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Abstract

Finding the best way of adapting pre-trained
language models to a task is a big challenge
in current NLP. Just like the previous genera-
tion of task-tuned models (TT), models that are
adapted to tasks via in-context-learning (ICL)
are robust in some setups but not in others.
Here, we present a detailed analysis of which
design choices cause instabilities and inconsis-
tencies in LLM predictions. First, we show
how spurious correlations between input distri-
butions and labels – a known issue in TT mod-
els – form only a minor problem for prompted
models. Then, we engage in a systematic, holis-
tic evaluation of different factors that have been
found to influence predictions in a prompting
setup. We test all possible combinations of a
range of factors on both vanilla and instruction-
tuned (IT) LLMs of different scale and statis-
tically analyse the results to show which fac-
tors are the most influential, interactive or sta-
ble. Our results show which factors can be
used without precautions and which should be
avoided or handled with care in most settings.

1 Introduction

Transfer learning from large-scale pre-trained lan-
guage models is nowadays the standard approach
to a wide range of NLP tasks. One of its great chal-
lenges is to optimally interface information that
pre-trained language models accumulate in their
parameters and adapt it to the task of interest (Zhou
et al., 2023; Ouyang et al., 2022). The standard ap-
proach for task adaptation has recently shifted from
updating model parameters for a specific task (from
here on task tuning or TT) to using prompting-
based methods based on in-context learning (from
here on ICL). ICL can be subdivided into few-shot
(Brown et al., 2020) or zero-shot inference (pri-
marily using instruction-tuned models Wei et al.,
2022). Both approaches offer certain benefits over
TT: it eliminates costly, task-specific finetuning
and provides greater flexibility, as a single model

can be applied to many tasks. However, ICL also
currently yields overall weaker performance com-
pared to task-tuning and is less stable and reliable
on many benchmarks (see, e.g. Bang et al., 2023;
Ohmer et al., 2023; Min et al., 2022; Lu et al., 2022;
Zhao et al., 2021).

While for TT, much research has been conducted
to understand weaknesses in the paradigm (for an
overview, see Hupkes et al., 2023), the sources of
instabilities in ICL remain nebulous. Since ICL is
more constrained (less data and no parameter up-
dates), out-of-distribution generalisation has been
suggested to be less of a problem (Awadalla et al.,
2022; Si et al., 2023). On the other hand, new
frontiers emerge. For example, the format, order,
or semantics of provided in-context examples can
greatly influence learning outcomes, as does the
proportion of labels in the context and the exact
labels used (Liang et al., 2022). Little is known,
however, about how these factors interact (work
from Wei et al., 2023; Yoo et al., 2022, suggests
that they cannot be isolated); it is unclear which as-
pects are consistently beneficial, which vary across
setups, and which are sensible to combine or de-
couple. The volatility of the paradigm warrants
more research into the reliability of different de-
sign choices.

In this paper, we conduct a detailed exploration
of vanilla and instruction-tuned LLMs across vari-
ous shifts and setups to understand their robustness.
We start with one of the prominent themes in robust-
ness studies for TT models: robustness to spurious
correlations between input and label distributions
(Kavumba et al., 2019; McCoy et al., 2019; Niven
and Kao, 2019) and find that in ICL, spurious corre-
lations do not have a significant impact on learning
outcomes.

We go on to investigate ICL’s sensitivity to other
features of adaptation context, as well as the consis-
tency of predictions across different design choices.
To do so, we conduct a large-scale grid search
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across various combinations of factors and sta-
tistically analyse the results to shed light on the
inter-dependencies of different design choices. We
find that the exact in-context setup (the number of
in-context examples, the distribution of in-context
labels, or the type of instructions given in the con-
text) has a surprisingly small but reliable impact on
prediction outcomes. On the other hand, the type
of instructions used to query the target has, by far,
the most significant impact on model behaviour. It
is also the most volatile across settings, making it
the most pivotal factor.

2 Background and related work

In the following, we first briefly define TT and
ICL and then cover known problems with model
robustness.

