
of three choices. If S is latent, training another model
P (S | X) is necessary to infer S.

Note we only consider the deterministic parsers
instead of the generative ones. The models must
predict at least one variable of the target side, given
at least one variable of the source side. We’ve
noticed several works using generative grammars
(Qiu et al., 2021; Kim, 2021; Shaw et al., 2021)

2Others like length-based and divergence-based splits
(Shaw et al., 2021; Keysers et al., 2020) are not included
for comprehensiveness due to limited computation resources.

based on the notions of synchronized and quasi-
synchronized CFGs. Due to the prevalence of de-
terministic semantic parsers, we leave generative
models in the future work.

2.3 Selected Structural Models

We briefly list the concrete models for structural
choices in Table 3. The implementations and hyper-
parameters are left in the Appendix. Referring the
original papers is also recommended for details.

S Model

Absent
Bidirectional LSTM
BERT (Devlin et al., 2019)
Electra (Clark et al., 2020)

Latent

ON-LSTM (Shen et al., 2019)
DIORA (Drozdov et al., 2019)
PCFGs (Kim et al., 2019a; Yang et al., 2021)
Perturb & Parse (PnP) (Corro and Titov, 2019b)

Given Berkeley Parser + GCN

T Model

Absent LSTM
Latent ON-LSTM (Shen et al., 2019)
Given Handcrafted EBNF Grammars + LSTM

Table 3: Models for corresponding S and T choices.

Among the S choices, PnP gives a latent depen-
dency tree, while others including the Berkeley
Parser (Kitaev et al., 2019; Kitaev and Klein, 2018)
produce constituency trees. For the T choices, all
methods are focusing on constituency trees because
formal languages have been defined with CFGs.

Note if T is given, we manually construct the
grammar for COGS and SMCalFlow-CS, and use
the grammar induced by Oren et al. (2020) for other
datasets3. We use a parser generator to load gram-
mars and follow the grammar-based parsing (Kr-
ishnamurthy et al., 2017; Yin and Neubig, 2018) to
use LSTM to model the production rule sequence.

2.4 Evaluation Method

We use the Exact Match (EM) to measure accura-
cies. For absent and latent T choices, the genera-
tion target must be the same tokens as Y . When
the oracle T is given, the model must similarly
generate the same rule sequences of that T .

We have to report the aggregated results be-
cause the experiment number is proportional to
#datasets × #generalization-levels × #S-models

3The CFG grammar of dataset are in the Appendix E to G.
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× #T -models × #random-seeds4. The merit of re-
sults aggregation is its robustness. For example,
once we find the ON-LSTM as the decoder useful,
it is expected to generalize and work well under
a variety of settings. Winning or losing on one
setting is not critical.

For analysis, we assign each experiment result
with factor labels, and the results will be aggre-
gated under the perspective of factors. The factors
we considered are representation types, S-choices,
T-choices, and syntactic tree types. For example,
when focusing on T-choices, we can compare ac-
curacies of the 3 labels on a specific dataset and
split. Each number is mean-aggregated over all S
models, like the “GROUP BY” in SQL. The ag-
gregation view will help us focus on what we’re
interested in and not get lost in enormous results.

3 Results Analysis

3.1 Lateral Structural Modeling

We first focus on aggregations for single factors
on compositional generalization (CG). Each factor
label corresponds to aggregated accuracies on 9
datasets, which are plotted as a single box.
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Figure 2: Accuracies viewed in S and T choices. Each
bar is a distribution across all 9 CG datasets.

Figure 2 shows the absent S structure outper-
forms others, followed with given S then the latent.
The constituency trees are also better than depen-
dency trees. On the target side, the latent T is on a
par with absent T , beating the given T by a large
margin. Results on both sides suggest no struc-
tural bias is the best choice. Furthermore, when we
zoom in the aggregation as in Figure 3, it’s clearly
the low performance of the latent S is caused by
many poor latent models. Incredibly, among the

4Following Oren et al. (2020), we run experiments on SQL
datasets with 5 random seeds because they’re small. Raw
accuracies without aggregation are listed in Appendix D.
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Figure 3: Accuracies viewed in S models. Each bar is
the distribution of accuracies on 9 CG datasets.

latent S, the ON-LSTM works even as well as the
Electra, and only falls behind BERT perhaps due
to the parameter scales.

Takeaway Structural modeling CAN be useful.
But finding a good discrete structure is not trivial.
While handcrafted grammars of formal languages
can be harmful, supervised parsers for natural lan-
guages are not that bad. Overall, a latent structural
bias like ON-LSTM is the most promising.

3.2 Combinations of Source and Target

T absent T latent T given
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

S given-consti S latent-consti S latent-dep S absent

Figure 4: Accuracies viewed in combinations of each S
and T choice, on 9 CG datasets.

We further analyze results of each S and T choice
combination in Figure 4. The accuracy relations
are similar to the S and T choices in Figure 2, with
a few exceptions. First, when T structure is given,
there’s not much difference between the given and
latent S choices. Therefore, the handcrafted gram-
mars (the given T) are proven poor such that no
trivial structural bias for the NL can be found to co-
operate with it. Only with absent S structures can
the performance be improved at this time. Second,
when S is the latent dependency tree, the latent T
is the worst, contrary to the right boxplot in Fig-
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ure 2. This suggests that a latent dependency tree
for S and a latent constituency tree for T are not
compatible.

Takeaway Some incompatible combinations of
the source and target choices of structural biases
can lead to a performance below the average of any
choice on its own.

3.3 Latent Source Structures

Section 3.1 shows that there’re big discrepancies
among the latent S models. We first compare the
PCFGs in Figure 5. The Compound PCFG (Kim
et al., 2019a) and TD-PCFG (Yang et al., 2021) are
chosen as two basic PCFG variants. In addition,
we build a reduced version for each of them by
summing out the non-terminals at each cell in the
parsing chart with a learnt prior, such that the cell
will only store the representation of a span, instead
of the representations of a span of every possible
non-terminal. This trick can reduce the chart size
from O(n2K) to O(n2), where K is the number
of nonterminals. Appendix A lists more details.
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Figure 5: Accuracies for different PCFGs as encoders
against different T choices on the GEO datasets with
compositional generalization.

