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Abstract

Large scale transformer models, trained with
massive datasets have become the standard in
natural language processing. The huge size of
most transformers make research with these
models impossible for those with limited com-
putational resources. Additionally, the enor-
mous pretraining data requirements of trans-
formers exclude pretraining them with many
smaller datasets that might provide enlighten-
ing results. In this study, we show that trans-
formers can be significantly reduced in size,
with as few as 5.7 million parameters, and
still retain most of their downstream capabil-
ity. Further we show that transformer mod-
els can retain comparable results when trained
on human-scale datasets, as few as 5 million
words of pretraining data. Overall, the results
of our study suggest transformers function well
as compact, data efficient language models
and that complex model compression methods,
such as model distillation are not necessarily
superior to pretraining reduced size transformer
models from scratch.

1 Introduction

In the space of a few years, transformers have revo-
lutionized natural language processing. Their suc-
cess has been driven by increasingly large models
and more training data. Sizes of the most power-
ful language models have ballooned to billions of
parameters and are pretrained with (in some cases)
trillions of tokens of text (Hoffmann et al., 2022;
Chowdhery et al., 2022). However, the size and
data input requirements of transformers limit their
reach as research tools in two key ways:

First, training transformers usually requires ac-
cess to powerful compute resources. For instance,
the creators of the PALM model (Chowdhery et al.,
2022), used 6,144 TPUv3 chips for pretraining. At
the time of this writing, the on-demand cost of this
much compute would be a little less than $20,000

per hour.1 Even the moderately sized BERT (De-
vlin et al., 2018) model required 16 TPU chips for
pretraining, putting such a task beyond the meager
means of many researchers. Costs this high make
research on end-to-end pretraining impossible for
potentially timely and impactful academic research
(Togelius and Yannakakis, 2023).

Second, large models require pretraining with
large datasets that can generally only be obtained
from data extracted from the internet. BERT, for
instance, was trained on a 3.3 billion word web-
based corpus. In contrast, datasets derived from
other sources, human speech for instance, are nec-
essarily much smaller and sometimes contain only
a few million words. Using data that is not based on
internet text can offer insight into how the nature of
language data affects language model performance.
Currently, such efforts to create language models
from smaller, alternative data sources are of grow-
ing interest in computational linguistics (Warstadt
et al., 2023; Huebner et al., 2021).2,3

Most research for creating efficient transformers
has focused on distillation, which trains a smaller
student model using output from a large, pretrained
teacher model (Sanh et al., 2019; Wang et al., 2020;
Sun et al., 2020; Jiao et al., 2019). While these
efforts have produced more efficient models, they
require the same large datasets and the use of larger
teacher models which themselves require ample
compute power during training, even though the
end goal is a smaller model. Remarkably, there has
to date been little research into simply reducing the
size of transformers, pretraining them from scratch
and fine-tuning them on downstream tasks. The
process of increasing the size of transformer mod-
els and their data inputs are well explored (Kaplan
et al., 2020; Hoffmann et al., 2022). However, it

1https://cloud.google.com/tpu/pricing
2https://babylm.github.io
3https://sites.google.com/view/learning-with-small-

data/home
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is still an open question to what degree the trans-
former architecture can function as a lightweight,
data-friendly research tool.

In this paper, we offer a preliminary study to-
ward addressing these issues. In contrast to pre-
vious studies that have approached these topics,
we forego the use of knowledge distillation and
other complex compression techniques. Rather we
pretrain various configurations of the ELECTRA
(Clark et al., 2020) transformer in search of parame-
ter and data efficient models. We conduct all of our
experiments using a single 12GB GPU to demon-
strate the computational efficiency of the models
we train. The main contributions of our study are:

• We show that compact transformers can re-
tain a surprising amount of capability on the
GLUE benchmark (Wang et al., 2018) when
trained with only 5 million word tokens. Fur-
ther, we show that when training with such a
small dataset, several model dimensions can
be significantly reduced with little ill-effect.

• We show that when using such a small dataset
we can shrink transformers to as few as 5.7
million parmeters and train them faster, us-
ing less compute, while retaining much of the
performance of much larger models.

• We show that with suitable changes to model
configuration, compact variants of the ELEC-
TRA model trained on the moderately sized
OpenWebText (Gokaslan and Cohen) corpus
can perform on par with compact transform-
ers trained with complex distillation methods
such as DistilBERT (Sanh et al., 2019). Fur-
ther they can do so with significantly fewer
parameters and computational requirements.