2.1 Task tuning and spurious correlations

TT aligns a pre-trained model with a specific task
by iteratively updating model parameters to min-
imise prediction loss on adaptation data. In our
definition here, TT does not include finetuning
on more abstract objectives like instruction tuning
(IT; Wei et al., 2022). TT models often fit spu-
rious correlations between inputs and associated
labels that are idiosyncratic artefacts to the spe-
cific dataset (Niven and Kao, 2019; Kavumba et al.,
2019; McCoy et al., 2019; Geva et al., 2019; Po-
liak et al., 2018; Gururangan et al., 2018; Kavumba
et al., 2022) and do not align with the causal struc-
ture of the process that generated the data in ‘the
real world’ (Schölkopf et al., 2012). Such adapta-
tions (sometimes also referred to as ‘shortcut so-
lutions’; Geirhos et al., 2020) usually fail as soon
as the data distribution shifts between the adap-
tation and test phase. Pre-training improves ro-
bustness compared to task training from scratch
(Hendrycks et al., 2019, 2020). However, the nec-
essary posthoc task adaptation still overfits spurious
correlations (Niven and Kao, 2019). An effective
way to mitigate issues in task adaptation is to ex-
pose the model to counterexamples of spurious
correlations (Kaushik et al., 2020).

2.2 In-context learning

ICL describes the adaptation of a model to a task
by inferring the task from the input given to the
model. ICL can be subdivided into (1) few-shot
learning, where in-context examples (consisting
of input-output pairs) are given in the left-handed

context of a tested input, and (2) zero-shot learning,
referring to the case in which there are no examples.
In this paper, we investigate few-shot scenarios.

In contrast to TT, ICL is a considerably cheaper
adaptation method as it does not require any pa-
rameter updates. Akyürek et al. (2022) and Garg
et al. (2022) show that adaptation of transformer
models via ICL exhibits the same degree of expres-
sivity as simple linear algorithms, small neural net-
works or decision trees. While ICL emerges spon-
taneously with increasing size of untuned LLMs
(Brown et al., 2020), the ICL performance of such
‘vanilla’ LLMs lags behind the tuned state-of-the-
art on almost all common NLP benchmarks (Liang
et al., 2022).

Previous research has also shown that ICL is
highly unstable. For example, the order of in-
context examples (Lu et al., 2022), the recency
of certain labels in the context (Zhao et al., 2021)
or the format of the prompt (Mishra et al., 2022)
as well as the distribution of training examples and
the label space (Min et al., 2022) strongly influ-
ence model performance. Curiously, whether the
labels provided in the examples are *correct* is
less important(Min et al., 2022). However, these
findings are not uncontested: Yoo et al. (2022)
paint a more differentiated picture, demonstrating
that in-context input-label mapping does matter,
but that it depends on other factors such as model
size or instruction verbosity. Along a similar vein,
Wei et al. (2023) show that in-context learners can
acquire new semantically non-sensical mappings
from in-context examples if presented in a specific
setup.

From this listing, we see that ICL entails many
design choices, that task-unrelated design choices
change prediction outcomes and that the effects
of design choices do not exist in isolation. The
field is only beginning to understand the complex
interplays of different prompting setups.

3 Experiment I: Robustness to spurious
correlations

We clarify open questions about robustness of in-
context learners by elucidating their sensitivity to
factors to which they should be invariant (from
here on invariance factors). First, we focus on
one of the most prominent forms of non-robustness
in TT models: susceptibility to spurious correla-
tions between inputs and labels (see Section 2.1).
In the first set of experiments, we test how differ-
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Motivation
Practical Cognitive Intrinsic Fairness
□ △ □ △

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

□ □ △
Shift type

Covariate Label Full Assumed
△ □

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□ △
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
△ □

Table 1: Our analyses, categorised according to the GenBench taxonomy (Hupkes et al., 2023). The token △
represents Experiment I and □ represents Experiment II.

ent models behave when spurious correlations are
contained in their adaptation data.

3.1 Setup

We here describe the datasets and models used to
test sensitivity to spurious correlations.

