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Abstract

In NLP, incremental processors produce out-
put in instalments, based on incoming prefixes
of the linguistic input. Some tokens trigger
revisions, causing edits to the output hypoth-
esis, but little is known about why models re-
vise when they revise. A policy that detects
the time steps where revisions should happen
can improve efficiency. Still, retrieving a suit-
able signal to train a revision policy is an open
problem, since it is not naturally available in
datasets. In this work, we investigate the appro-
priateness of regressions and skips in human
reading eye-tracking data as signals to inform
revision policies in incremental sequence la-
belling. Using generalised mixed-effects mod-
els, we find that the probability of regressions
and skips by humans can potentially serve as
useful predictors for revisions in BiLSTMs and
Transformer models, with consistent results for
various languages.

1 Introduction

“Supreme court plans an attack on independent ju-
diciary, says Labour.” This was the headline of a
news article,1 which sounds incongruous until one
interprets it the way intended. That is a crash blos-
som,2 a sentence that becomes ambiguous e.g. due
to brevity. The correspondent later revised the head-
line to remove the ambiguity. You probably had to
go back and read that sentence again. Such move-
ment is called regression in the eye-tracking litera-
ture, when the eye makes a regressive, as opposed
to progressive, saccade while reading a text.

In incremental NLP models, partial output hy-
potheses are built at each time step, based on in-
coming input prefixes, which renders revisability a
desirable property to correct mistakes (Schlangen
and Skantze, 2011). This mode takes place in inter-
active settings that require real-time processing, for

1Source: The Guardian, Nov 15, 2020. Retrieved from the
Language Log blog.

2https://en.wiktionary.org/wiki/crash_blossom
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Figure 1: A constructed example of incremental se-
quence labelling where revisions occur at time steps 3
and 5. If tokens where humans initiate regressions in
reading align with tokens that trigger revisions, it can
be a cognitive signal to model a revision policy.

instance disfluency detecion or reference resolution
in dialogue (Hough and Schlangen, 2015; Kenning-
ton and Schlangen, 2017) and simultaneous trans-
lation (Cho and Esipova, 2016; Arivazhagan et al.,
2020; Sen et al., 2023).

Figure 1 depicts a constructed example for se-
quence labelling. For each new token, the model
either just extends the current output prefix with a
new label, or also edits the output by changing pre-
vious labels (here at time steps 3 and 5). Modelling
a policy that predicts when revisions should occur
is an open research problem, because this signal is
not naturally available in the training data (Köhn,
2018; Kahardipraja et al., 2023). Moreover, we
currently lack evaluation methods to understand
whether the revisions performed by a model are
linguistically or cognitively motivated (i.e. being
grounded in the linguistic input or resembling cog-
nitive processes) or an idiosyncratic result of its
internal processing patterns.

In eye-tracking experiments, many measures can
be extracted per token while humans read texts
(Rayner, 1998). Common data formats include vari-
ables representing whether each token, in first-pass
reading, was skipped, fixated and left progressively

https://www.theguardian.com/law/2020/nov/15/supreme-court-plans-an-attack-on-independent-judicary-says-labour
https://languagelog.ldc.upenn.edu/nll/?p=49212
https://languagelog.ldc.upenn.edu/nll/?p=49212
https://en.wiktionary.org/wiki/crash_blossom
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or triggered a regressive eye movement. In Figure
1, the constructed scanpath shows regressions at
tokens of and by and skips at one and us. Various
theories exist to account for why humans regress
(see §3), but the fact that underlying cognitive pro-
cesses cause the eyes to move forward or backward
at each word (or skip it) lends itself as a cognitively
motivated token-level signal.

In this paper, we bridge the concepts of revisions
in incremental sequence labelling and regressions
in human eye-tracking reading data. We investigate
whether regressions and skips can aid the predic-
tion of revisions in incremental processors, and
conclude that eye-tracking measures are a poten-
tial cognitively-motivated learning signal to model
revision policies.

2 Motivation

Currently on-trend models like Bi-LSTMs (Schus-
ter and Paliwal, 1997) and Transformers (Vaswani
et al., 2017) operate in a non-incremental fashion,
relying on the availability of complete input sen-
tences or texts to deliver output. One workaround
to employ non-incremental encoders in real-time is
applying a restart-incremental interface (Schlangen
and Skantze, 2011), enabling outputs to be revised
as a by-product of recomputations, as explored by
Madureira and Schlangen (2020) and Kahardipraja
et al. (2021). Although possible, it forces recom-
putation from scratch at every new piece of input,
which increases the computational load and can be-
come infeasible for long sequences (Kahardipraja
et al., 2021). On the other hand, inherently incre-
mental models like RNNs have the disadvantage
of not being able to recover from mistakes via revi-
sions (at least their prototypical versions).

The sweet spot would be a model that can detect
the need to revise. Initiatives in this direction are
HEAR (Kaushal et al., 2023), which has a module
that predicts the need to restart, and TAPIR (Ka-
hardipraja et al., 2023), which integrates an RNN
with a Transformer-revisor, predicting whether to
recompute or to just extend the current output. A
difficulty encountered in the latter is how to obtain
a ground-truth signal for the revision policy. They
derived silver labels from the outputs of another
Transformer, which is possibly too model-specific
and its linguistic motivation is not explored. HEAR

compares partial outputs to the non-incremental
gold standard which, however, does not encode lo-
cally valid hypotheses (which only future input will

rule out) and does not accommodate the fact that
the gold standard may differ from its final output,
thus penalising the incremental metrics with the
model’s non-incremental deficits (Baumann et al.,
2011; Madureira et al., 2023).

We usually do not have corpora containing an-
notation for the incremental hypotheses for input
prefixes by humans, only the annotated gold labels
for the final output. But there is vast literature us-
ing human reading data as a supervision signal in
NLP tasks (Barrett and Hollenstein, 2020; Mathias
et al., 2021). Inspired by that, we ask ourselves
whether a model’s revisions coincide with human
regressions in eye-tracking reading data. A positive
answer would mean that human reading data could
help modelling a dedicated policy for revisions (as
opposed to naive recomputations or restarts), and
would serve as a cognitively motivated yardstick to
judge a models’ revisions.

Among all revisions, some are effective, i.e. they
edit the prefix into a better state, with respect to
a gold standard or to the final output (Madureira
et al., 2023). Identifying them can contribute to
reducing undesired revisions, which cause instabil-
ity without bringing the advantage of improvement
in output quality. Therefore, if human reading be-
haviour can help perform only effective revisions,
the signal is even more useful for incremental pro-
cessing.

3 Related Literature

During reading, humans fixate the gaze on some
words and make saccades that can be progressive or
regressive with respect to the order of the words in
the text, so that scanpaths and various measures re-
garding gaze position, direction and duration can be
extracted with eye-tracking devices (Rayner et al.,
2012), a technique that is becoming more accessi-
ble at scale (Ribeiro et al., 2023).