In general, the full rank C-PCFG performs better
than its counterpart TD-PCFG with decomposed
and less parameters. The reduced PCFGs can also
outperform the basic ones. With latent and given
T choices the C-PCFG works also well, but is not
as good as the reduced version. This suggests a
less constrained structural bias like the reduced
PCFGs not storing non-terminals in the chart can
be much better than the fully-fledged PCFGs. We
therefore only evaluates the reduced PCFGs on
other datasets because they have higher accuracies
and less memory consumption.

Figure 6 shows only the performance of latent
S models against different T choices. The ON-
LSTM clearly beats other encoders, followed by
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ON-LSTM DIORA R-C-PCFG R-TD-PCFG PnP

Figure 6: Accuracies for latent S models with differ-
ent target T choices. Each bar is the distribution of
accuracies on 9 CG datasets.

the DIORA encoder. Altogether with the Figure 5,
we can make some interesting conclusions. First,
by summing out non-terminals, reduced PCFGs
have outperformed the basic models. Then, the
DIORA discards non-terminals in its parameteriza-
tion, and only considers compositions over spans
with a chart-based parsing and an inside-outside al-
gorithm. And it has beaten the PCFGs, Finally, the
ON-LSTM which does not forcing syntactic trees
being of Chomsky Normal Form, has achieved the
best performance.

Takeaway Latent structural biases with less con-
straints would be better choices. Enforcing syn-
tactic categories may not be suitable for neural
semantic parsing.

3.4 Differences between Accuracies
The above findings tell us we have to find the com-
patible structural biases in general. In this section
we compare the structural choices among different
datasets. We focusing on the T choices and do not
aggregate results of datasets and S choices. Specif-
ically, we subtract the number of absent and latent
T accuracies with the number of given T accura-
cies. As long as the differences are positive, the
absent and latent T will be considered outperform-
ing the given T that is constructed from handcrafted
grammars. For the latent T, we only consider the
best 3 models from previous analysis, i.e., the ON-
LSTM, DIORA, and PnP. We consider both the
I.I.D. and compositional generalizations, as shown
in Figure 7.

The most intuitive result in Figure 7 is that
among various datasets the given T is not con-
sistently bad. On the SMCalFlow, the given T is
outperformed by the absent and latent T , but the
margins are not that large on other datasets in the
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Figure 7: Differences subtracted the given T accuracies
from the latent and absent T, under each dataset and
each S-choice, with I.I.D. (Top) and compositional gen-
eralization (Down). Positive values mean that the latent
or absent T outperforms the given T, while negative
values suggest the given T is better.

I.I.D. setting. For the compositional generalization
(the lower subfigure), we can even see the given T
has not been outperformed on ATIS and GEO, but
is poor on Advising and Scholar. Moreover, on the
same dataset like ATIS and GEO, the handcrafted
grammar is harmful on I.I.D. but useful on C.G.
Also, the results on T choices are slightly different
under different S choices, which again supports the
compatibility argument in previous sections.

Takeaway Grammars of the formal languages
can’t be simply classified as useful or not. There
must be an optimal grammar, depending on the
datasets and generalization levels.

3.5 Discussions

After analyzing the structural modeling methods in
different views, we’re trying to answer our basic
research question (RQ) based on the findings to
make the answers and even the question itself much
clearer.

RQ: Is structural modeling of the natural lan-
guage or the formal language useful for neural
semantic parsing? Yes AND no. It depends on
the models. In general we find that models with-

out structures (BERT) and with latent structures
(ON-LSTM) are better for the natural language,
but other structures are not useful. Specifically,
the ON-LSTM is even better than the finetuned
Electra as the encoder. For the formal languages,
we find the latent structural model (ON-LSTM) is
much better, but the handcrafted grammar-based
decoding is poor (Section 3.1).

Why are the structural models that different?
We hypothesize that the differences are rooted in
the strictness of structural constraints of the models.
For constituency trees, we find the more structural
restrictions required by the model, the worse per-
formance it would be (Section 3.3). Among these
models, ON-LSTM neither differentiates syntactic
categories, nor requires the Chomsky Norm Form
tree, and has outperformed other models.

Since the ON-LSTM is proven effective, can
we use it all the time? No. We’re not recom-
mending ON-LSTM for all situations. Because the
compatibility of structural choices is more impor-
tant. If the encoder is a structural model based
on dependency trees, the ON-LSTM decoder will
not perform well neither. What is really crucial is
the encoder-decoder choices combined as a whole
(Section 3.2).

Shall we use the best combination, the ON-
LSTM for both the encoder and decoder? Not al-
ways. We further find the same structural combina-
tion could be not the same effective on all datasets
and all generalization levels (Section 3.4). On the
GEO with the compositional generalization, ON-
LSTM performs worse than handcrafted grammars.
In fact, the absent T can be seen a special struc-
ture, the right-branching tree with autoregressive
decoders like RNNs. For example, an SQL query
sequence is equivalent to the tree like (SELECT
(* (FROM (tableA (WHERE (...))))). Therefore,
the question is in fact asking what kind of trees are
better, for the natural and formal languages, com-
bined as a whole, under a specific dataset and a
generalization level. We’re going to handle this in
Section 4. But, if the datasets and generalizations
are not our concerns, the BERT or ON-LSTM as
the encoder with the ON-LSTM decoder is recom-
mended according to the above findings.

4 Metric for Structural Evaluation

Taking sequences as the right-branching trees, the
models we’ve discussed can all parse an example
(x, y) to its structures (s(x), t(y)). But the gener-
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alization performance is not only determined by
some smart structural choices. It also depends on
the dataset and the generalization level. However,
it’s expensive to manually design good structures,
or to optimize a parameterized structural policy.
Because on one hand we have to train and then
evaluate a parser every time we need to confirm
the effectiveness of that policy. On the other hand,
even a parser jointly learning mappings and latent
structures may work poorly according to above
findings.

Inspired by the recent success on large language
models (LLMs) (Sun et al., 2022) such as the
Codex (Chen et al., 2021) which can read and
write programming source codes well, we propose
a learning-free metric for the structures based on
the representations generated by LLMs, such that
it’s correlated with the performance.