Task Base dataset Adversarial dataset
NLI MNLI (Williams et al., 2018) HANS (McCoy et al., 2019)

ANLI (Nie et al., 2020)

PI QQP (Wang et al., 2017) PAWS (Zhang et al., 2019)

QA SQuAD (Rajpurkar et al., 2016) SQuAD adv. (Jia and Liang, 2017)

adv. QA (Bartolo et al., 2020)

SQuAD shifts (Miller et al., 2020)

Table 2: Tasks and corresponding datasets.

Datasets We use different common NLU datasets
(from here on base datasets) which are known to
contain spurious correlations between input and
label distributions (Gururangan et al., 2018; Geva
et al., 2019; Poliak et al., 2018), as well as ad-
versarial datasets of the same tasks. Adversarial
datasets are designed to not contain the spurious
correlations of the base datasets; then, they can be
used to test whether models use short-cut solutions
(for an overview see Table 2). Our base datasets
span three different types of NLU tasks: natural
language inference (NLI), paraphrase identification
(PI) and extractive question answering (QA). An
overview can be found in Table 2 and additional de-
tails about dataset properties and their construction
in Appendix C.

Models Our first experiment compares TT mod-
els with models that perform tasks through ICL.

For the latter, we consider two types of models:
‘vanilla’ LLMs, and LLMs that are tuned to follow
instructions (IT see e.g. Wei et al., 2022; Zhong
et al., 2021).

For TT, we use models based on RoBERTaBASE
and RoBERTaLARGE (Liu et al., 2019). If available,
we reutilise finetuned versions of RoBERTa that
have been open-sourced through the huggingface
hub (Wolf et al., 2019); if not available, we fine-
tune the respective models ourselves (with training
details in Appendix B).

Type of learning Model
TT RoBERTa-base

RoBERTa-large
ICL + vanilla LLaMA 7B, 13B, 30B, 65B
ICL + Instruction-tuning Alpaca 7B, 13B, 30B, 65B

Table 3: Adaptation types and the respective models,
as used in Section 3. We use the same ICL models in
Section 4.

Our vanilla LLMs consist of the series of
LLaMA models (7B, 13B, 33B, 65B; Touvron
et al., 2023). The IT counterparts are the freely
available Alpaca models, which are based on the
same LLaMA models but are additionally fine-
tuned via low-rank adaptation (LoRA; Hu et al.,
2022) on the Alpaca self-instruct dataset (Taori
et al., 2023; Wang et al., 2022). We run all models
using mixed-precision decomposition as described
by Dettmers et al. (2022). For an overview of all
used models, see Table 3.

Evaluation We evaluate ICL models by concate-
nating the target example x with k labelled in-
context examples and greedily decoding from the
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Figure 1: Figure (a) shows the f1-scores of different models – normalised for random accuracy – on different
datasets when adapted via base or adversarial data. On each y-axis, we plot accuracy under distributional shift (base
+ adv) while on each x-axis there is no shift (base + base or adv + adv). Each column shows a different type of
task. Marker size represents model size and colour represents the type of task adaptation. Dots close to the diagonal
indicate invariance to the adaptation data and therefore robust generalisation, while dots in the bottom right indicate
sensitivity to spurious correlations. Figure (b) shows the β-parameter of the linear regression (fixed intercept) on the
data of Figure (a). We fit a linear regression for each task and adaptation type separately. Values close to 0 indicate
very strong sensitivity to adaptation data, while values close to 1 indicate no sensitivity.

probability distribution over possible labels y ∈ C
using argmaxy∈CP (y|x1, y1...xk, yk, x) where C
is the set of possible labels. Every data point x is
wrapped by an instruction template that explains
the task the model should solve in natural language.
The label space C is determined by the type of in-
struction template and can differ across templates.
We mitigate the influences of potential confounds
like the template format, the order of (xi, yi), im-
balanced distribution of yi or the semantics of xi
by a pseudo-random sampling xi for every new
model inference. Our sampling of xi ensures that
the in-context labels yi are balanced over all possi-
ble labels (similar to Wei et al., 2023; Brown et al.,
2020, inter alia). Moreover, we use multiple in-
struction templates sourced from FLAN (Wei et al.,
2022) to avoid systematic bias.