2 Related Work

The excessive compute requirements of transform-
ers has led to the creation of a sizable body of
research into reducing their size and memory foot-
print. The most well explored strategy is knowl-
edge distillation, a process whereby a full-sized
teacher network is used to train a smaller student
network. DistilBERT (Sanh et al., 2019), Tiny-
BERT (Wang et al., 2020), MiniLM (Jiao et al.,
2019) and MobileBERT (Sun et al., 2020) are pop-
ular examples of compact transformers distilled
using full sized BERT models as teachers. These
methods produce effective smaller models, how-
ever they don’t directly address the amount of input

data required and the training process still requires
using a full-sized teacher model to train the student
model.

Pruning is another popular model compression
method in which some fraction of the trained
model’s parameters are set to zero. Li et al. (2020)
and Sanh et al. (2020) use unstructured pruning
methods to eliminate a large percentage of weights
throughout transformer models with small corre-
sponding reductions in performance. Structured
pruning methods such as Fan et al. (2019) set the
parameter values of entire regions of the model
to zero; in this case whole transformer layers are
pruned. Michel et al. (2019) showed that a large
percentage of BERT’s attention heads can be en-
tirely removed before testing without a significant
decrease in performance. However, these tech-
niques are are all premised on pretraining full-sized
models and then reducing the model size prior to
inference time, therefore still have the same pre-
training data and compute requirements.

There has also been some research directly ad-
dressing the size of pretraining datasets for trans-
formers. Micheli et al. (2020) and Martin et al.
(2019) experimented with reducing the absolute
amount of training data in French language models.
They showed that full sized French language trans-
former models can perform well on select tasks
with significantly less pretraining data. Warstadt
et al. (2020b) and Zhang et al. (2020) investigated
the effect of different pretraining data volumes on
the grammatical knowledge of the RoBERTa-base
model using probing techniques.

Huebner et al. (2021) experimented with using
AOCHILDES, the 5 million word dataset com-
posed of child directed speech for pretraining and
evaluated their results using a grammatical bench-
mark based on BLIMP (Warstadt et al., 2020a).
This study is notable because the authors used a
very small pretraining dataset derived from human
speech and opted to use a scaled-down version of
the RoBERTa model (Liu et al., 2019) to accom-
modate it. Unfortunately, the resulting model was
only tested on narrow set of grammatical learning
tasks, using a specialized dataset for evaluation.

3 Data and Evaluation Criteria

3.1 Pretraining Data

The ELECTRA model was originally pretrained
with the 3.3 billion word corpus used to train BERT
(Devlin et al., 2018). This dataset, however, is not
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Model Params COLA MRPC QNLI MNLI QQP SST2 STSB RTE Avg.
ELECTRA 13.6M 0.570 0.907 0.883 0.814 0.894 0.858 0.822 0.657 0.801
MobileBERT 15.1M 0.531 0.881 0.908 0.814 0.858 0.901 0.874 0.592 0.794
DistillBERT 67M 0.496 0.869 0.886 0.824 0.866 0.901 0.864 0.585 0.783

Table 1: Results for downstream tasks with compact, pretrained models downloaded from the Huggingface library.

publicly available. Fortunately, there are a variety
of open source alternatives freely available for re-
search purposes. We use a web-sourced, public
text corpus, or a subset of it, called OpenWebText
(Gokaslan and Cohen) for pretraining in all of our
experiments. The OpenWebText corpus was cre-
ated as a publicly available reproduction of Ope-
nAI’s WebText corpus that was used in the training
of GPT-2. It consists of over 38GB of text data
scraped from over 8 million internet documents. It
is a popular choice for pretraining language models.
We chose this dataset, specifically because it con-
tains text from a wide variety of sources and will
prepare our models for the diverse range of tasks
contained in the GLUE benchmark (Wang et al.,
2018).

In the first two of our three experiments we aim
to test models trained with scarce data, specifically
we use approximately 5 million words of pretrain-
ing data. 5 million words is a rough estimate of how
many words an American child might hear before
they begin speaking (Gilkerson et al., 2017). In
that sense it represents a realistic size for a human
scale dataset. To obtain a corpus of suitable size for
this experiment we randomly selected documents
from OpenWebText until we had a set with just
over 5 million words and 306,462 unique words
including names of websites such as "tumblr" and
non-English words and phrases. In terms of disk
space it requires only 43MB to store. In our third
and final experiment we make use of all 38GB of
the OpenwebText corpus. The scale and diversity
of the full dataset are similar to those used to train
models such as BERT and will allow us to compare
our compact model variations to other pretrained
compact models.