Specifically, to evaluate a pair of structural mod-
els (s, t) for a dataset D = (x, y)i, we first define
the distance between a parallel sequence (x, y),

ex, ey =LLM(x), LLM(y) (1)

es, et =f(s(x), ex), f(t(y), ey) (2)

ds,t,D =E(x,y)∈D[emd(us, ut, cost(es, et))] (3)

where ex ∈ Rn×k, ey ∈ Rm×k are the k-
dimensional representations generated by some
LLM that can understand both natural and formal
languages, s(·), t(·) are the parsers or policies that
output tree structures for x, y, and the f computes
the representation of each tree node. We define
the leaf nodes have the same representations in
ex, ey, and internal nodes get their representations
by mean-pooling of its children nodes. us ∈ Rl

and ut ∈ Rr are discrete uniform distributions,
where l, r are node numbers of s(x), t(y) respec-
tively. The emd function returns the Earth Moving
Distance (Peyré et al., 2019) of us, ut under the
cost matrix defined by euclidean distances of es, et.
ds,t,D is the minimal transport cost from X to Y
for the entire dataset D. We utilize the POT tool-
box (Flamary et al., 2021) to compute the optimal
transport. Then given the training and testing sets
Dtrain, Dtest, the DisStruct metric is defined as

M(s, t) =
|E[ds,t,Dtrain ]− E[ds,t,Dtest ]|
σ[ds,t,Dtrain ]σ[ds,t,Dtest ]

(4)

where the expectation E and standard deviation σ
are implemented by re-running with a few random
seeds. In our evaluation, we sample 50 examples
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Figure 8: Fitting the metrics of different (S, T) choices
to the accuracies on different datasets and generaliza-
tions. We include the absent S and both absent and given
T, showing whether the metric can reflect the differences
between the grammar-based and the sequence-based
structures of the formal languages. Metrics computed
with 3 chosen LLMs are all shown negatively correlated
with the performance.

for the expectation in Eq.(3), and rerun 10 times
for Eq.(4).

Intuitively, given structural choices (s, t), the
DisStruct evaluates the distances of x and y of a
single example, and computes the distance discrep-
ancies between Dtrain, Dtest. Therefore, we can
expect higher performance by finding lower metric
values from some (s, t) pair. Figure 8 illustrates the
correlations. Although every (s, t) can yield a met-
ric value, we plot only two kinds of pairs (absent,
absent) and (absent, given) and investigate whether
the metric can tell apart the differences between
the grammar-based and the sequence-based struc-
tures. With three recent LLMs5 that we can load
with less than 24GB GPU, the metrics are shown
all negatively correlated with the performance as
expected.

Since each fitted linear model has a low R2 value
(i.e., plots far from the fitted line), we examine
the results by datasets. As long as the metric can
indicate performance for datasets, it’ll be possible
to probe or search structural choices for a specific
dataset we’re interested in. For each dataset under
a generalization level, we only have 2 points. We
computed the slope of the line determined by the

5ChatGLM-6B (Du et al., 2022): https://github.
com/THUDM/ChatGLM-6B; Falcon-7B (Almazrouei et al.,
2023): https://huggingface.co/tiiuae/falcon-7b;
Baichuan-7B: https://huggingface.co/baichuan-inc/
baichuan-7B.

https://github.com/THUDM/ChatGLM-6B
https://github.com/THUDM/ChatGLM-6B
https://huggingface.co/tiiuae/falcon-7b
https://huggingface.co/baichuan-inc/baichuan-7B
https://huggingface.co/baichuan-inc/baichuan-7B
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Figure 9: On each dataset and generalization level (to-
tally 13 here), we compute metrics for two pairs, i.e.
(absent, absent) and (absent, given), corresponding to
two points in Figure 8. We plot the histogram for the
slope of each line determined by the two points. The
slopes are negative and are also low when positive, sug-
gesting the metrics are possibly indicative for specific
datasets and generalization level.

two points, and plot the histogram of the slopes
in Figure 9. Hopefully, the slopes are negative at
more than 50% times, and are also relatively small
even it’s positive. We also find the metrics based on
ChatGLM-6B and Falcon-7B are more ideal than
Baichuan-7B.

5 Related Works

Many representations have been used for semantic
parsing. Popular representations include seman-
tic roles, FOL or λ-calculus (Zettlemoyer and
Collins, 2005, 2007; Wong and Mooney, 2007),
λ-DCS (Liang et al., 2013), FunQL (Kate et al.,
2005; Guo et al., 2020), application-specialized
query graphs (Yih et al., 2015; Chen et al., 2018;
Hu et al., 2018), and programming languages like
SQL (Xu et al., 2018), Java (Iyer et al., 2018; Alon
et al., 2020), and Python (Yin and Neubig, 2017;
Rabinovich et al., 2017). Linguists also design
meaning representations such as AMR (Banarescu
et al., 2013), ERS (Flickinger et al., 2014), and
UMR (Van Gysel et al., 2021). Abend and Rap-
poport (2017) had reviewed many semantic repre-
sentations in a linguistic-centric perspective, and
Li et al. (2022) had proposed a metric to evaluate
different representations. Our discussions are not at
representation level (only the lispress, λ-calculus,
and SQL are used), but on structure effects under
maybe a fixed representation.

Classic semantic parsers used to assign cate-
gories to linguistic or semantic fragments, and com-

pose them in a bottom-up fashion. Some typical im-
plementations are based on CCG (Zettlemoyer and
Collins, 2005), SCFG (Wong and Mooney, 2006),
Hyperedge Replacement Grammar (Chiang et al.,
2013), and AM Algebra (Groschwitz et al., 2017,
2018; Weißenhorn et al., 2022). Other parsers do
not define linguistic categories, but use feature en-
gineering or types to guide composing algorithms
(Liang et al., 2013; Pasupat and Liang, 2015).

Neural parsers like Seq2Seq (Xiao et al., 2016)
adopt end-to-end mappings but can make grammar
errors. Seq2Tree (Dong and Lapata, 2016) is then
proposed to generate grammatically valid trees for
untyped λ-calculus. Grammar-based decoding (Kr-
ishnamurthy et al., 2017; Yin and Neubig, 2018)
turns to generate rule sequences converted from
the target AST. Some parsers design intermediate
patterns for an easier abstraction over the targets
(Zhang et al., 2017; Dong and Lapata, 2018; Guo
et al., 2019; Ding et al., 2019; Iyer et al., 2019;
Choi et al., 2021; Chen et al., 2020). The abstrac-
tion layer can be seen as handcrafted structures for
the targets. We only consider CFG-based struc-
tures due to their generality. Similarly, graph-based
targets and parsers are also beyond our discussing.
LLMs as semantic parsers (Qiu et al., 2022; Zhuo
et al., 2023) are found not performing well on the
COGS dataset before structural discussions. We
leave some results and discussions in Appendix C.