3.2 Results

We first evaluate the capacity of different models to
robustly generalise from adaptation data to test data.
In the taxonomy of generalisation capabilities, this
constitutes a covariate shift between the adaptation
data (finetuning data in TT and in-context data in
ICL) and the test data (compare GenBench; Hup-
kes et al., 2023). The corresponding GenBench
evaluation card can be found in Table 1.

Base data in-context First, we adapt the TT and
ICL models on the base data and then compare
their performance between the base data and the
respective adversarial counterparts. If an approach
is robust to spurious correlations in the adaptation
data (which are the fine-tuning data or in-context
examples, respectively), it should perform approxi-
mately equally on the base dataset and the adver-
sarial dataset. We relate both scores in the first row
of Figure 1.

Results from in-context learners land generally
closer to the diagonal, hence indicating – despite
overall weaker performance – that they are more ro-
bust to the spurious correlations in their adaptation
data. To quantify this visual result, we fit a linear
regression model on the data presented in the scat-
terplot in Figure 1a (hence, predict the adversarial-
from the base accuracies) with the intercept fixed at
β0 = 0. The coefficient β1 can then be interpreted
as a degree of robustness to the different adaptation
data, with β1 = 1 indicating complete robustness
and β1 = 0 complete reliance on non-generalisable
patterns in the base data. The β1 values for differ-
ent adaptation types can be found in the top row
of Figure 1b. The β1 values across all tasks are
significantly closer to the parity value of 1 for ICL
models than for TT models, with IT models having
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the edge over vanilla models.
Our results demonstrate that ICL models are

much less sensitive to spurious correlations in their
adaptation data than TT models. However, the fact
that ICL models do not reach the parity value of
1 means that gains on adversarial data are smaller
compared to gains on the base data. This suggests
that ICL may still be mildly sensitive to spurious
correlations, or, alternatively, that the adversarial
datasets used are simply inherently more difficult,
resulting in lower performances compared to the
base data1. We will further explore this question in
the next experiment.

Adversarial data in-context As a follow-up ex-
periment, we consider what happens when the adap-
tation data contains adversarial examples. As those
examples do not contain the same spurious correla-
tions, models cannot overfit them (Kaushik et al.,
2020). This should not make a difference for mod-
els that are robust to spurious correlations, but we
expect a performance drop between these two con-
ditions for models that learned solutions that ex-
ploited those correlations. As we are now evalu-
ating the adversarial data points in both scenarios,
we eliminate the potential impact of the dataset
difficulty on the scores. In the second row of Fig-
ure 1, we plot performances with base adaptation
examples in the context against the performance
with adversarial adaptation data, noting that ICL
models are mostly unaffected by adaptation data
type while TT models land far underneath the di-
agonal again. A regression analysis shows almost
all β-values of ICL models moving closer to parity,
showing us how the dataset difficulty impacted the
results. However, even without the effect of dataset
difficulty on the β-values, they are still not quite
equal to 1, suggesting that the type of adaptation
data has a small influence on ICL learners.

4 Experiment II: Consistency evaluation
in ICL

In the previous section, we saw that the robustness
of in-context learners is likely influenced more by
other factors than by spurious correlations in the
in-context data. Although previous studies have
reported the susceptibilities of LLMs to various
factors, the impact of different design decisions
and their interactions in the context of ICL robust-

1An illustrative example of the base data being easier:
adversarial QA contains only a single answer alternative while
squad contains three.

ness has not been systematically evaluated. Here,
we test the effects of an extensive range of these
factors on prediction outcomes in consistency and
accuracy.

4.1 Experimental details

For all of the following experiments, we use
promptsource templates (P3; Bach et al., 2022) and
the ANLI dataset (Nie et al., 2020). We continue to
use the models and the evaluation procedure from
Section 3 (excluding the TT models). The follow-
ing briefly describes the factors we consider in our
analysis.