3.2 Finetuning Data & Tasks

GLUE To evaluate our pretrained models we
fine-tune them on the GLUE tasks introduced in
Wang et al. (2018). The GLUE benchmark consists
of nine supervised sentence-level tasks and their
associated datasets that cover a variety of natural
language understanding domains. We chose GLUE
as a benchmark because it spans several tasks and

Figure 1: The ELECTRA model is a Generator-
Discriminator ensemble. The Discriminator is tasked
with determining if the Generator properly guessed a
masked word; borrowed from (Clark et al., 2020).

because its popularity in NLP research allows us
to directly compare the performance of our models
with previously published results. Following De-
vlin et al. (2018) and Clark et al. (2020) we exclude
the WNLI task from our consideration. COLA is a
grammatical acceptability task, SST-2 a sentiment
classification, QQP, MRPC, STS-B are sentence
similarity tasks and MNLI, QNLI, and RTE are
inference tasks. Our evaluation metrics are Spear-
man correlation for STS-B, Matthews correlation
for CoLA, F1 score for QQP and MRPC and accu-
racy for the remainning tasks. All of the reported
results were obtained by evaluating on the dev sets
of the tasks described and are fine-tuned for 10
epochs. In general, the standard practice for GLUE
fine-tuning is to train for 3 epochs with a batch size
of 32 and a learning rate of 2e-5. However, Clark
et al. (2020) noted that ELECTRA performs better
on select GLUE tasks when trained for 10 epochs.
We found that since overfitting is not a concern for
the small variants of ELECTRA that we trained,
our models benefited from training for 10 epochs
on all of the GLUE tasks.

4 Language Model: ELECTRA-small

In this section we describe the ELECTRA-small
model (Clark et al., 2020) and the rationale behind
using it as the basis for our experiments. In place of
masked language modeling, ELECTRA pretrains
a transformer encoder stack, structurally identical
to BERT’s, by replacing some input tokens with
plausible alternative words sampled from a small
generator network. A larger discriminator model
then predicts whether or not each input token has
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intr emb
size size lyrs prms COLA MRPC QNLI MNLI QQP SST2 STSB RTE Avg.
1024 128 12 13.6M 0.417 0.825 0.818 0.755 0.836 0.838 0.802 0.596 0.736
768 128 12 12.0M 0.422 0.841 0.823 0.755 0.838 0.849 0.800 0.556 0.736
512 128 12 10.4M 0.425 0.832 0.822 0.757 0.838 0.807 0.800 0.570 0.731
256 128 12 8.82M 0.343 0.833 0.828 0.758 0.838 0.830 0.794 0.588 0.727
128 128 12 8.03M 0.379 0.861 0.819 0.750 0.839 0.825 0.815 0.592 0.735
64 128 12 7.64M 0.366 0.852 0.816 0.753 0.838 0.819 0.813 0.639 0.737
1024 96 12 12.5M 0.362 0.818 0.821 0.752 0.840 0.823 0.807 0.588 0.726
1024 64 12 11.5M 0.346 0.824 0.820 0.746 0.830 0.820 0.784 0.552 0.715
1024 32 12 10.5M 0.246 0.822 0.798 0.725 0.816 0.831 0.757 0.563 0.695
1024 128 10 12.0M 0.415 0.834 0.827 0.746 0.840 0.844 0.807 0.599 0.739
1024 128 8 10.4M 0.442 0.851 0.826 0.748 0.839 0.826 0.806 0.585 0.740
1024 128 6 8.81M 0.367 0.814 0.826 0.746 0.835 0.852 0.787 0.516 0.718
1024 128 4 7.2M 0.28 0.823 0.819 0.740 0.832 0.818 0.791 0.581 0.710

Table 2: Results for downstream tasks with reduced model dimensions. Note that the top row represents the
full-sized ELECTRA-small model. All results were trained with a 5M word subset of openwebtext trained for
100,000 steps with batch size of 128. Reduced parameter settings are shown in bold.

been replaced. See Figure 1 for an illustration of
the ELECTRA model. Clark et al. (2020) show
that this strategy leads to better results with less
data and less compute than causal language model-
ing or standard masked language modeling. After
training, the generator is discarded and the discrim-
inator is used for downstream tasks.