Recently the compositional generalization has
attracted much focus (Jambor and Bahdanau, 2022;
Liu et al., 2021; Herzig and Berant, 2021). But
they either devise special parsers other than the
encoder-decoder architecture, or handle represen-
tations like FunQL, therefore not direct applicable
to other general parsers. Zheng and Lapata (2022)
reports the entanglement problem where Seq2Seq
models entangle irrelevant semantic factors during
generation. Yin et al. (2021) induces token and
span level alignments. Our structural discussions
are orthogonal to their model improving works.

6 Conclusion

By evaluations on a variety of settings, we find the
structural modeling is not guaranteed to give better
performance. We conclude that structural biases
for sources and targets must be chosen as a whole,
and that choices also depend on the specific dataset
and generalization level. We propose the DisStruct
metric to facilitate structure finding, which is nega-
tively correlated with the performance.
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Limitations

We’ve discussed a variety of structural models, but
may lack the tuning of hyperparameters for each
model to work at its best. For example, the number
of nonterminals and preterminals are important for
PCFGs, but we use a small number compared with
the grammar induction task on PTB due to our
small dataset size. Also, it is a reasonable guess
that BERT and ELECTRA as encoders are inferior
than large language models such as T5, Falcon,
and ChatGPT. We have not conduct experiments
on datasets simply because of limited computation
resources. Also we note that LLMs can be used as
the decoder-only models, and generate targets via
in-context learning or zero-shot prompts. We left
the results in the Appendix C because structural
models or representations we concerning are not
involved in the paradigm.

Furthermore, our study is all English-based
datasets. Considering the large differences be-
tween language families, the structure model of
constituency and dependency trees in our study
may have different effects. Universal structures
such as the Universal Dependencies (de Marneffe
et al., 2021) may be considered for future research.

Finally, DIORA and PCFGs in our study require
approximately 4 times more GPU memories than
other encoders (excluding the BERT and ELEC-
TRA of course). This may be caused by the CKY-
style computation which is O(n3s2) in time where
n is the sentence length and s is the number of
syntactic categories. This will leads to more GPU
consumption to compute the tensor graph. We’re
also wondering if a sample-based learning algo-
rithm could work instead of the inside algorithm.

Ethics Statement

Since our study is objective, we have reviewed our
datasets. The contents of the datasets are publicly
available for years and obtainable without checking
the membership of any group. In addition, some
datasets had adopted careful preprocessing such
as anonymization which replaced real-world entity
names with placeholders. The dependent code re-
sources are managed in public repositories. And
so will ours. So far we believe our work does not
have ethical concerns.
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A Structure Modeling

We’ll make extensions for Seq2Seq models. In
the classical Seq2Seq, the encoder module is in
charge of encoding source input X = {xi}ni=1 and
prepares for the attention mechanism a memory
H = {hi}ni=1 of states, where each hi are usu-
ally aligned to each input token xi. The decoder
is obliged to generate tokens Y = {yj}mj=1 by re-
ferring the memory H for each yj . The last state
hn in memory is usually chosen to initialize au-
toregressive decoders. We will explain how H is
constructed for encoders, and how Y is chosen for
decoders.

A.1 Encoders

If the source structure is Absent, we take the input
X as a plain sequence and choose the BiLSTM as
the encoder. Due to their impressive performance,
we also use the BERT (Devlin et al., 2019) and
ELECTRA (Clark et al., 2020) language models
from the Transformers library (Wolf et al., 2020).
The encoder memory H is then the encoder outputs
of each word in X .

If the source structure is Given, we use Berkeley
Parser to get the constituency tree T of X . After
removing the POS tags, T consists of words xi as
leaf nodes and the syntactic categories as internal
nodes, such as NP, PP, and WHNP. We use two-
layer GCN to encode nodes following the structure,
and collect all the node hidden states as the atten-
tion memory H .

For latent structures, we choose representa-
tive grammar induction methods, namely ONL-
STM (Shen et al., 2019), DIORA (Drozdov et al.,
2019), PCFGs (Kim et al., 2019a; Yang et al.,
2021), and Perturb-and-Parse (Corro and Titov,
2019b) Both constituency and dependency trees are
considered. And most latent structures are learnt in
two ways, by relaxation or sampling (Wu, 2022),
where the former is usually optimized by maximiz-
ing the marginal probability of X as Eq.5, and the
latter is optimized by sampling a structure S and

passing to the downstream decoders (Eq.6).

max
θ

Pθ(X) =
∑
S

Pθ(S,X) (5)

max
θ

Pθ(Y | X) = ES∈P (S|X)P (Y | S,X) (6)

To wrap these up, the Perturb-and-Parse will give a
sampling-based dependency trees, while others are
the relaxation-based constituency trees.

ONLSTM Specifically, ONLSTM6 shares the
interface with classical RNNs, and invents the or-
dered neuron that can be interpreted as hierarchical
structures. So we use it just as the replacement for
BiLSTM. The memory H is also the states of se-
quence X , and the optimization only uses gradients
from the decoders.

DIORA DIORA7 aims to learn latent binary
trees following the inside-outside algorithm. Em-
beddings of X are composed bottom-up for filling
the inside chart with inside states. The composi-
tion cijk of two sub-span states h(xi:j) and h(xj:k)
is parameterized by an MLP fh. Every possible
composition is scored with another MLP fs. As
DIORA falls into the relaxation-based category,
each span state is a summation (Eq. 7) of all possi-
ble compositions with the normalized scores (Eq.
8).

hin(xi:k) =
∑
j

sikj fh
(
hin(xi:j), h

in(xj:k)
)

(7)

sikj = softmax
(
fs

(
hin(xi:j), h

in(xj:k)
))

j
(8)

where softmax(·)j means the j-th normalized
score after the softmax function. Similarly, the
outside pass will fill the outside chart to given any
span xj:k an outside state hout(xi:k), which is com-
posed by each possible parent and sibling span and
summed up with the normalized score. The out-
side composer and scorer are different MLPs. The
attention memory H for DIORA encoders is full
of representations of X , where each word is repre-
sented by the concatenation of inside and outside
states as hi = [hin(xi:i+1);h

out(xi:i+1)], where
the inside state of one-word spans h(xi:i+1) are
actually the word embeddings. Note that DIORA
comes up with its own training objective, which

6https://github.com/yikangshen/
Ordered-Neurons

7We use the original DIORA model from S-DIORA repo.
https://github.com/iesl/s-diora
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maximizes the reconstruction probabilities from
each one-word span as Eq.9.

max
θ

Ldiora =
∑
i

logPθ(xi|hout(xi:i+1)) (9)

PCFGs Two notable modern PCFGs8 are C-
PCFG (Kim et al., 2019a) and TD-PCFG (Yang
et al., 2021). Rules are restricted to Chomsky nor-
mal form, including S → A,A → BC, and P →
x, where S is the fixed start token, A is a nontermi-
nal, P generating a single terminal word x is called
a preterminal, and B,C can be either nonterminal
or preterminal. Embeddings and neural networks
are used to parameterize the rule distributions as
πS→A, πP→x, πA→BC .