4.1.1 Factors
We distinguish two types of factors. Firstly, we
consider factors that constitute interventions to im-
prove consistency and performance, which we call
variance factors2 or λvar for short. We expect a
model to change their response when we change
the value of those factors:

Size We consider models with 7B, 13B, 30B and
65B learnable parameters.

Instruction tuning Whether models are
instruction-tuned or not (‘vanilla’ mod-
els).

Calibration Whether model outputs are calibrated
using ‘content-free prompts’ following Zhao
et al. (2021).

n-shots Whether there are many (k = 5) or few (k
= 2) in-context examples in the prompt.

Instruction quality Whether instructions belong
to one of two groups of semantically equiva-
lent but differently performing instruction tem-
plates (high- vs. low-performing; more details
in Section 4.1.4).

Balanced labels Whether examples with labels
are balanced across all possible classes in the
context or use randomly sampled examples.

Secondly, we consider factors from which we want
a model to not change their response (or ‘be robust
to’) when we change their value. We will call these
invariance factors or λinv:

Cross-templates Whether in-context instructions
are drawn randomly from all available instruc-
tion templates or use the same instructions as
for the target.

2For detailed explanations on the different factors, we refer
to Appendix F.
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Figure 2: Figure (a) shows the consistency of a model when used with all 15 different P3 instructions, in an
otherwise fixed setup. A value of 1 indicates perfect agreement (all templates produce the same prediction); Figure
(b) shows how consistent individual instructions are with all other instructions. A value of 0 indicates a complete
change of predictions while a value of 1 indicates perfect agreement; Figure (c) shows the respective accuracies of
the instructions in Figure (b).

Cross-task Whether another classification task
(QQP) is used as in-context examples or the
same task as the target task (ANLI) is used.

Instructions Different semantically equivalent tar-
get instructions that perform similarly (more
details in Section 4.1.4).

One label Whether in-context examples have only
a single randomly selected label or diverse
labels.

Combining the above factors results in 1536 se-
tups. We evaluate each of these constellations using
the same subset of 600 data points3 that we draw
uniformly from either of the ANLI validation sets.
In-context examples are drawn at random from the
respective training sets.

4.1.2 Analysis methods
Our analysis entails two steps:

1. Main effects: how much does a single factor
impact consistency and the accuracy across many
setups?

2. Interactions: when we disentangle the main
effects, do we find systematic interactions across
pairs or triplets of factors?

Main effects To evaluate the main effect of each
factor λ, we employ linear regression to predict
the accuracy of a model based on λ, considering
all possible combinations of the remaining factors.
The regression model is formulated as Acc = β1λ+
β0. The coefficient β1 represents the main effect
of a specific λ, approximating the average change

3We found 600 examples to yield sufficiently similar re-
sults to evaluating the whole dataset, tested on a small subset
of setups.

in accuracy across all possible setups given λ. We
also fit the intercept β0, but won’t interpret it.

Interactions We analyse interactions by fitting a
factorial ANOVA considering the effect of all pos-
sible 2- and 3-way interactions4 of factors on the
accuracy of predictions. We then count the number
of significant interactions every factor maintains
with other factors. A larger number of interactions
suggests that a factor is volatile, i.e. it changes the
predictions depending on the overall setup. Further,
as the factors have been chosen to be orthogonal
and should not influence each other. On the other
hand, if factors are not interacting, we can interpret
their main effects directly.

4.1.3 Consistency metrics
We measure the consistency of model predictions
using Cohen’s κ (Cohen, 1960), a measure of inter-
rater agreement adjusted for agreement by chance.
The metric κ equals 1 if two (or more) sets of pre-
dictions perfectly align while agreement by chance
results in κ equalling 0. In our case, we calculate
κ to compare the predictions of a model before
and after we change the value of a factor λ (e.g.
if all labels in-context are the same or if they are
not; see One label) across all possible setups. We
make the metric less dependent on the accuracy
of a model by calculating κ only on the subset of
predictions that have been correctly predicted in
either of the two cases.