The ELECTRA-small model also has the advan-
tage of beginning with only 13.6 million parame-
ters and performs favorably to similarly sized mod-
els. Further, it can be pretrained without the use
of model distillation. As the purpose of our study
is to train transformers in data and resource scarce
settings, it is desirable to use a model that doesn’t
require a teacher model pretrained on a massive
text corpus, and can be trained on a single GPU.

To ensure that ELECTRA-small can produce re-
sults on par with other compact models we use
the pretrained models from the Huggingface trans-
former hub and test them on our selected down-
stream tasks.4 The results are summarized in Ta-
ble 1. We tested three pretrained models, ELEC-
TRA, MobileBERT and DistilBERT. Of the three,
ELECTRA is the smallest model in terms of abso-
lute number of parameters with only 13.6 million.
Despite its small size, it achieves the best average
results on GLUE. Notably it does so using only
pretraining and fine-tuning without the benefit of
knowledge distillation from a larger model. These
features harmonize well with the goals of our study
and make the ELECTRA-small model the logical
choice on which to base our succeeding experi-
ments.

4https://huggingface.co/

5 Experiment 1: Reducing Individual
Model Dimensions in a Low Data
Setting

In the first set of experiments that we conduct, we
test varying the size and configuration of the ELEC-
TRA model using the 5 million word subset of
openwebtext described in Section 3.1 as the pre-
training dataset for each model variation. We begin
by changing only a single dimension of the model’s
configuration. The goal of this series of experi-
ments is to determine which parts of the model’s
architecture can be reduced and what effect these
reductions have on performance. In the process,
we hope to provide some insight into how the size
of each dimension of the transformer model con-
tributes to its downstream performance.

5.1 Procedure

The basic architecture of transformer models is best
described by Vaswani et al. (2017) and consists of
an embedding layer followed by stacked attention
layers, each composed of a multi-head attention
mechanism followed by a feed-forward neural net-
work sub-layer. All of the stacked layers have the
same dimension, but have varying weights. The
embedding size, vocab size, hidden state size, the
feed-forward network’s intermediate size and the
absolute number of layers can all be altered. The
number of attention heads per layer and the max-
imum sequence length can also be varied, though
these changes don’t affect the overall number of
model parameters. We first test the effect of reduc-
ing the size of each of the these parameters and
then pretrain a given model on our 5 million word
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subset of openwebtext. Each model is trained for
100,000 steps with a batch size of 128 and a learn-
ing rate of 5e-4. The generator network used for
training is one quarter the size of the discriminator
network.

The downstream tasks on which we fine-tune
and evaluate our resulting models are the GLUE
tasks described in Section 3, including an Average
of all scores (Avg.). For each task we fine-tune
models for 10 epochs, with a learning rate of 2e-5
and a batch size of 32. Four of these tasks, QQP,
QNLI, SST-2 and MNLI are associated with rela-
tively large datasets and the results are fairly robust
to changes in the model’s size. The remainder of
the GLUE tasks on the other hand, use very small
training sets leading to wide variation, even scores
at the level of chance when model capacity is suffi-
ciently degraded.

5.2 Results

The results for the models with a single dimension
reduced are discussed in this section and summa-
rized in Table 2. We had the most success in reduc-
ing the intermediate size, the embedding size and
the number of attention layers and we provide dis-
cussion for each below. The results of modifying
the hidden size, vocabulary size and number of at-
tention heads were less successful and are available
in Appendix A.

Intermediate Size The intermediate size refers
to the dimension of the hidden layer in the feed-
forward network (FFN) contained in each attention
layer. Following Vaswani et al. (2017), ELEC-
TRA’s default intermediate size is 4 times that of
the the hidden size, which yields an intermediate
size of 1024 for ELECTRA-Small. Our results
indicate that the number of these parameters can
be dramatically decreased with relatively little ef-
fect on the model’s capability when training with
a small dataset. Downstream performance shows
essentially no loss with as few as 64 parameters in
each FFNs hidden layer, nearly a 16-fold reduction
in size. This is a remarkable result as the model
performs nearly identically with 6 million fewer
parameters. Most transformer architectures also
use an intermediate size 4 times that of the hidden
size of the attention layers. These results suggest
that the intermediate stage of transformer’s FFNs
may be over-parameterized. In the final experiment
we address how well these results hold for models
trained on large-scale datasets.