Research based on eye-tracking reading data
often rely on the eye-mind hypothesis, which as-
sumes that the eye remains fixated on a word as
long as it is being processed (Just and Carpenter,
1980). Various research fields rely on the temporal
and spatial dimensions of human reading data. We
identify at least three (non-mutually exclusive) uses.
A consolidated line of research involves studying
human cognition and verifying linguistic theories
of sentence processing (e.g. Demberg and Keller
(2008) and Shain et al. (2016)). Another field is
occupied with understanding to what extent com-
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putational models like artificial neural networks
resemble human cognition in how they process lan-
guage, for example by estimating their psychomet-
ric predictive power (Wilcox et al., 2020; Hollen-
stein et al., 2021). A relationship commonly inves-
tigated is the surprisal of language models versus
human reading time (Fernandez Monsalve et al.,
2012; Goodkind and Bicknell, 2018; Wilcox et al.,
2020). NLP has been incorporating eye-tracking
data in recent years (Iida et al., 2013; Tokunaga
et al., 2017), with the emerging use of human read-
ing data both as input to enhance NLP models (see
Barrett and Hollenstein (2020) and Mathias et al.
(2021) for recent surveys) and as a means for their
interpretability (Ikhwantri et al., 2023).

In this work, the phenomenon of interest is
regressions, i.e. eye movements that move back-
wards in the text and can be shorter or longer-range
(Rayner et al., 2012). They are a common topic
in psycholinguistics research (Paape et al., 2022,
2021) and various hypotheses account for their role,
such as comprehension or word identification diffi-
culties, low-level visuomotor processes, rereading,
memory cues and tools for language processing
(see Vitu (2005), Lopopolo et al. (2019) and Booth
and Weger (2013) for comprehensive discussions
and references). Relevant measures are at which
word a regression initiates, at which word it lands,
regression path duration (how long the reader re-
mains in past text before progressing to unseen
text), and how many regressions are initiated for
each word. We can also differentiate between first-
pass and subsequent regressions.

Regressions in NLP Reading data has been used
as a source of psycholinguistic information for var-
ious NLP tasks. When it comes to regressions,
Barrett and Søgaard (2015a) used eye-movements
to predict syntactic categories, an idea further ex-
plored in Barrett et al. (2016), who augmented PoS-
taggers with various gaze features, among which
was the number of regressions originating from a
word. Barrett and Søgaard (2015b) used the num-
ber of regressions from and to a word as features to
predict grammatical functions. The number of total
regressions per word was also used as a feature by
Mishra et al. (2016) for sarcasm understandability
prediction. Regression duration, i.e. the total time
spent on a word after the first pass over it, was a
useful feature for sentence compression proposed
by Klerke et al. (2016). Regressions during coref-
erence resolution annotation were investigated by

Cheri et al. (2016), who used it to propose a heuris-
tic for pruning candidates in a coreference resolu-
tion model. In Hollenstein and Zhang (2019), the
total duration of regressions from a word was used
as a context feature in named-entity recognition.

We draw inspiration from the work by Lopopolo
et al. (2019), who hypothesised that backward sac-
cades are involved in online syntactic analysis, in
which case regressions should coincide, at least par-
tially, with the edges of the relations computed by a
dependency parser. They found a significant effect
of the number of left-hand side dependency rela-
tions on the number of backward saccades. While
the authors were interested at predicting human
regressions from a model instantiating a parsing
theory, we are conversely interested in using human
regressions as a signal to train an NLP model.3

4 Method

To perform the analysis, we use binomial gener-
alised linear mixed models (GLMM) with a logit
link function to predict model revisions. Similar to
the approach by Lopopolo et al. (2019), for each
combination of dataset and NLP model/task, we
fit two GLMMs: The baseline model (1) only in-
cludes the token position variable as a fixed effect
and texts as random effects. Since a model’s revi-
sions may vary depending on the word’s position in
the text, we add token position as a baseline predic-
tor and include texts to account for any variability
due to different types of texts. We fit model (2)
with the same structure, adding the predictors of
regression probability and skipping probability as
fixed effects. The binary dependent variable is a
token’s revise/not-revise label.

model revision ∼ token position

+ (1|text)
(1)

model revision ∼ token position

+ p(regression)

+ p(skip)

+ (1|text)

(2)

We use likelihood ratio tests (LRT) between the
null and the full models to evaluate the goodness of
fit. LRTs are used to compare a baseline model to

3It is also worth investigating whether a model’s revisions
can predict human regression behaviour, but it is beyond the
scope of this work.
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(…) That night there was scarcely a square inch of earth that was not illuminated by aurora.

model / r r r / / r r r r / r r r / r

subject 1 - ! 0 0 0 - 0 0 - 0 0 - 0 0 - 0
subject 2 ! - 0 - - - ! ! - 0 0 - 0 0 0 !

subject 3 - ! ! - - - - ! - - - 0 - ! 0 !

subject 4 - 0 - - 0 - 0 - - 0 - 0 - 0 ! !

subject 5 - 0 0 - 0 - 0 - - 0 - - 0 0 - !

Figure 2: An example of our data structure for a portion of a text in the Provo corpus, processed by a restart-
incremental Transformer predicting dependency relations. Each token is annotated with the reading variable for
each subject (eyes: regressed, 0: not regressed, -: skipped) and the model’s decision (r: revised, /: not revised).

a more complex one with more predictors and de-
cide if certain predictors should be included, conse-
quently selecting the model that fits the data better.
To infer statistical significance, we obtain p-values
using the χ2 distribution.

We do not intend to make claims about why re-
gressions occur. For our purposes, we take at face
value that they did occur in the eye-tracking ex-
periments (and when). We are interested in words
at which regressions are initiated when they are
first read, knowing that, for some reason, the reader
went to past input before continuing (as a conse-
quence, we also analyse words that are not fix-
ated in the first pass). Still, the hypothesis that
regressions occur due to reanalysis, when humans
encounter garden path sentences (Altmann et al.,
1992), is at our favour, since revisions represent up-
dates in the current model’s interpretation caused
by input seen for the first time.

5 Data

In this section, we explain the data structure con-
structed for the analysis. We then introduce the
eye-tracking corpora and the models selected for
this study, and discuss how we extract the incre-
mental outputs from non-incremental, pre-trained
sequence labelling models.4

Procedure Our method requires knowing, for
each token w in a text, what was the behaviour of
the model while performing sequence labelling and
of the humans while reading the text. More specifi-
cally, we need to know whether the model revised
its hypothesis upon processing w and whether hu-
mans skipped w, fixated it but moved forward, or

4The pre-processing scripts and implementation code is
available at https://github.com/briemadu/revreg.

fixated it and regressed. We thus construct an an-
notation mapping tokens to human and model data
as illustrated in Figure 2. The texts come from the
eye-tracking corpora, from which we also extract
the human skips or regressions. The revisions are
retrieved by feeding the same texts to the NLP mod-
els, prefix by prefix in a restart-incremental fashion,
and checking if labels change at each time step.

language tokens texts subjects

MECO-L1 Dutch 2,231 12 45
MECO-L2 English (L2) 1,658 12 538
Nicenboim Spanish 791 48 71
PoTeC German 1,895 12 62
Provo English 2,743 55 84
RastrOS Br. Portuguese 2,494 50 37

Table 1: Human reading eye-tracking corpora.