4We exclude the instructions factor because the indepen-
dence of instruction quality is not given. Moreover, we adapt
the significance levels via Bonferroni correction for multi-
ple comparisons (α < 0, 00059) and show only significant
interactions.
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Figure 3: The β-values of the main effects of each individual factor across many different runs. The values can be
directly interpreted as ‘expected accuracy gain/loss’ when a factor is present compared to when it is absent.

4.1.4 Probing instructions
To find a set of high- and low-performing instruc-
tions for the instruction quality factor, we
run a preliminary analysis where we probe model
behaviour in response to all 15 available P3 ANLI
instructions. We assess the performance of differ-
ent instructions based on accuracy and consistency.

We first get a general picture of each model’s
average consistency κavg across all templates. We
find that κavg increases with the number of param-
eters and is overall higher when a model has been
instruction tuned (Figure 2a).

We then consider the consistency of each indi-
vidual instruction and find a congruent pattern of
consistency across all models (Figure 2b) that corre-
sponds generally to the accuracy scores of the same
instructions (compare Figure 2c). Interestingly, we
also find two groups of high-accuracy instructions
making very different predictions (see the consis-
tency scores of 9, 10 and 15 vs. rest). Based on
these observations, we choose the two highest- and
lowest-performing instructions to constitute the
instruction quality factor and templates 14
and 15 as realisations of the instructions factor.

4.2 Results
We evaluate the models on all possible combina-
tions of λvar and λinv. Appendix G shows the
distribution of accuracy scores across all runs for
different models. The wide spread of scores is strik-
ing: large models score from below chance to up to
67% accuracy, depending on the overall setup. This
extreme variability underlines the importance of
better understanding the impact of different design
decisions and prediction consistency in ICL. The
subsequent section comprehensively summarises
the results of our statistical analysis.

4.2.1 Main effects
The main effects separated by model size are shown
in Figure 3, illustrating each factor’s impact in iso-
lation.

Variance factors The variance factors we chose
are generally thought to improve accuracy and,
hence, should have positive main effects. We
find two out of five variance factors significantly
improve performance on average, from which
instruction quality stands out as the most in-
fluential factor across all model sizes. Similarly,
we find that instruction tuning is consistently
beneficial while balancing the in-context labels
and the number of in-context examples (n-shots)
have on average positive but small and non-
significant effects. Surprisingly, calibration
harms rather than helps performance for all but
our smallest model.

Invariance factors Different from variance fac-
tors, invariance factors are chosen such that they
should not influence a robust model’s predictions.
Accordingly, the main effects should be optimally
close to 0. We find that models are generally
robust to having varied instructions in-context
(cross-instruction), or even having a slightly
positive effect. This is intriguing, as this factor en-
tails considerable changes to the in-context setup,
and we previously saw how the type of target in-
structions (in instruction quality) plays a ma-
jor role. Further, we identify vulnerabilities of large
models to the factors cross-task and one label.
The ambivalent effect of the instructions factor
suggests high volatility across similarly perform-
ing instructions (i.e. different instructions perform
differently for different models and setups).

These main effects give us a general idea of
the tendencies of factors. To better understand
all main effects, we will investigate interactions in
Section 4.2.1.

Consistency of invariance factors Additionally
to a factor’s impact on accuracy, we also compute
the prediction consistency κ of the factors (as de-
fined in Section 4.1.3). To do so, we calculate the
agreement of predictions when a factor is present
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with when it is absent. This way, the value of
κ shows us the degree of robustness of a model
to an invariance factor by quantifying the degree
of prediction change caused by that factor. Fig-
ure 4 shows how robustness increases with size
and instruction tuning. The very low κ scores for
the detrimental cross-task factor come as no sur-
prise, while low scores in the instructions factor
corroborate the previous suspicion that instructions
are highly volatile: if we change the type of used
instructions, the predictions across a lot of se-
tups change.