Embedding Size In transformer models, the em-
bedding size refers to the length of each vocabulary
word’s embedding vector. The default size of the
embedding vectors for ELECTRA is 128. Like the
intermediate layer size, the embedding size can be
substantially decreased while retaining most of the
model’s downstream performance. We see from
our results that an embedding size of 96 has vir-
tually the same capability as a full-sized model.
An embedding size of 64 shows slightly reduced
performance on most of the GLUE tasks with a 2
percent drop in average score. This is a notable
result and it suggests that the embedding layer may
also be over parameterized in a low data setting.

Model Depth Finally, we also reduce the depth
of the model, and its number of parameters by sim-
ply decreasing the number of attention layers in the
model. The number of hidden layers in ELECTRA-
small is 12 by default. The results for reducing
model depth are included in Table 2. We see that
decreasing the number of layers to 10 or 8 actually
improves the model’s performance on most of our
downstream tasks with a 1.5 million and 2.3 mil-
lion decrease in their respective parameter counts.
Further decreasing the number of layers to 6 or
4, with 3-5 million fewer parameters, shows only
small decreases in the overall GLUE score.

6 Experiment 2: Reducing Overall Model
Size in a Low Data Setting

Guided by our results from the previous experi-
ments, we now aim to find an overall configuration
of ELECTRA-small that has significantly fewer
parameters than its default of 13.6 million and re-
tains most of its downstream performance. Using
the same 5 million word dataset, we train models
with any number of their dimensions reduced or
modified. In essence, we trained and evaluated a
large number of models with various combinations
of our most successful modifications from our pre-
vious experiments in search of a robust and well
functioning model.

We found early in our efforts that simply re-
ducing model size while keeping the dimensions
proportionate produced poor results. Our results
from the previous section suggest that this may be
due to the models low tolerance for decreases in
its hidden size. We did however find several alter-
native configurations with parameter counts that
ranged from 5.7 to 10 million that retained most of
the performance of the full-sized ELECTRA-small
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Model Hidden Size Inter Size Layers Emb Size Params time 100k time 1M
ELECTRA-
small 256 1024 12 128 13.7M 16h26m 6d21h
Model 1 256 1024 8 128 10.4M 11h15m 4d17h
Model 2 256 256 16 64 8.4M 16h11m 6d5h
Model 3 256 128 14 96 7.7M 13h 5d18h
Model 4 256 64 12 128 7.6M 11h58m 5d7h
Model 5 196 128 18 64 5.7M 13h48m 5d17h

Table 3: Model Key Dimensions for 5 smaller model configurations of ELECTRA. Training times for 100k and
1M training steps with a batch size of 128 on a 12GB GPU included. Note that the top row represents the full-sized
ELECTRA-small model for reference. Reduced parameter settings are shown in bold.

Model COLA MRPC QNLI MNLI QQP SST2 STSB RTE Avg.
ELECTRA-Small 0.417 0.825 0.818 0.755 0.836 0.838 0.802 0.596 0.736
Model 1 0.442 0.851 0.826 0.748 0.839 0.826 0.806 0.585 0.740
Model 2 0.383 0.834 0.833 0.752 0.841 0.826 0.815 0.614 0.737
Model 3 0.366 0.852 0.816 0.753 0.838 0.819 0.813 0.639 0.737
Model 4 0.386 0.849 0.832 0.751 0.839 0.842 0.817 0.567 0.735
Model 5 0.334 0.838 0.819 0.736 0.827 0.815 0.794 0.614 0.722

Table 4: Low Data Setting Results for select models trained with the 5M word subset of OpenWebText corpus for
100k steps. Results for MobilBERT and DistilBERT are appended for the sake of comparison.

model trained on our 5 million word set. The most
successful configurations modified some combina-
tion of intermediate size, embedding size or layer
count. We discovered that we could improve per-
formance relative to parameter count by decreasing
the width (intermediate size and hidden size) of
the model while increasing its depth (number of
layers). We had less success increasing the width
and decreasing the number of layers. Turc et al.
(2019) observed a similar phenomenon leveraging
knowledge distillation on pretrained compact mod-
els.