Human Regressions We analyse six eye-
tracking human reading corpora: MECO-L1
(Siegelman et al., 2022), MECO-L2 (Kuperman
et al., 2023), Nicenboim (no official name) (Nicen-
boim et al., 2015), PoTeC (Makowski et al., 2019;
Jäger et al., 2020), Provo (Luke and Christianson,
2018) and RastrOS (Vieira, 2020; Leal et al., 2022).
Table 1 presents their language and size. The distri-
bution of regressions and skips (per token and per
subject) is shown in Figure 3. Although many other
corpora exist, we opted to use those that had first-
pass regression and first-pass skip measures already
available or easy to infer from other measures. For
each interest area,5 we retrieve the label for each
subject as follows: If the token was skipped in the
first-pass reading, we label it as skipped. Other-
wise, we retrieve a variable which is 1 if a first-pass

5An interest area sometimes includes more than one token,
e.g a word and punctuation, like aurora. in Figure 2.

https://github.com/briemadu/revreg
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MECO (du) MECO (enl2) Nicenboim (es) PoTeC (de) Provo (en) RastrOS (ptbr)

all-r eff-r all-r eff-r all-r eff-r all-r eff-r all-r eff-r all-r eff-r

BiLSTM deprel 58.45 47.20 60.74 54.52 55.75 50.32 53.56 44.27 60.99 53.70 54.01 46.75
head 65.76 38.32 66.95 38.60 61.31 43.36 67.28 40.37 67.92 39.30 60.34 43.70
pos 12.95 11.52 11.70 10.68 6.32 5.44 17.89 15.51 12.65 11.27 29.19 27.11

Transformer deprel 63.92 52.44 67.97 57.66 48.93 44.37 73.67 56.36 66.68 58.77 52.81 44.23
head 67.55 38.01 69.06 37.21 57.27 41.47 74.56 43.38 69.30 38.46 61.39 42.98
pos 9.82 6.28 7.84 6.09 1.90 1.64 5.01 4.12 8.09 6.56 9.22 7.62

Table 2: % of timesteps that trigger revisions (all-r) and effective revisions (eff-r) for each model and task.

regression was initiated at that interest area, and
0 otherwise. Although regressions can occur later,
we only consider what happens in the first-pass
reading to approximate what the model does (re-
visions happen when a token is integrated for the
first time in the sequence). The probabilities are es-
timated by computing the proportion of regressions
and skips per token (excluding subjects with miss-
ing data), following existing literature in terms of
using average human behaviour as a feature (Bar-
rett et al., 2016; Hollenstein and Zhang, 2019). We
checked that they are only moderately (negatively)
correlated (−0.59 < ρ < −0.44). See Appendix
for details about the measures and pre-processing.

0 1p(regression) by token

du

enl2

es

de

en

ptbr

0 1p(regression) by subject

0 1p(skip) by token

du

enl2

es

de

en

ptbr

0 1p(skip) by subject

Figure 3: Distributions of the probabilities of regression
and skips, by token (left) and by subject (right) esti-
mated from the human reading data for each dataset.

Models’ Revisions We opt to evaluate pre-
trained sequence labelling models with a restart-
incremental paradigm. Models were selected ac-
cording to the availability of languages to match
the eye-tracking corpora. We evaluate Stanza’s

BiLSTM models (Qi et al., 2020)6 and Explosion’s
pre-trained multi-task Transformer architectures.7

These families of models were selected due to the
availability of all languages and comparability in
terms of similar training data, as both were trained
on the Universal Dependencies corpora (de Marn-
effe et al., 2021). The model checkpoints for each
language are listed in Table 3. We extract the incre-
mental outputs for dependency parsing (prediction
of the head position and the relation) and POS-
tagging. We also inspected NER, but revisions
were extremely sparse in these datasets (possibly
due to the genres of the texts), so we did not anal-
yse it further. The same texts from the eye-tracking
data are fed to each model, one prefix after an-
other, as illustrated in Figure 1, following previ-
ous works (Madureira and Schlangen, 2020; Ka-
hardipraja et al., 2021). At each time step, we
extend the input with one interest area (i.e., some-
times it means more than one token). If the output
prefix at time t (apart from the recently added la-
bel(s), which refer to the last interest area) differs
from the output at time t− 1, a revision occurred.
If more labels match the final output than in the pre-
vious prefix, the revision is effective. The percent-
age of (effective) revisions over tokens/timesteps
is shown in Table 2.

Explosion Stanza

MECO-L1 nl_udv25_dutchalpino_trf nl
MECO-L2 en_udv25_englishewt_trf en
Nicenboim es_udv25_spanishancora_trf es
PoTeC de_udv25_germanhdt_trf de
Provo en_udv25_englishewt_trf en
RastrOS pt_udv25_portuguesebosque_trf pt

Table 3: Specification of the pre-trained NLP models.

6https://github.com/stanfordnlp/stanza.
7Release documented in https://explosion.ai/blog/

ud-benchmarks-v3-2 and available at their model hub on
Hugging Face https://huggingface.co/explosion.

https://github.com/stanfordnlp/stanza
https://explosion.ai/blog/ud-benchmarks-v3-2
https://explosion.ai/blog/ud-benchmarks-v3-2
https://huggingface.co/explosion
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estimate SE z p

MECO-L2 Provo MECO-L2 Provo MECO-L2 Provo MECO-L2 Provo

BiLSTM deprel intercept 1.29*** 1.22*** 0.05 0.05 24.18 24.29 <0.001 <0.001
p(reg) 3.41*** 3.30*** 0.05 0.09 73.39 38.56 <0.001 <0.001
p(skip) -2.80*** -3.68*** 0.02 0.03 -178.47 -133.52 <0.001 <0.001
position -0.03*** 0.21*** 0.00 0.01 -8.94 38.87 <0.001 <0.001

head intercept 1.59*** 1.76*** 0.06 0.05 27.44 33.12 <0.001 <0.001
p(reg) 4.32*** 2.18*** 0.05 0.10 81.05 21.84 <0.001 <0.001
p(skip) -3.23*** -4.92*** 0.02 0.03 -193.35 -155.18 <0.001 <0.001
position - 0.40*** - 0.01 - 68.85 - <0.001

pos intercept -2.62*** -1.92*** 0.07 0.08 -36.21 -22.77 <0.001 <0.001
p(reg) 1.25*** 1.42*** 0.05 0.08 27.53 18.61 <0.001 <0.001
p(skip) -1.16*** -0.66*** 0.02 0.04 -52.26 -18.63 <0.001 <0.001
position 0.20*** - 0.00 - 42.18 - <0.001 -

Transformer deprel intercept 1.22*** 1.28*** 0.09 0.05 14.28 24.39 <0.001 <0.001
p(reg) 4.39*** 3.26*** 0.05 0.09 82.91 34.39 <0.001 <0.001
p(skip) -2.53*** -3.75*** 0.02 0.03 -154.71 -129.34 <0.001 <0.001
position 0.03*** 0.30*** 0.00 0.01 11.37 54.95 <0.001 <0.001

head intercept 1.45*** 1.45*** 0.08 0.05 18.13 29.17 <0.001 <0.001
p(reg) 4.40*** 2.27*** 0.05 0.10 82.24 23.76 <0.001 <0.001
p(skip) -2.64*** -4.01*** 0.02 0.03 -160.14 -133.24 <0.001 <0.001
position - 0.37*** - 0.01 - 64.92 - <0.001

pos intercept -2.64*** -2.69*** 0.17 0.14 -15.28 -19.71 <0.001 <0.001
p(reg) -0.62*** 3.00*** 0.06 0.10 -9.49 31.11 <0.001 <0.001
p(skip) -0.77*** 0.80*** 0.03 0.04 -29.33 18.07 <0.001 <0.001
position 0.08*** -0.25*** 0.01 0.01 15.56 -30.18 <0.001 <0.001

Table 4: Overview of the GLMM results, showing the estimated coefficients for each variable and their statistical
significance, for the English corpora. See Appendix for the the complete table.