C-PCFG adopted a novel variational model to
infer a global state z of X , and let the neural nets
predict π by concatenation z to each symbol embed-
dings. We use BiLSTM for the variational model.
And TD-PCFG decomposed the large tensor of
πA→BC into the sum of products of lower rank ten-
sors, largely extending the number of nonterminals
and preterminals.

To use PCFGs as encoders, we first build up the
PCFG models on the source sequence X . Since
C-PCFG is built with a variational inference model,
the loss involves a reconstruction loss as Eq.5 and
a KL divergence. The former with a summation
can be computed efficiently by the inside algorithm,
and the latter is easy to obtain because the prior of
z is kept Gaussian.

We choose to include all the span representations
hi:k in the attention memory H . The representa-
tions are computed similar to the bottom-up inside
algorithm. The algorithm fills an inside chart with
probability scores sikA

.
= P (xi:k | A) for every

span xi:k with each nonterminal A.

sikA =
∑
B

∑
C

∑
j

wijkABC (10)

wijkABC = πA→BC · sijB · sjkA (11)

Similarly, the span representation hi:k is also a
weighted sum (Eq.12) of all hijkABC , which means
the compositional representation for span xi:k as
the category A, split at the point j, with left and
right sub-spans being categories B and C.

hi:k =
∑

A,B,C,j

hijkABC · wijkABC · πs(A) (12)

8https://github.com/sustcsonglin/TN-PCFG

Note that we uses πs, s ∈ N as a prior to sum over
A, which can be interpreted as treating the span
xi:k as a valid sentence.

To compute compositions of span hi:j and
hj:k, Instead of concatenating embeddings of
A,B,C, hi:j , hj:k and transforming with an MLP,
we factorize the computation of hijkABC with dif-
ferent MLPs to avoid broadcasting to the unrelated
dimensions as Eq.13.

hijkABC = fh(A) + fls(B) + frs(C)

+ fl(hi:j) + fr(hj:k) (13)

Note that we can rearrange Eq.12 and Eq.13 jointly
to save up space, by moving items together and
summing out irrelevant dimensions in advance.
And for TD-PCFG which decomposes the tensor
πA→BC =

∑
l u

l
A · vlB · wl

C , the similar form of
Eq.12 and Eq.13 and the efficiency trick can also
be adopted. Formulae related to TD-PCFG are
omitted here to save up space.

Perturb-and-Parse The model (abbr. PnP) fo-
cuses on sampling trees from the distribution of
dependency structures. Words embeddings e(X) ∈
Rn×d of X ∈ Rn are transformed to arc weights as
Eq. 14, from which the Eisner’s algorithm (Eisner,
1996) infers the tree S. The gumbel-softmax trick
is adopted for differentiable sampling (Eq.15), and
the argmax operation in Eisner’s algorithm is re-
placed with the softmax following Corro and Titov
(2019a). In this way, during training the output of
Eisner’s algorithm is not yet a valid but soft depen-
dency tree, indicating the probabilities that there’s
an arc between two words xi and xj . But we switch
to the default argmax during testing.

W = fhead(e(X)) · ftail(e(X))T (14)

Z ∼ G(0, 1) (15)

S = Eisner(W + Z) (16)

After the source tree S is inferred, we use two GCN
layers to pass messages among nodes following the
structures, where each node is a word in X . We use
all the node representations to build the attention
memory H . The PnP model is simply trained with
the downstream tasks (Corro and Titov, 2019b).

A.2 Decoders
If the target structure is Absent, we simply model it
with an LSTM. And we do not use any pretrained
language model as the decoder. For datasets with
very long targets and slow for training, such as

https://github.com/sustcsonglin/TN-PCFG
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the ATIS and Advising, we use the Transformer
decoder instead of LSTM.

For latent target structures, we only use ONL-
STM as the source side because it shares the same
interface with RNNs. Other extensive works are
not tested, because the SQLs are usually much
longer than the natural language, and the grammar
induction works are seldom evaluated on such long
sentences (Drozdov et al., 2019). Furthermore, se-
mantic representations are born with well-defined
structures, it’s not intuitive to learn latent structures
from data.

For target structures that are given, we use the
grammar induced by Oren et al. (2020) as discussed
in Section 2. We manually convert the grammar
into ENBF form and use the parser generator Lark
to parse SQLs in the dataset. After that, we follow
the order of left-most derivation to traverse the
AST parses of SQLs as in TranX (Yin and Neubig,
2018), and the rule sequences are modeled by an
LSTM. We denoted this method as Grammar-based
Decoders as Oren et al. (2020).

Although the models above are enough to ful-
fill the taxonomy in Section 2, we’ve also tried
but failed to use C-PCFG and RNNG (Dyer et al.,
2016) as decoders. The generative RNNG is
such expressive that make SQL grammar errors
often, like a WHERE clause followed by another.
URNNG (Kim et al., 2019b) requires an external
(UCB Parser specifically) inference model to con-
strain the expressive power of RNNG. For C-PCFG,
we hypothesize lacking of attention mechanism
is crucial. We hypothesize the execution guided
decoding might be helpful and necessary, but it’s
beyond our discussion in structures.

B Experiment Hyperparameters

We explain the details of models and hyperparame-
ters here. We use the same setting for all datasets,
and keep most parameters the same across models.