Though we trained several dozen model varia-
tions, we present only our 5 most succesful. The
dimensions and parameter counts of these mod-
els are described in Table 3. Two of the models,
Model 1 and Model 4, feature only a single modi-
fied dimension and were mentioned in the previous
experiment. Model 1 has 8 layers and Model 4 has
an intermediate size of only 64 parameters. These
modifications led to good results in our previous
experimental settings and a sizeable reduction in
model size. The remaining models feature a de-
crease in the model width and the size of the em-
bedding layer with an increase in model depth.

Procedure As in our previous experiments where
we altered only a single model dimension, we pre-

train all of our models using the 5 million word
subset of openwebtext for 100,000 steps. We eval-
uate our models using the same metrics and hyper-
parameters as the previous experiment in order to
compare our results.

Results The downstream results for these mod-
els are summarized in Table 4 and discussion is
provided below. In this low data setting, our small
Models 1-4 have essentially the same performance
as the original ELECTRA-Small model configura-
tion trained with the same data and settings. Model
5 performed only slightly worse, despite having
only 5.7 million parameters. These results sug-
gest that when using small datasets, small-scale
transformers may perform as well as their compu-
tationally more expensive larger cousins.

Moreover, the reduction in size can be performed
in a variety of ways. The results for Model 1 show
that we can also decrease the model depth by 4
layers without ill-effect. Doing so cuts our training
time nearly in half and reduces our model size by
3 million parameters. Alternatively, increasing the
depth to compensate for loss of width and embed-
ding size was also very effective in lowering overall
model size. Models 2, 3 and 5 made use of this
strategy to varying degrees and produced similar
results. Increasing model depth, however, comes
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Model COLA MRPC QNLI MNLI QQP SST2 STSB RTE Avg.
ELECTRA-Small 0.591 0.908 0.875 0.812 0.856 0.885 0.857 0.632 0.802
Model 1 0.487 0.886 0.865 0.788 0.847 0.894 0.842 0.61 0.777
Model 2 0.504 0.896 0.859 0.784 0.848 0.853 0.841 0.621 0.776
Model 3 0.478 0.881 0.854 0.792 0.847 0.885 0.842 0.632 0.776
Model 4 0.409 0.868 0.846 0.774 0.836 0.858 0.849 0.643 0.760
Model 5 0.444 0.906 0.860 0.784 0.846 0.859 0.834 0.661 0.774
MobileBERT 0.510 0.880 0.908 0.831 0.873 0.917 0.874 0.625 0.802
DistilBERT 0.527 0.826 0.889 0.818 0.870 0.896 0.865 0.585 0.785

Table 5: High Data Setting Results for select models trained with the full OpenWebText corpus for 1 million steps.
Results for MobilBERT and DistilBERT are appended for the sake of comparison.

at the cost of slower training times, presumably
because of the increased number of non-linear acti-
vation functions. Though smaller, Models 2, 3 and
5 required longer train times than did models 1 and
4, which had fewer layers. Model 2 required nearly
as much time to train than ELECTRA-small.

7 Experiment 3: Reducing Model Size in
a High Data Setting

In this experiment, we pretrain a selection of mod-
els using the full OpenWebText corpus as the pre-
traing dataset and training for a million steps. We
use the same five models described in Table 3.
Because the training times in this experiment are
much longer, we will not repeat the exhaustive
study of the effects of changing individual model di-
mensions as we did in the low data setting. Rather,
we only pretrain and evaluate the 5 models consid-
ered in Experiment 2. The goal of this experiment
is determine to what degree the results of Exper-
iments 1 and 2 will hold with a full-size dataset
trained for an extended time. Given that the models
considered contain so few parameters, it is a natural
question as to whether or not they can adequately
make use of the additional information provided
by more data and longer pretraining. The results
of this experiment will also be more readily com-
pared to other compact transformers which are also
trained on full-sized datasets. We use the same eval-
uation criteria as that performed in Experiments 1
and 2.

Results The results of fine-tuning these models
on the GLUE corpus are summarized in Table 5
and discussion is provided below. As opposed to
the scarce data setting, the larger ELECTRA-Small
model is able to make greater use of more data and
increased training time and outperforms its smaller

counterparts to a noticeable degree. This was an
expected result given the abundance of training
data used. Over the course of a million training
steps, the differences in training times are consider-
able. Model 1 requires almost 2 days fewer to train.
Models 3, 4 and 5 all require a day less in training
time. The slow training of Model 2 is again on
display, requiring over six days of training time.