6 Results

We summarise the full GLMM results in Table 4
for Provo and MECO-L2 datasets. Due to a large
number of experiments, we only present results for
the English models in this table; the complete re-
sults are in the Appendix. In every (dataset, NLP
model, task) combination, the likelihood ratio test
between the baseline and full models revealed that
the full model, including the two predictors of in-
terest, is a better fit to the data than the baseline
model with only token position and text.

The token position was a significant predictor
of revisions in most models. For the few cases in
which it did not significantly affect revisions (i.e.,
MECO-L2-Transformer-head and BiLSTM-head,
MECO-L1-BiLSTM-head, Provo-BiLSTM-pos),
we fitted models without this predictor instead.

We found that average human gaze patterns,
namely the estimated word’s regression and skip
probability, were significant predictors of revisions.
This was a consistent result across all eye-tracking
corpora, for the BiLSTM and the Transformer, both
for dependency parsing and POS-tagging. On the
one hand, human regressions were often positively

related to revisions, so that words with a higher re-
gression probability were more likely to be revised
by models (MECO-L2-Transformer-pos was the
only exception where regression probability nega-
tively affected revisions). Conversely, a word’s skip
probability decreased the probability of it trigger-
ing a revision in most cases (with the exceptions of
Potec and Provo-Transformer-pos and Nicenboim-
BiLSTM-pos). These relationships are illustrated
in Figure 4. The magnitude of the regression co-
efficient did not follow a general pattern for the
tasks, but the skip coefficient was more often larger
for the task of predicting the head than for the de-
pendency relation, which was usually larger than
for POS-tagging (exceptions to this is RastrOS-
Transformer and MECO-L1-BiLSTM).

In a further analysis, we repeated the same pro-
cedure to predict only the effective revisions and
observed the same trend in regression and skip co-
efficients when predicting effective revisions, in
terms of direction and significance, in all experi-
ments. However, the magnitude of the coefficients
differed, sometimes being larger in one or the other,
which does not allow us to draw general conclu-
sions at this point. The coefficient of token position
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Model p(regression)−BiLSTM p(regression)−TRF p(skip)−BiLSTM p(skip)−TRF
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Figure 4: The full GLMM predictions of the revision probability are shown. Each plot presents the predictions for
BiLSTM and Transformer models given regression and skip probability in the corresponding dataset. Error bars
represent 95% confidence interval.

was, in most cases, smaller in the model that pre-
dicts effective revisions. Similarly, in many models
the magnitude of the coefficient of skips was larger
for models predicting effective revisions.

To assess the fit of the model to the data in more
detail, we evaluated its predictions by running per-
mutation tests with the null hypothesis that the
probabilities assigned to (effective) revisions and
to not-revisions are randomly sampled from the
same distribution. Besides, we computed the area
under the ROC curve in each model. As we can
see in Table 5, most of the differences were sig-
nificant (except for many cases in POS-tagging),
but their magnitude was relatively small. The AUC
was around 0.7 for all datasets, and in some experi-
ments the models of effective revisions had higher
AUC. Examples with considerable improvements
are RastrOS-head and Nicenboim-head.

7 Do models revise when humans regress?

We have gathered evidence that there is a relation-
ship between NLP restart-incremental models’ revi-
sions and human gaze behaviour in reading, which
manifests as the probability of revision at a given

token being partially predictable from it being of-
ten skipped or triggering regressions, when token
position and text are accounted for. Interestingly,
the overall findings hold for BiLSTM and Trans-
formers, even though their encoding mechanisms
are different, and also for all five languages, de-
spite the eye-tracking data having been collected
from different text genres and the readers having
performed different tasks (or no additional task
beyond reading for comprehension, as in Provo).

For this conclusion, we did not rely on any as-
sumptions for the connection between human re-
gressions and incremental models’ revisions be-
yond the analogy of what we factually know: When
seeing text areas for the first time, humans made
decisions to skip or fixate, and possibly to revisit
past text, and at some words, models “decided” to
revisit past decisions.

Some exceptions to the general trend in predict-
ing model revisions occurred in POS-tagging, for
which relatively fewer revisions occur (see Table
2). The sparsity of revisions may cause the signal
to be harder to model well without more data. For
dependency parsing, more revisions are expected,
especially because in the beginning of the sentence
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abs. mean diff AUC

all-r eff-r all-r eff-r

MECO-L1 deprel BiLSTM 0.13* 0.16* 0.71 0.74
Trfmer 0.15* 0.14* 0.73 0.72

head BiLSTM 0.22* 0.26* 0.78 0.80
Trfmer 0.18* 0.21* 0.76 0.77

pos BiLSTM 0.05* 0.05* 0.69 0.71
Trfmer 0.03* 0.02 0.68 0.66

MECO-L2 deprel BiLSTM 0.12* 0.12* 0.70 0.69
Trfmer 0.14* 0.10* 0.72 0.68

head BiLSTM 0.15* 0.20* 0.73 0.76
Trfmer 0.12* 0.22* 0.70 0.77

pos BiLSTM 0.02* 0.02* 0.63 0.62
Trfmer 0.03* 0.01* 0.67 0.64

Nicenboim deprel BiLSTM 0.27* 0.28* 0.79 0.80
Trfmer 0.19* 0.19* 0.74 0.74

head BiLSTM 0.31* 0.45* 0.81 0.88
Trfmer 0.31* 0.41* 0.81 0.87

pos BiLSTM 0.03* 0.04* 0.69 0.73
Trfmer 0.06 0.06 0.89 0.89

PoTeC deprel BiLSTM 0.14* 0.12* 0.71 0.70
Trfmer 0.14* 0.11* 0.74 0.69

head BiLSTM 0.23* 0.28* 0.79 0.81
Trfmer 0.15* 0.22* 0.75 0.77

pos BiLSTM 0.08* 0.08* 0.70 0.71
Trfmer 0.01 0.00 0.62 0.61

Provo deprel BiLSTM 0.20* 0.19* 0.76 0.75
Trfmer 0.20* 0.17* 0.76 0.74

head BiLSTM 0.25* 0.21* 0.79 0.77
Trfmer 0.20* 0.22* 0.76 0.77

pos BiLSTM 0.02 0.01 0.64 0.64
Trfmer 0.04 0.02 0.72 0.70

RastrOS deprel BiLSTM 0.17* 0.18* 0.74 0.74
Trfmer 0.16* 0.16* 0.73 0.74

head BiLSTM 0.22* 0.32* 0.77 0.83
Trfmer 0.21* 0.31* 0.76 0.82

pos BiLSTM 0.16* 0.17* 0.76 0.76
Trfmer 0.05* 0.02 0.71 0.68

Table 5: Left block: Absolute difference of sample
means in the predictions of the models between time
steps with and without revisions. * means p-value <
0.001. Right block: Area Under the ROC Curve when
the fitted models’ predictions are used for binary classi-
fication of revision time steps in the data.

the model has to wait until the root is processed to
make good predictions. There may also be a differ-
ence in processing, since the humans could regress
to previous sentences in the text, whereas the NLP
models depend on their internal tokenisation and
sentence boundary detection.

This suggests that eye-tracking measures can be

transformed into a useful signal to inform the deci-
sion of when to revise in mixed restart-incremental
processors, especially when the model’s task en-
tails more syntactic tasks with frequent revisions
to the input.