For hyperparameters applicable to all models,
we use AdaBelief optimizer (Zhuang et al., 2020),
and set the learning rate to 1e-3, and betas to 0.9
and 0.999. We do not use weight decays for all
models. We fix the batch size to 16. The learning
rate scheduler is based on NoamLR from the Al-
lenNLP package, with the model size set to 400 and
warmup steps to 50. We use the pretrained GloVe
embeddings of 100 dimensions for the source side.
For BERT hyperparameters, the learning rate is set
1e-5 and no LR schedulers.

Model #examples Accuracy

ChatGLM-6B 3000 6.27%
text-davinci-003 3000 0.83%

gpt-3.5-turbo 300 31.33%

Table 4: The in-context learning results of LLMs on the
I.I.D. generalization of COGS. The testing set has the
size 3000. The text-davinci-003 and gpt-3.5-turbo are
evaluate on their May-15 2023 version. We didn’t con-
duct a complete testing due to the accumulated accuracy
and the cost.

We set the encoder hidden size to 300 for most
models, except 150 for Diora and PnP, and 200
for PCFGs and Tree encoders. Sequence encoders
and the inference model of C-PCFG are bidirec-
tional (BiLSTM and ONLSTM). All encoders are
1-layer except the 2-layer GCN used for Tree and
PnP encoders. Decoder is fixed to LSTM but Trans-
former for PCFGs/BERT/Electra. LSTM decoder
is 1-layer and the hidden size is 200 for PCFGs
models and 300 for others.The attention scores are
computed by dot products. Transformer decoders
are 2-layers and uses 300 for hidden size, and 10
for attention heads. All encoder dropout is 0 and
decoder dropout is 0.5.

Training on GEO and Scholar uses 150 epochs
for PCFGs and Tree encoders, 300 for tree en-
coders and 400 for others. All models trained for
ATIS and Advising uses 30 epochs. On COGS and
SMCalFlow-CS datasets, the models are trained
for 15 epoches because of the large size. In prac-
tice, most models are trained in 4 to 12 hours, with
an Xeon E5-2680 CPU and a single GeForce RTX
3090 GPU.

C Few-shot Parsing with LLMs

We just use the LLMs on the I.I.D. generalization
of COGS dataset. We first build an index on the
natural language of the training set, and then search
for the closest 10 examples (x′, y′), with each test-
ing x. The prompt is typically built as “Input: x′.
Output: y′.” for each example (x′, y′), appended
by the testing example as “Input: x. Output:”. In
this way we’re trying to utilize the in-context learn-
ing ability of LLMs for semantic parsing. and the
accuracy is evaluated by Exact Match (EM) of the
outputs against the gold targets. However, the per-
formance is not ideal.

The lower two LLMs with the similar scale even
have a pretty much performance difference. Note
a plain Seq2Seq model can generalize well in the
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I.I.D. setting, we find this performance not accept-
able. We have sampled and analyzed the errors of
ChatGLM, and there’re some typical errors, such
as (1) missing declarations of a variable; (2) output
too long sequences which can be over ten times
than the gold target; (3) inventing undefined the
neo-davidsonian predicates; (4) misunderstanding
the passive and active roles. We hypothesize that
LLMs must be finetuned on these unseen repre-
sentations like neo-davidsonian λ-calculus. And
at least there’re still much study to do before dis-
cussing the structural biases for LLMs.

D Accuracies for Model Combinations

We list the complete accuracies for each encoder
and decoder combinations in Table 5 and Table 6.
For the encoders, rcpcfg and rtdpcfg are the re-
duced version of C-PCFG and TD-PCFG respec-
tively. The pnp is the Perturb-and-Parse model.
The syn-parser is the supervised Berkeley Parser
with a GCN to encode. For the decoders, the seq
denotes an LSTM as the decoder, and the prod
denotes the grammar-based decoding of rule se-
quences modeled by an LSTM. Please refer to Ap-
pendix A and Section 2 for an introduction.

We’ve defined several S and T choices. For en-
coders, the bilstm, bert, and electra are absent
S. The ON-LSTM, DIORA, R-C-PCFG, R-TD-
PCFG, and PnP are latent S. And only the syn-
parser belongs to given S. For decoders, the seq,
ON-LSTM, and prod represent the absent, latent,
and given T, respectively.

E EBNF Grammar for SQL

For grammar-based decoding, AST parses of SQLs
are required. We use the Lark Python package
which is a parser generator like the classical flex
and bison. We use the grammar induced by Oren
et al. (2020) and manually convert it to the Lark for-
mat, which is an implementation of EBNF. Other
grammars from MySQL and SQLite are not used
in this work.

The lexer definitions we use are as follows.
SPACES: /[\u000B\x09\x0d\x0a\x20]/
SINGLE_LINE_COMMENT: "--"

(/[^\x0d\x0a]/)* ("\x0D")? "\x0A"
WS: SINGLE_LINE_COMMENT | SPACES
%ignore WS

SCOL: ";"
COMMA: ","
STAR: "*"
WHERE: "WHERE"
SELECT: "SELECT"

DISTINCT: "DISTINCT"
LIMIT: "LIMIT"
GROUP: "GROUP"
ORDER: "ORDER"
BY: "BY"
HAVING: "HAVING"
AS: "AS"
AND: "AND"
OR: "OR"
DOT: "."
ASC: "ASC"
DESC: "DESC"
LPAR: "("
RPAR: ")"
LIKE: "LIKE"
NOT: "NOT"i
IN: "IN"
BETWEEN: "BETWEEN"
NULL: "NULL"
IS: "IS"
PLUS: "+"
MINUS: "-"
DIV: "/"
EQUAL: "="
NEQ: "<>"
GTE: ">="
LTE: "<="
GT: ">"
LT: "<"
UPPER: "UPPER"
LOWER: "LOWER"
FROM: "FROM"