Of the small models we tested, all had quite
similar performance, though Model 4 showed a
slight drop relative to the other models. In our
high data setting, with longer training time, our
smallest model, Model 5 performs as well as the
other small model variants. This is a change from
the low data setting where it lagged slightly behind.
Models 2 and 3 also perform well in this setting
suggesting that increasing model depth to offset
reductions in other dimensions scales fairly well
to larger datasets. Notably Model 1, with 8 layers
of the original ELECTRA-small dimensions, had
similar performance and a favorable training time.
Though it contains more parameters than the other
small models, its reduced depth markedly reduces
training time, requiring less than 5 days to train for
a million steps.

It is not immediately clear why these particu-
lar distributions of parameters perform well. Most
transformer architectures feature a roughly 2:1 ratio
of parameters between their feed-forward networks
and their multi-head attention mechanisms. Our
results suggest that this ratio might be open to sig-
nificant modification. The theoretical purpose of
the FFN is to introduce non-linearity. The fact that
increasing the number of layers, and therefore the
number of non-linear activation functions, seems
to offset reductions in the size of the FFN lends cre-
dence to that theory. MobileBERT also has a long,
thin architecture. Its creators, however, felt com-
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Figure 2: Relative size comparison of Electra-small
(blue) with Electra-tiny (red). Electra-tiny has smaller
embeddings, hidden size, and intermediate size, but has
more hidden layers.

pelled to stack additional FFNs to restore the 2:1
parameter ratio. We suggest that this may not be
necessary. In general, we also advocate for a more
thorough investigation of how parameters are dis-
tributed within the transformer architecture. While
the focus of this study was in low data settings and
small models, even small improvements in param-
eter efficiency could be of great consequence for
very large models.

7.1 Our Smallest Model: ELECTRA-tiny

The smallest model configuration we found that
didn’t experience large reductions in performance
was Model 5. It had a hidden size of 196, reduced
from 256, intermediate size of 128, decreased from
1024, an embedding size of 64, decreased from
128 and 18 layers, increased from 12. We call
this model ELECTRA-Tiny and it contains just 5.7
million parameters. Figure 2 shows visually how
ELECTRA-Tiny compares to ELECTRA-Small.
ELECTRA-Tiny is an extremely small given the
model’s performance on a diverse set of tasks such
as GLUE. When training the ELECTRA-Small
model, the largest batch size that our 12GB GPU
could accommodate was 128. Because of the small
size of ELECTRA-Tiny, we could train at batch
sizes of up to 256; alternatively we might have
trained ELECTRA-Tiny at a batch size 128 on an
even smaller GPU. The compactness, low compute
requirements and favorable training times make a
model like this ideal for researchers without access
to multiple GPUs. The model weights from Exper-
iment 2, trained with the full OpenWebText for 1

million steps, are available on the Huggingface.5

For the sake of comparison, we have added the
results of two compact transfomers trained with
distillation to Table 5, DistilBERT (Sanh et al.,
2019) and MobileBERT (Sun et al., 2020). We
again downloaded the pretrained weights for these
models from Huggingface. This time however, we
finetuned the models for 10 epochs and the same
fine-tuning parameters as the previous experiments
in order to fairly compare the results to the com-
pact ELECTRA variants we trained. Though dif-
ferences in training data and training times make
this comparison somewhat inexact, the results are
still illuminating. We see that ELECTRA-Tiny pro-
duces scores only slightly below that of the Distil-
BERT model, despite being a tenth of the size and
being trained without complex distillation losses.
MobileBERT performs slightly better, on par with
the ELECTRA-Small model. MobileBERT has 15
million parameters, slightly more than ELECTRA-
Small and 3 times as many as ELECTRA-Tiny. All
told, our data suggest that complex compression
techniques like distillation may be less profitable
than simply starting with much smaller models and
pretraining them on a suitable training corpus with
a data efficient proxy task such as the discrimina-
tive loss of ELECTRA.

8 Conclusion

In this study, we have shown that the transform-
ers, specifically ELECTRA, can function as com-
pact data-efficient models. Our results suggest that
when training with small datasets, the intermedi-
ate size, embedding size and number of layers can
all be reduced with little ill-effect. Additionally,
we presented the GLUE results for 5 model vari-
ations that significantly reduce the overall size of
the ELECTRA-Small model. In the final phase of
our experiments, we tested the same five models
trained with the full OpenWebText corpus. We
showed that several compact transformer architec-
tures can function on par with larger models trained
using complex distillation methods. Finally, we
present a compact configuration of ELECTRA we
call ELECTRA-Tiny with just 5.7 million param-
eters that performs remarkably well on the GLUE
benchmark given its small size, requires less com-
pute and can be trained end to end on a single 12GB
GPU.