Still, preliminary investigation of the revision
probabilities predicted by the model did not yield a
straightforward threshold for binary classification,
despite the difference in means being statistically
significant. This invites a more detailed extrinsic
evaluation, by incorporating the human predictors
into a revision controller like TAPIR (Kahardipraja
et al., 2023), and assessing the revisions with the
evaluation methods discussed by Madureira et al.
(2023). One approach is to train an incremental
sequence labelling model whose revision policy
relies on eye-tracking data as part of the input and
comparing its performance against a model without
it. Since skips had a negative effect, it may also
be possible to use other variables that relate to the
probability of a token being skipped, like POS-tags
or word frequency and length, as additional input,
which are cheaper to obtain. The analysis should
also be done with larger datasets and other models
and tasks.

The usefulness of our findings presupposes the
availability of eye-tracking measures during infer-
ence on truly unseen data, which is an open prob-
lem because such signal is not always available in
real time. One possibility is to use pretrained eye-
tracking models to predict regressions and skips, as
in approaches discussed in the literature (Engbert
et al., 2005; Deng et al., 2023).

Down the road, a revision policy should not only
detect times to revise, but times to revise effectively,
since wrong revisions make the partial outputs less
reliable for downstream processors. Our experi-
ments showed that regressions and skips are also
good predictors for effective revisions. Identifying
ways to filter this more specific signal demands
further investigation. An immediate next step is to
evaluate the predictions of each model in unseen
data for all revisions and for effective revisions.

8 Conclusion

Let us conclude with a backward glance to our con-
tribution. We have addressed the open question
of whether pre-trained sequence labelling models,
when employed incrementally, perform revisions
in a similar fashion as humans skip words or make
regressive eye movements while reading. We have
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found a significant effect in all the experiments,
supporting the use of human reading data as a cog-
nitive signal to inform revision policies. This is a
valuable finding: BiLSTMs and Transformers are
bidirectional, trained on full sequences, but if we
make them process linguistic input incrementally,
their revisions can be partially predicted by human
reading behaviour. This is also a step forward to-
wards understanding why these models change hy-
potheses at some tokens, when only partial prefixes
are available.

Besides advancing the research on eye-tracking-
augmented NLP, this study also opens the door to
exploring other cognitive perspectives with restart-
incremental NLP models. We see a potential to go
the other direction and investigate to what extent
a “mixed incrementality” model (architectures re-
lying on an incremental processor with occasional
restarts) would capture the patterns of human gaze
in reading, and hence function as a model of that.
In this case, revisions would serve as predictors
of human regressions, with control variables like
word frequency, surprisal and word length. Other
possibility for future work is to investigate whether
other measures, like number of fixations or regres-
sions to a token, are related to the edits per label.

Limitations

Here we summarise a few known limitations that
we have mentioned throughout the text. We have
analysed various datasets which differ both in
the ways they were collected (the task humans
were performing, e.g. only reading or also answer-
ing to comprehension questions) as well as the
length and genre of the texts. The size of the
eye-tracking datasets is, in general, small. Ide-
ally, larger amounts of data are necessary to train
a revision policy than what we had available for
the analysis. Some preprocessing steps had to be
made; in particular, some decisions were necessary
on had how to merge tokens and interpret documen-
tation, so that a mapping could be created. This is
documented in the Appendix, but alternative ways
are also possible. We limited the study to families
of pre-trained models and tasks for which all lan-
guages were available. There can be a mismatch
between the humans having the full text available at
any point and the models performing sentence seg-
mentation internally in different ways. For models
that are trained on sequence level, it may be better
if the human reading is also performed the same

way. Further research expanding these aspects is
desired. Other models beyond GLLMs, e.g. with
non-linearity, may be examined, because the prob-
ability of regression is within a narrow range in
most of the cases. Using models’ revisions to pre-
dict human behaviour is also a possible research
question which was not addressed in this work.
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A Appendix

B Pre-processing Human Data

We pre-process all datasets to combine the mea-
sures into a common format, with one token per
row and one column for each subject. If no data
was available for a subject, the cell is filled with
a NaN value, so that it is later ignored. We parti-
tion the measure into three groups: interest areas
that were skipped in the first-pass reading (and,
consequently, also interest areas that were skipped
altogether) are assigned a skipped category (label
−1). For the remaining interest areas, i.e. those
that had a first-pass fixation, we extract either a
regressed (label 1) or not regressed (label 0)
category. Here we document some necessary deci-
sions. The measures we rely on are documented in
Table 6 and the pre-processing scripts are available
at https://github.com/briemadu/revreg. For
further details about the data collections, please
refer to the original publications.

▷ RastrOS: Participants read paragraphs, one by
one in a random order, from journalistic, literary
and popular science sources. There was a yes/no
comprehension question after 20 of the paragraphs.
We get the tokens from the columns Word and
IA_LABEL. We solve inconsistencies as follows: if
Word contains a comma and IA_LABEL contains a
full stop, we use the former (in accordance to per-
sonal communication with the author). If there are
mismatches in quotation marks, we also use the
former. For other inconsistencies (33 tokens), we
use the latter.

▷ PoTeC: Participants read scientific texts on biol-
ogy and physics from textbooks. Three multiple-
choice comprehension questions were presented
after each text in a separate screen. We use the
negation of FPF as an auxiliary to detect tokens
that were skipped in the first pass. The raw text
files do not contain punctuation in a straightforward
format. We thus only extract commas, and final
sentence punctuation is considered to be always
a full stop, except for two cases that we noticed
were not end of sentences, so a ; was used. We fol-
low the list of 13 subjects ids (in the original script
mergeFixationsWordFeatures.py) that were re-
moved due to poor calibration (according to Jäger
et al. (2020)) and exclude them from our sample.

▷ Provo: Participants read the texts from various
sources in a random order, without any additional

task. For the tokens, we rely on IA_LABEL, due to
inconsistencies in the Word column. Four tokens do
not match the raw texts (apparently due to encod-
ing), so we use the text instead of the IA_LABEL.

▷ MECO-L1: Wikipedia style texts, each on a
separate screen. After each text, there were four
yes/no comprehension questions. We could only
use the Dutch version, as the other languages had
mismatches between the source texts and the inter-
est area column.

▷ MECO-L2: Texts are from training materials for
English tests. Participants answered four yes/no
questions after each text. 5 subjects were excluded
due to unexplained repetitions.

▷ Nicenboim: Participants read stimuli (sentences).
True/false statements appeared randomly after half
of them. We use the filler sentences (as the others
had varying conditions across participants). We use
FPRT, assuming it is first-pass reading time, to infer
first-pass fixations: if it is NaN, we consider it to
be a skip (because otherwise it is always a number
higher than 0).

C Pre-processing Models’ Data

We use off-the-shelf implementations of sequence
labelling models. To extract the outputs, we loop
over the interest areas for each text in the eye-
tracking corpus for the corresponding language.
At each time step t, a string is created with the
interest areas up to position t, joined with a blank
space. The models output a list of labels, which
we take to be the output prefix for that time step.
Due to the internal tokenization, it can happen in
a few cases that tokenization changes slightly or
that more than one new label is added. We use
the number of labels in the previous time step as
a reference, all new labels beyond that length are
considered an addition and do not affect revisions.
A revision happens if the output prefix at time t dif-
fers from the output at time t−1; and it is effective
if the number of labels that match the final output
labels up to that time step increased. For Stanza
BiLSTM, we extract the labels from the attributes
upos_, deprel, head. For Explosion’s Transform-
ers, we extract the labels from the attributes pos_,
dep_, head_i.