The parser definitions are as follows.
statement: query SCOL | query
query: select_core groupby_clause

orderby_clause limit
| select_core groupby_clause

orderby_clause
| select_core groupby_clause limit
| select_core orderby_clause limit
| select_core groupby_clause
| select_core orderby_clause
| select_core

select_core: select_with_distinct
select_results from_clause
WHERE where_clause

| select_with_distinct
select_results from_clause

select_with_distinct: SELECT DISTINCT
| SELECT

select_results: select_result COMMA
select_results
| select_result
| function binaryop non_literal_number

select_result: STAR
| TABLE_NAME DOT STAR
| col_ref
| function AS COL_ALIAS
| function
| col_ref AS COL_ALIAS

from_clause: FROM source
source: single_source COMMA source

| single_source
single_source: source_table

| source_subq
source_table: "TABLE_PLACEHOLDER" AS TABLE_NAME
source_subq: LPAR query RPAR AS SUBQ_ALIAS

| LPAR query RPAR
limit: LIMIT non_literal_number
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encoder decoder smc16 smc32 smc64 smc128 advising atis cogs geo scholar

bilstm
seq 28.4 19.8 40.0 52.6 5.9 15.1 0.0 26.2 26.1

onlstm 28.2 26.2 34.7 48.2 5.2 15.3 7.4 22.9 25.7
prod 14.1 27.6 31.1 26.9 7.8 16.3 0.0 26.6 21.6

onlstm
seq 32.1 32.5 20.2 52.3 6.8 22.8 6.2 25.9 31.0

onlstm 31.4 39.7 46.3 48.8 5.0 24.7 3.1 26.2 32.4
prod 9.7 27.3 32.7 31.3 6.3 22.2 3.0 30.8 27.4

bert
seq 29.2 37.9 42.2 51.1 9.1 29.8 2.6 29.5 33.1

onlstm 27.3 42.0 44.8 55.8 9.8 19.3 0.0 35.8 33.3
prod 16.2 28.3 32.4 42.3 7.6 31.2 0.0 31.0 27.8

electra
seq 29.4 37.7 50.0 41.7 4.7 29.0 0.0 23.7 21.0

onlstm 27.5 31.8 32.0 53.3 7.0 18.6 0.0 18.5 21.8
prod 13.1 18.2 25.4 36.7 6.0 30.9 0.9 25.5 17.5

diora
seq 26.9 19.3 28.5 33.3 3.9 18.5 27.3 24.2 26.1

onlstm 28.1 18.2 27.6 47.9 5.1 17.9 21.1 25.1 27.3
prod 8.5 21.8 22.5 32.1 3.3 15.4 8.2 29.7 19.6

rcpcfg
seq 23.2 21.4 23.7 40.2 2.8 11.0 0.0 17.6 14.9

onlstm 22.2 18.3 32.3 26.2 0.0 14.7 12.9
prod 17.3 16.2 20.2 12.2 1.7 11.8 0.0 17.8 15.5

rtdpcfg
seq 21.5 24.1 19.9 23.2 0.7 1.4 0.0 16.9 16.1

onlstm 9.4 23.3 26.6 32.1 0.0 12.5 12.9
prod 6.3 17.3 14.5 15.7 1.5 3.4 0.0 13.2 13.2

pnp
seq 19.5 20.1 29.6 24.8 6.3 12.3 0.0 18.5 22.9

onlstm 17.1 19.2 20.5 21.9 6.2 17.1 0.0 20.9 20.4
prod 6.8 12.5 18.9 24.5 3.3 16.4 0.0 25.7 19.8

syn-parser
seq 23.8 27.2 28.8 39.2 11.4 16.4 0.0 22.0 30.4

onlstm 24.3 27.6 37.4 40.9 9.3 16.0 0.0 21.3 30.6
prod 6.8 17.1 21.1 31.7 7.8 17.4 0.0 23.7 21.4

Table 5: The accuracies of each datasets on their compositional generalization levels. For the ATIS, GEO, Scholar
and Advising, average results of 5 random seeds are reported.

| LIMIT value
where_clause: LPAR where_clause RPAR where_conj

| LPAR where_clause RPAR where_or
| LPAR where_clause RPAR
| unaryop where_clause
| expr where_conj
| expr where_or
| expr
| source_subq binaryop non_literal_number

where_conj: AND where_clause
where_or: OR where_clause
groupby_clause: GROUP BY group_clause

HAVING expr
| GROUP BY group_clause

group_clause: expr COMMA group_clause
| expr

orderby_clause: ORDER BY order_clause
order_clause: ordering_term COMMA order_clause

| ordering_term
ordering_term: expr ordering

| expr
| COL_ALIAS ordering

ordering: ASC
| DESC

col_ref: SUBQ_ALIAS DOT COLUMN_NAME
| TABLE_NAME DOT COLUMN_NAME
| SUBQ_ALIAS DOT COL_ALIAS
| TABLE_NAME DOT COL_ALIAS

expr: in_expr
| value LIKE value

| value NOT LIKE value
| value BETWEEN value AND value
| value NOT BETWEEN value AND value
| value binaryop expr
| unaryop expr
| col_ref IS NOT NULL
| col_ref IS NULL
| source_subq
| value

in_expr: value NOT IN string_set
| value IN string_set
| value NOT IN expr
| value IN expr
| value IN LPAR arg_list RPAR

string_function: string_fname
LPAR col_ref RPAR

string_fname: LOWER | UPPER
parenval: LPAR expr RPAR
function: fname LPAR DISTINCT

arg_list_or_star RPAR
| fname LPAR arg_list_or_star RPAR
| "YEAR(CURDATE())"

arg_list_or_star: arg_list
| STAR
| "1"

arg_list: expr COMMA arg_list
| expr

non_literal_number: "1"
| "2"
| "3"
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encoder decoder smc128 advising atis cogs geo scholar

bilstm
seq 57.8 86.2 61.8 94.3 70.7 67.8

onlstm 61.5 86.2 60.9 98.5 70.9 67.2
prod 24.1 82.3 57.5 56.4 71.5 66.0

onlstm
seq 62.9 82.1 63.6 99.3 71.2 66.3

onlstm 63.2 82.3 61.9 96.3 72.2 65.5
prod 19.8 80.5 58.9 95.2 71.3 61.0

bert
seq 51.8 89.9 67.0 97.4 75.8 69.3

onlstm 54.9 88.7 62.0 66.7 75.8 70.3
prod 25.1 87.1 65.3 46.7 75.7 68.5

electra
seq 50.0 90.1 66.7 96.2 72.2 71.6

onlstm 48.2 87.7 58.2 92.6 71.8 69.0
prod 23.2 86.8 66.4 83.0 69.8 65.6

diora
seq 55.6 66.3 52.0 85.1 70.7 64.4

onlstm 54.3 68.2 50.4 78.2 68.8 65.0
prod 16.3 61.5 50.9 56.5 68.9 62.7

rcpcfg
seq 50.0 81.7 58.0 96.2 48.2 57.1

onlstm 51.2 95.9 60.8 56.8
prod 18.0 80.1 58.3 88.3 59.6 52.1

rtdpcfg
seq 42.1 77.0 55.0 96.7 54.7 55.0

onlstm 45.6 94.5 61.5 56.2
prod 16.0 59.6 53.5 85.5 54.5 50.4

pnp
seq 43.9 83.6 56.5 60.4 67.6 66.7

onlstm 44.2 84.3 53.5 57.8 67.4 66.7
prod 14.9 81.9 53.2 61.9 66.2 65.8

syn-parser
seq 15.3 75.2 57.7 83.0 60.6 57.1

onlstm 49.4 75.0 52.7 92.2 62.1 56.2
prod 18.5 72.2 53.5 77.5 60.2 51.3

Table 6: The accuracies of each datasets with the I.I.D. generalization. Similar to the CG level, average results of 5
random seeds are reported for the ATIS, GEO, Scholar, and Advising datasets