5https://huggingface.co/claytonfields/electra-
tiny/tree/main



529

Limitations

One of the primary limitations of our study was
that of computational resources. Had we had more
compute, we would to have been able to conduct
more exhaustive studies of our models in high data
scenarios with extended training times. There are
several model compression methods such as quan-
tization (Bondarenko et al., 2022) and adaptive
sequence length reduction (Guskin et al., 2021)
that would have been compatible with the models
that we trained. An exhaustive study of these tech-
niques applied to the type of small models we used
in this study could potentially have produced even
more efficient models.
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A Additional Results

A.1 Experiment 2: Hidden Size
We found that small reductions in hidden size re-
sult in significantly fewer model parameters and
notable effects on downstream performance. Low-
ering the hidden size from 256 to 192 results in
tolerable losses in performance, even on our low
data tasks COLA and BLiMP. However, further
reductions show sizable drops in downstream per-
formance, especially for COLA and BLiMP. As
was mentioned in section 6.2, the effect of decreas-
ing hidden size can be offset by increasing mode
depth.

A.2 Experiment 2: Vocabulary Size
Altering the vocabulary size is somewhat more in-
volved than changing the other dimensions. The
vocab is produced by the WordPiece algorithm (Wu
et al., 2016) and must be trained on a corpus of text.
The number of words in the vocab is chosen prior
to training and the algorithm determines the opti-
mum choice of word pieces. In order to form a fair
comparison with the original vocabulary we elected
to train various tokenizers on a large fraction of the
openwebtext data. In contrast to embedding size,
we see significant effect from lowering the vocab
size relative to the decrease in parameter count. As
such, decreased vocabulary size did not figure into
our most effective reduced model configurations.

A.3 Experiment 2: Attention Heads
Finally, we tried altering the number of attention
heads per layer from the defualt number of 4. Since
the number of attention heads does not affect the
number of parameters in the model, we also tried
increasing the number to 8 (the number of attention
heads must evenly divide the attention layer hidden
size). Our results show that doing so did not greatly
impact model performance.
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hid voc atn
size size hds Prms COLA MRPC QNLI MNLI QQP SST2 STSB RTE Avg.
256 30,522 4 13.6M 0.417 0.825 0.818 0.755 0.836 0.838 0.802 0.596 0.736
192 30,522 4 10.6M 0.369 0.824 0.824 0.752 0.839 0.833 0.789 0.567 0.725
128 30,522 4 7.9M 0.284 0.828 0.824 0.738 0.826 0.815 0.716 0.534 0.696
64 30,522 4 5.8M 0.176 0.815 0.773 0.696 0.79 0.803 -0.107 0.505 0.556
32 30,522 4 4.8M 0.0 0.812 0.657 0.655 0.753 0.763 -0.139 0.52 0.503
256 28,672 4 13.3M 0.339 0.841 0.811 0.74 0.832 0.807 0.789 0.585 0.718
256 24,576 4 12.8M 0.275 0.838 0.818 0.745 0.836 0.813 0.765 0.552 0.705
256 20,480 4 12.3M 0.294 0.842 0.813 0.744 0.837 0.828 0.794 0.599 0.719
256 16,384 4 11.7M 0.33 0.821 0.821 0.742 0.837 0.821 0.779 0.578 0.716
256 12,288 4 11.2M 0.335 0.818 0.824 0.74 0.839 0.798 0.809 0.534 0.712
256 8,192 4 10.7M 0.279 0.844 0.819 0.735 0.84 0.817 0.807 0.545 0.711
256 30,522 8 13.5M 0.381 0.828 0.824 0.749 0.842 0.831 0.765 0.552 0.722
256 30,522 2 13.5M 0.385 0.848 0.815 0.752 0.839 0.844 0.801 0.581 0.733
256 30,522 1 13.5M 0.401 0.803 0.819 0.746 0.838 0.838 0.788 0.574 0.726

Table 6: Additional results for downstream tasks with reduced model dimensions. Note that the top row represents
the full-sized ELECTRA-small model. All results were trained with a 5M word subset of openwebtext trained for
100,000 steps with batch size of 128. Modified parameter settings are shown in bold.