D Modelling Details

We fit generalized linear mixed models using the
lme4 (Bates et al., 2015) package in the R statistical

https://github.com/briemadu/revreg
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regression description skip description

MECO-L1 and
MECO-L2

firstrun.reg.out Variable indicating whether
there was a regression from the
IA during first-pass reading

firstrun.skip Variable indicating whether
the IA was skipped during
first-pass reading

Nicenboim fp_reg no description FPRT no description

PoTeC FPReg 1 if a regression was initiated
in the first-pass reading of the
word, otherwise 0 (sign(RPD
exc))

negation of FPF 1 if the word was fixated in
the first-pass, otherwise 0

Provo IA_REGRESSION_OUT Whether the current interest
area received at least one re-
gression from later interest ar-
eas (e.g., later parts of the sen-
tence). 1 if interest area was
entered from a higher IA_ID
(from the right in English);
0 if not. (...) Note that
IA_REGRESSION_OUT only
considers first-pass regressions.

IA_SKIP An interest area is consid-
ered skipped (i.e., IA_SKIP
= 1) if no fixation occurred
in first-pass reading.

RastrOS IA_REGRESSION_OUT Whether regression(s) was made
from the current interest area
to earlier interest areas (e.g.,
previous parts of the sentence)
prior to leaving that interest
area in a forward direction. 1
if a saccade exits the current
interest area to a lower IA_ID
(to the left in English) before
a later interest area was fix-
ated; 0 if not. (...) Note that
IA_REGRESSION_OUT only
considers first-pass regressions.

IA_SKIP An interest area is consid-
ered skipped (i.e.,IA_SKIP
= 1) if no fixation occurred
in first-pass reading.

Table 6: Measures used for each eye-tracking corpus and their definition according to the available documentation.

computing environment (R Core Team, 2022). All
baseline and full models were initially fit with the
same structure described in the Methods section.
We made changes to the model structure in 6 cases
to tackle with convergence issues: Model fits to the
Nicenboim-TRF-Pos and Nicenboim-BiLSTM-Pos
datasets revealed low text-level variance and ran-
dom effects were excluded in these datasets in fur-
ther analyses. Token position was not a significant
predictor of model revision in MECOL1-BiLSTM-
Head, MECOL2-TRF-Head, MECOL2-BiLSTM-
Head, and Provo-BiLSTM-Pos models, thus, we
refitted these models without the token positions
variable.

E Detailed Results

Tables 7 and 8 show all the estimated coefficients,
standard errors, z and p-values for all models. Ta-
ble 9 presents the results of the likelihood ratio
tests for the full models in relation to their corre-
sponding null model. All results in the paper have
been rounded to to decimal places programatically.
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estimate SE z p

all-r eff-r all-r eff-r all-r eff-r all-r eff-r

MECO-L1 (du) BiLSTM deprel intercept 1.47*** 1.52*** 0.08 0.07 17.33 23.32 <0.001 <0.001
p(reg) 2.13*** 1.60*** 0.12 0.11 17.04 13.97 <0.001 <0.001
p(skip) -2.71*** -3.48*** 0.05 0.05 -52.0 -67.81 <0.001 <0.001
position 0.03** 0.0 0.01 0.01 3.10 0.49 0.002 0.622

head intercept 3.34*** 1.98*** 0.08 0.08 40.29 25.40 <0.001 <0.001
p(reg) 1.34*** 1.31*** 0.16 0.11 8.51 11.47 <0.001 <0.001
p(skip) -4.93*** -5.14*** 0.07 0.06 -75.22 -91.52 <0.001 <0.001
position - - - - - - - -

pos intercept 0.07 0.02 0.08 0.08 0.86 0.25 0.388 0.805
p(reg) 0.59*** 0.63*** 0.12 0.13 4.77 4.89 <0.001 <0.001
p(skip) -2.72*** -2.96*** 0.07 0.07 -41.33 -42.59 <0.001 <0.001
position -0.18*** -0.18*** 0.01 0.01 -15.50 -14.60 <0.001 <0.001

Transformer deprel intercept 1.70*** 1.13*** 0.09 0.07 19.25 16.35 <0.001 <0.001
p(reg) 2.97*** 2.38*** 0.15 0.12 20.42 19.60 <0.001 <0.001
p(skip) -3.08*** -2.87*** 0.06 0.05 -54.30 -56.21 <0.001 <0.001
position 0.07*** 0.05*** 0.01 0.01 7.31 6.11 <0.001 <0.001

head intercept 2.17*** 1.67*** 0.09 0.08 23.66 21.33 <0.001 <0.001
p(reg) 2.18*** 1.16*** 0.16 0.11 13.87 10.48 <0.001 <0.001
p(skip) -3.99*** -4.49*** 0.06 0.05 -63.76 -83.52 <0.001 <0.001
position 0.15*** -0.0 0.01 0.01 15.93 -0.27 <0.001 0.789

pos intercept -2.11*** -2.22*** 0.25 0.20 -8.55 -11.08 <0.001 <0.001
p(reg) 0.59*** 0.91*** 0.16 0.19 3.65 4.86 <0.001 <0.001
p(skip) -0.40*** -0.66*** 0.08 0.09 -5.08 -7.05 <0.001 <0.001
position -0.05*** -0.10*** 0.01 0.02 -3.45 -6.13 <0.001 <0.001

MECO-L2 (en-l2) BiLSTM deprel intercept 1.29*** 1.04*** 0.05 0.04 24.18 26.86 <0.001 <0.001
p(reg) 3.41*** 3.10*** 0.05 0.04 73.39 72.32 <0.001 <0.001
p(skip) -2.80*** -2.80*** 0.02 0.02 -178.47 -182.23 <0.001 <0.001
position -0.03*** -0.03*** 0.0 0.0 -8.94 -10.02 <0.001 <0.001

head intercept 1.59*** 0.72*** 0.06 0.06 27.44 12.28 <0.001 <0.001
p(reg) 4.32*** 3.27*** 0.05 0.04 81.05 85.21 <0.001 <0.001
p(skip) -3.23*** -4.49*** 0.02 0.02 -193.35 -257.08 <0.001 <0.001
position - - - - - - - -

pos intercept -2.62*** -2.72*** 0.07 0.06 -36.21 -44.03 <0.001 <0.001
p(reg) 1.25*** 1.18*** 0.05 0.05 27.53 25.28 <0.001 <0.001
p(skip) -1.16*** -1.23*** 0.02 0.02 -52.26 -53.20 <0.001 <0.001
position 0.20*** 0.21*** 0.0 0.0 42.18 42.45 <0.001 <0.001

Transformer deprel intercept 1.22*** 1.17*** 0.09 0.07 14.28 16.69 <0.001 <0.001
p(reg) 4.39*** 2.56*** 0.05 0.04 82.91 60.24 <0.001 <0.001
p(skip) -2.53*** -2.70*** 0.02 0.02 -154.71 -176.92 <0.001 <0.001
position 0.03*** -0.01*** 0.0 0.0 11.37 -5.27 <0.001 <0.001

head intercept 1.45*** 0.81*** 0.08 0.05 18.13 17.05 <0.001 <0.001
p(reg) 4.40*** 3.11*** 0.05 0.04 82.24 81.62 <0.001 <0.001
p(skip) -2.64*** -4.93*** 0.02 0.02 -160.14 -270.17 <0.001 <0.001
position - - - - - - - -

pos intercept -2.64*** -2.62*** 0.17 0.14 -15.28 -18.69 <0.001 <0.001
p(reg) -0.62*** -1.35*** 0.06 0.08 -9.49 -17.23 <0.001 <0.001
p(skip) -0.77*** -0.40*** 0.03 0.03 -29.33 -13.58 <0.001 <0.001
position 0.08*** 0.01* 0.01 0.01 15.56 2.10 <0.001 0.035