| "4"
| "0"
| "5"
| "100"

string_set: "'" string_set_vals "'"
string_set_vals: value COMMA string_set_vals

| value
fname: "COUNT"

| "SUM"
| "MAX"
| "MIN"
| "AVG"
| "ALL"

boolean: "true"
| "false"

binaryop: PLUS
| MINUS
| STAR
| DIV
| EQUAL
| NEQ
| GTE
| LTE
| GT
| LT
| LIKE

unaryop: PLUS
| MINUS
| NOT

We put values in the grammar definition follow-

ing Oren et al. (2020). This good enough for our
usage. Note in a formal SQL grammar, the val-
ues for entities, tables, and columns are usually
included in the lexer definition and defined with
regular expressions. We leave the other defini-
tions in our code release because it’s too long (hun-
dreds of lines), including the nonterminals of value,
COL_ALIAS, SUBQ_ALIAS, TABLE_NAME, and
COLUMN_NAME.

F EBNF Grammar for COGS

We list our handcrafted grammar for COGS here.
start: preludes formulas

| formulas
| lambdas formulas
| PROPER_NOUN

lambdas: lambda DOT lambdas?
lambda: LAMBDA var
preludes: prelude SEMICOLON

| prelude SEMICOLON preludes
prelude: ASTERISK? NOUN LPAR var RPAR
var: LETTER

| LETTER UNDERSCORE NUMBER
formulas: formula

| formula AND formulas
formula: predicate LPAR params RPAR
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predicate: NOUN
| NOUN DOT NOUN
| NOUN DOT NOUN DOT NOUN

params: param
| param COMMA params

param: var
| PROPER_NOUN

AND: "AND"
NOUN: WORD
LETTER: /[a-z]/
NUMBER: /\d+/
LPAR: "("
RPAR: ")"
WORD: /[a-z]+/
PROPER_NOUN: /[A-Z][a-z]+/
DOT: "."
COMMA: ","
SEMICOLON: ";"
ASTERISK: "*"
UNDERSCORE: "_"
LAMBDA: "LAMBDA"

G EBNF Grammar for Lispress

We list our handcrafted grammar for SMCalFlow-
CS, which uses the Lispress language. Although
the Lispress has an official parser in Python, we
still use a handcrafted grammar for consistency
with our work.
VALID_CHAR: /[a-zA-Z\d\"\#\(\)\+/

| /\.\:\<\>\=\?\[\]\~]/
QUOTE: "\""
LPAR: "("
RPAR: ")"
LBRA: "["
RBRA: "]"
COLON: ":"
DOT: "."
LET: "let"
DO: "do"
META: "^"
MACRO: "#"

SYMBOL_CHAR: /[a-zA-Z0-9\+\<\>\=\?\~]/
CAP_CHAR: /[A-Z]/
NONCAP_CHAR: /[a-z0-9\+\<\>\=\?\~]/

CAP_SYMBOL: CAP_CHAR SYMBOL_CHAR*
NONCAP_SYMBOL: NONCAP_CHAR SYMBOL_CHAR*
ANY_SYMBOL: SYMBOL_CHAR+

PLAIN_STRING: /(\\.|[^\\\"])+/

COMP_SYMBOL: /\?[^ ]+/
REAL_NUMBER: /\d+(\.\d+)/
INT_NUMBER: /\d+/
LONG_NUMBER: /\d+L/
TYPE_CONSTRUCTION: "apply"
STRING_TYPENAME: "String"
NUMBER_TYPENAME: "Number"
BOOLEAN_TYPENAME: "Boolean"

start: s_exp
s_exp: LPAR type_args? fn_call RPAR

| LPAR value RPAR
type_args: META LPAR (NUMBER_TYPENAME

| BOOLEAN_TYPENAME
| STRING_TYPENAME) RPAR

fn_call: kwarg_fn | arg_fn
kwarg_fn: kwarg_fn_name kwarg*
arg_fn: arg_fn_name arg*
kwarg_fn_name: CAP_SYMBOL

| CAP_SYMBOL LBRA ANY_SYMBOL RBRA
arg_fn_name: kw_name

| LET
| DO
| NONCAP_SYMBOL
| type_name DOT attribute

kwarg: kw_name arg
kw_name: COLON ANY_SYMBOL
arg: s_exp

| value
| variable

variable: NONCAP_SYMBOL
value: typed_literal | old_typed_literal
old_typed_literal: MACRO LPAR STRING_TYPENAME

QUOTE string_literal QUOTE RPAR
| MACRO LPAR STRING_TYPENAME QUOTE QUOTE RPAR
| MACRO LPAR NUMBER_TYPENAME number_literal RPAR
| MACRO LPAR BOOLEAN_TYPENAME boolean_literal RPAR
| MACRO LPAR type_name QUOTE string_literal QUOTE RPAR
typed_literal: boolean_literal
| META BOOLEAN_TYPENAME boolean_literal
| QUOTE string_literal QUOTE
| QUOTE QUOTE
| META STRING_TYPENAME QUOTE string_literal QUOTE
| META STRING_TYPENAME QUOTE QUOTE
| number_literal
| META NUMBER_TYPENAME number_literal
| type_name DOT TYPE_CONSTRUCTION
string_literal: PLAIN_STRING
number_literal: REAL_NUMBER | INT_NUMBER | LONG_NUMBER
boolean_literal: "true" | "false"
type_name: CAP_SYMBOL
attribute: NONCAP_SYMBOL