Nicenboim (es) BiLSTM deprel intercept 0.42*** 0.22** 0.07 0.07 5.61 3.04 <0.001 0.002
p(reg) 3.35*** 4.83*** 0.18 0.18 18.17 26.59 <0.001 <0.001
p(skip) -3.42*** -3.32*** 0.05 0.05 -70.86 -69.87 <0.001 <0.001
position 0.46*** 0.32*** 0.02 0.02 28.17 19.62 <0.001 <0.001

head intercept 0.55*** 0.90*** 0.07 0.08 7.97 11.03 <0.001 <0.001
p(reg) 4.37*** 3.22*** 0.21 0.19 20.91 16.87 <0.001 <0.001
p(skip) -3.74*** -6.59*** 0.05 0.06 -73.13 -102.23 <0.001 <0.001
position 0.59*** 0.47*** 0.02 0.02 34.30 23.23 <0.001 <0.001

pos intercept -4.49*** -4.82*** 0.07 0.08 -60.34 -58.02 <0.001 <0.001
p(reg) 6.40*** 6.58*** 0.22 0.23 28.83 28.66 <0.001 <0.001
p(skip) 0.74*** 0.39*** 0.09 0.10 8.43 4.10 <0.001 <0.001
position 0.31*** 0.43*** 0.03 0.03 10.26 12.47 <0.001 <0.001

Transformer deprel intercept 0.18* 0.07 0.08 0.07 2.34 0.99 0.019 0.32
p(reg) 1.36*** 1.89*** 0.16 0.15 8.68 12.29 <0.001 <0.001
p(skip) -2.77*** -2.80*** 0.04 0.04 -62.04 -62.64 <0.001 <0.001
position 0.37*** 0.30*** 0.02 0.02 24.60 19.58 <0.001 <0.001

head intercept 0.55*** 0.82*** 0.08 0.08 6.96 10.46 <0.001 <0.001
p(reg) 3.09*** 3.89*** 0.19 0.18 16.32 21.24 <0.001 <0.001
p(skip) -3.79*** -5.90*** 0.05 0.06 -76.03 -97.66 <0.001 <0.001
position 0.55*** 0.30*** 0.02 0.02 32.66 15.40 <0.001 <0.001

pos intercept -2.87*** -2.72*** 0.08 0.08 -34.99 -32.63 <0.001 <0.001
p(reg) 2.92*** 2.52*** 0.41 0.45 7.07 5.54 <0.001 <0.001
p(skip) -0.54*** -0.76*** 0.13 0.14 -4.06 -5.41 <0.001 <0.001
position -0.68*** -0.79*** 0.04 0.05 -16.06 -17.45 <0.001 <0.001

Table 7: Overview of all results (part I).
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estimate SE z p

all-r eff-r all-r eff-r all-r eff-r all-r eff-r

PoTeC (de) BiLSTM deprel intercept 0.45*** 0.14* 0.08 0.06 5.98 2.17 <0.001 0.03
p(reg) 1.64*** 1.77*** 0.06 0.06 25.48 29.24 <0.001 <0.001
p(skip) -3.18*** -2.98*** 0.04 0.04 -86.61 -81.10 <0.001 <0.001
position 0.07*** 0.02*** 0.01 0.01 10.20 3.51 <0.001 <0.001

head intercept 0.95*** -0.17*** 0.07 0.05 14.36 -3.59 <0.001 <0.001
p(reg) 3.80*** 3.99*** 0.09 0.07 41.28 57.10 <0.001 <0.001
p(skip) -4.16*** -4.99*** 0.04 0.04 -100.28 -113.17 <0.001 <0.001
position 0.12*** 0.07*** 0.01 0.01 15.72 9.71 <0.001 <0.001

pos intercept -1.88*** -1.89*** 0.07 0.07 -26.25 -26.58 <0.001 <0.001
p(reg) 2.38*** 2.66*** 0.06 0.07 37.30 40.46 <0.001 <0.001
p(skip) -2.63*** -2.78*** 0.05 0.05 -52.65 -51.57 <0.001 <0.001
position 0.12*** 0.07*** 0.01 0.01 13.44 7.61 <0.001 <0.001

Transformer deprel intercept 0.62*** 0.28*** 0.07 0.05 9.23 5.88 <0.001 <0.001
p(reg) 4.53*** 2.86*** 0.10 0.07 45.75 41.76 <0.001 <0.001
p(skip) -2.62*** -2.29*** 0.04 0.04 -64.82 -64.33 <0.001 <0.001
position 0.14*** 0.04*** 0.01 0.01 19.63 5.69 <0.001 <0.001

head intercept 0.46*** -0.20*** 0.06 0.05 7.90 -4.53 <0.001 <0.001
p(reg) 5.36*** 3.31*** 0.11 0.07 50.06 49.28 <0.001 <0.001
p(skip) -2.63*** -4.08*** 0.04 0.04 -63.93 -101.16 <0.001 <0.001
position 0.17*** 0.10*** 0.01 0.01 23.09 13.98 <0.001 <0.001

pos intercept -2.40*** -2.47*** 0.13 0.11 -18.18 -21.86 <0.001 <0.001
p(reg) 1.32*** 1.12*** 0.12 0.13 11.36 8.57 <0.001 <0.001
p(skip) 0.32*** 0.36*** 0.08 0.08 4.29 4.37 <0.001 <0.001
position -0.23*** -0.25*** 0.01 0.01 -18.32 -18.61 <0.001 <0.001

Provo (en) BiLSTM deprel intercept 1.22*** 0.80*** 0.05 0.04 24.29 18.20 <0.001 <0.001
p(reg) 3.30*** 2.95*** 0.09 0.08 38.56 38.54 <0.001 <0.001
p(skip) -3.68*** -3.66*** 0.03 0.03 -133.52 -137.30 <0.001 <0.001
position 0.21*** 0.24*** 0.01 0.01 38.87 43.77 <0.001 <0.001

head intercept 1.76*** 0.41*** 0.05 0.04 33.12 10.44 <0.001 <0.001
p(reg) 2.18*** 1.36*** 0.10 0.07 21.84 20.64 <0.001 <0.001
p(skip) -4.92*** -4.57*** 0.03 0.03 -155.18 -161.06 <0.001 <0.001
position 0.40*** 0.31*** 0.01 0.01 68.85 54.05 <0.001 <0.001

pos intercept -1.92*** -2.02*** 0.08 0.08 -22.77 -25.78 <0.001 <0.001
p(reg) 1.42*** 1.58*** 0.08 0.08 18.61 20.38 <0.001 <0.001
p(skip) -0.66*** -0.77*** 0.04 0.04 -18.63 -20.72 <0.001 <0.001
position - - - - - - - -

Transformer deprel intercept 1.28*** 0.93*** 0.05 0.04 24.39 23.44 <0.001 <0.001
p(reg) 3.26*** 2.69*** 0.09 0.08 34.39 33.70 <0.001 <0.001
p(skip) -3.75*** -3.41*** 0.03 0.03 -129.34 -127.32 <0.001 <0.001
position 0.30*** 0.24*** 0.01 0.01 54.95 45.93 <0.001 <0.001

head intercept 1.45*** 0.46*** 0.05 0.04 29.17 11.59 <0.001 <0.001
p(reg) 2.27*** 1.69*** 0.10 0.07 23.76 25.60 <0.001 <0.001
p(skip) -4.01*** -4.66*** 0.03 0.03 -133.24 -163.42 <0.001 <0.001
position 0.37*** 0.28*** 0.01 0.01 64.92 48.09 <0.001 <0.001

pos intercept -2.69*** -2.89*** 0.14 0.13 -19.71 -23.06 <0.001 <0.001
p(reg) 3.00*** 3.15*** 0.10 0.10 31.11 30.24 <0.001 <0.001
p(skip) 0.80*** 0.93*** 0.04 0.05 18.07 19.09 <0.001 <0.001
position -0.25*** -0.27*** 0.01 0.01 -30.18 -29.77 <0.001 <0.001

RastrOS (pt-br) BiLSTM deprel intercept -0.22*** -0.32*** 0.05 0.05 -4.68 -7.01 <0.001 <0.001
p(reg) 4.16*** 3.62*** 0.08 0.07 51.32 49.69 <0.001 <0.001
p(skip) -1.70*** -2.05*** 0.03 0.03 -56.48 -65.25 <0.001 <0.001
position 0.14*** 0.12*** 0.01 0.01 17.09 14.20 <0.001 <0.001

head intercept -0.15** -0.19*** 0.05 0.05 -2.90 -3.69 0.004 <0.001
p(reg) 4.66*** 4.03*** 0.10 0.08 48.70 50.46 <0.001 <0.001
p(skip) -2.17*** -4.13*** 0.03 0.04 -69.37 -102.76 <0.001 <0.001
position 0.26*** 0.19*** 0.01 0.01 30.43 20.73 <0.001 <0.001

pos intercept -0.99*** -0.98*** 0.06 0.06 -15.45 -16.45 <0.001 <0.001
p(reg) 2.63*** 2.61*** 0.06 0.06 43.02 42.69 <0.001 <0.001
p(skip) -2.52*** -2.91*** 0.04 0.04 -65.44 -69.72 <0.001 <0.001
position 0.12*** 0.11*** 0.01 0.01 13.14 11.68 <0.001 <0.001

Transformer deprel intercept -0.10 -0.26*** 0.06 0.05 -1.79 -5.77 0.073 <0.001
p(reg) 3.12*** 3.07*** 0.07 0.07 42.88 45.31 <0.001 <0.001
p(skip) -1.78*** -2.06*** 0.03 0.03 -59.32 -65.27 <0.001 <0.001
position 0.13*** 0.08*** 0.01 0.01 16.10 10.07 <0.001 <0.001

head intercept -0.07 -0.26*** 0.06 0.05 -1.14 -4.81 0.255 <0.001
p(reg) 3.95*** 3.74*** 0.09 0.08 43.65 48.84 <0.001 <0.001
p(skip) -2.17*** -3.93*** 0.03 0.04 -69.58 -100.10 <0.001 <0.001
position 0.28*** 0.20*** 0.01 0.01 31.87 21.72 <0.001 <0.001

pos intercept -1.97*** -2.12*** 0.14 0.12 -14.37 -17.71 <0.001 <0.001
p(reg) 0.57*** 0.78*** 0.09 0.09 6.32 8.43 <0.001 <0.001
p(skip) -0.36*** -0.65*** 0.05 0.06 -7.14 -11.52 <0.001 <0.001
position -0.21*** -0.18*** 0.01 0.01 -16.20 -13.25 <0.001 <0.001

Table 8: Overview of all results (part 2).
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BIC χ2 Df p

all-r eff-r all-r eff-r all-r eff-r all-r eff-r

MECO-L1 (du) BiLSTM deprel 83546.50 82400.75 7670.49 11010.84 2 2 <0.001 <0.001
head 72210.57 71300.38 14407.59 18647.46 2 2 <0.001 <0.001
pos 48702.71 44738.04 3086.69 3257.63 2 2 <0.001 <0.001

Transformer deprel 78422.59 84143.92 9326.01 9114.93 2 2 <0.001 <0.001
head 73396.78 74729.62 11051.14 15030.07 2 2 <0.001 <0.001
pos 40292.37 30157.89 104.20 188.25 2 2 <0.001 <0.001

MECO-L2 (en-l2) BiLSTM deprel 786910.36 813266.48 80770.80 80710.35 2 2 <0.001 <0.001
head 721580.34 719579.16 99023.63 143061.55 2 2 <0.001 <0.001
pos 453665.09 428746.07 6319.52 6111.91 2 2 <0.001 <0.001

Transformer deprel 733070.61 810697.01 71546.51 69594.78 2 2 <0.001 <0.001
head 721451.14 700433.46 74786.38 156206.75 2 2 <0.001 <0.001
pos 339878.15 289129.13 891.56 320.93 2 2 <0.001 <0.001

Nicenboim (es) BiLSTM deprel 62038.56 61705.57 12760.80 14065.35 2 2 <0.001 <0.001
head 57808.46 47871.65 14703.78 28111.09 2 2 <0.001 <0.001
pos - - - - 2 2 <0.001 <0.001

Transformer deprel 67874.18 67156.03 7930.09 8486.24 2 2 <0.001 <0.001
head 59810.38 50487.63 14257.23 25095.62 2 2 <0.001 <0.001
pos - - - - 2 2 <0.001 <0.001

Potec (de) BiLSTM deprel 145892.59 146622.24 15375.96 14146.19 2 2 <0.001 <0.001
head 121763.91 123406.25 26247.07 35086.70 2 2 <0.001 <0.001
pos 101606.89 92595.02 8237.35 8481.05 2 2 <0.001 <0.001

Transformer deprel 119666.13 148027.04 15136.50 12789.51 2 2 <0.001 <0.001
head 116103.04 133947.43 16464.67 26794.85 2 2 <0.001 <0.001
pos 45668.14 39611.90 122.34 69.33 2 2 <0.001 <0.001

Provo (en) BiLSTM deprel 265555.00 274893.44 38215.03 39111.65 2 2 <0.001 <0.001
head 235978.14 258861.40 47478.23 46669.46 2 2 <0.001 <0.001
pos 166971.65 155560.74 1373.30 1651.36 2 2 <0.001 <0.001

Transformer deprel 252130.08 275598.83 35534.99 33376.38 2 2 <0.001 <0.001
head 243848.75 255250.75 34344.11 49079.47 2 2 <0.001 <0.001
pos 118204.33 103652.19 886.80 843.64 2 2 <0.001 <0.001

RastrOS (pt-br) BiLSTM deprel 106976.51 106122.58 13333.03 14659.62 2 2 <0.001 <0.001
head 99489.29 89499.43 16638.70 30213.54 2 2 <0.001 <0.001
pos 92050.16 87854.00 12436.14 13744.63 2 2 <0.001 <0.001

Transformer deprel 108432.79 106773.67 11382.04 13219.43 2 2 <0.001 <0.001
head 99987.62 91261.27 15027.19 27893.16 2 2 <0.001 <0.001
pos 49397.83 44548.61 169.15 371.72 2 2 <0.001 <0.001

Table 9: Overview of likelihood ratio tests, showing how each full model compares to the null model.