7b 13b 30b 65b
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0.4

0.6
Vanilla

7b 13b 30b 65b
 

Instruction tuned

One label
Cross-instruction

Cross-task
Instructions

Figure 4: The consistency values when a specific factor
is present or not across all other setups. A value of
0 indicates a complete change of predictions while a
value of 1 indicates perfect agreement (i.e. a low value
indicates that a model is not robust to a change in a
specific factor).

4.2.2 Interactions
The main effects give us a good idea of the general
direction of the impact of a single factor. How-
ever, the main effects do not tell the whole story:
consider the case in which factor A improves perfor-
mance if it is paired with factor B, but performance
deteriorates when paired with C. A’s overall main
effect might be close to zero even though it influ-
ences certain settings. To better understand the
impact of each factor, we will have to investigate
its interactions.

We determine interactions following the proce-
dure described in Section 4.1.2. Figure 5 shows the
number of interactions that each factor maintains.
A general observation is that large models tend
to have simpler 2-way interactions, while smaller
models tend to have more complex 3-way interac-
tions.

Highly interactive factors The most important
factor of instruction quality maintains many
interactions. Hence, many other factors change pre-
dictions depending on the used instruction template.

We find a similar effect for the instructions fac-
tor5. This demonstrates the intricacy of the formu-
lation of instructions: the instruction quality
has the largest positive impact on prediction out-
comes, but at the same time, the instructions are
highly interactive and volatile, with their the effects
of many other factors depending on it. Otherwise,
we observe that calibration is the most volatile,
with eight significant interactions with other fac-
tors. The previously observed main effect has to
be seen in this perspective: calibration is not
generally detrimental, but its effects depend very
much on the setup in which it is used. For exam-
ple, we find on closer inspection that calibration
leads to the highest overall accuracies for the 7B
parameter models when presented with specific
instructions and paraphrase identification in-
context examples (cross-task).

Low interactive factors On the other end of the
spectrum, we find that factors like the number of
in-context examples (n-shots), the balancing of
in-context labels or using just one label have lit-
tle to no interactions at all. Conveniently, there are
no ambiguities for these factors and we can there-
fore interpret their main effects directly, as they are
most likely to be stable across setups. For example,
suppose it is possible to increase the number of ex-
amples in the context. In that case, we can reliably
expect small gains in accuracy without the danger
of otherwise interfering with the learning process.
Similarly, balancing labels leads to reliable small
improvements and having just a single label in the
context reliably reduces accuracy for large models.

5 Discussion

We will first summarise the findings of this paper
and then discuss their implications.

Findings We saw in Section 3 how spurious cor-
relations do not influence predictions in ICL in a
relevant manner as they did previously in TT. This,
however, does not resolve the problem of robust-
ness: depending on the setup, ICL accuracy in our
experiments differs up to 40%, as other factors in
the setup become pivotally important. We here con-
ducted a comprehensive analysis of the influence

5We fit another ANOVA excluding instruction
quality while keeping instructions as a factor to ensure
that the effect is not only due to large performance differences
between the two realisations of instruction quality. We find
similarly strong interactions for the instructions factor
(see Appendix H).
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Figure 5: The number of interactions per factor with other factors. A large number of interactions means that the
outcome of a change in these factors depends on a lot of other variables.

of different setups on the consistency of predictions
in ICL models. Considering different setups, well-
chosen instructions promise the largest perfor-
mance gains across many setups. At the same time,
they are among the most volatile factors of all and
highly sensitive to the setting in which they are
used. On the other hand, factors that relate to the
exact organisation of the in-context examples, such
as the label distribution or in-context instructions
(cross-instructions), have surprisingly small
impacts. Other factors like n-shots – among oth-
ers – are not interactive, which makes them much
easier to handle: their expected gain or loss should,
in most cases, correspond to our observed main
effects. Across all of our experiments, we also find
the general tendency that larger numbers of model
parameters and instruction tuning are beneficial for
model consistency across many settings.

Implications and future research What do
these findings imply? As we have seen, incon-
sistency is a severe concern in ICL, and we here
contribute to narrowing down its sources. Unlike
previously in TT, concentrating on spurious correla-
tions is not vital for ICL robustness and investigat-
ing design choices concerned with in-context exam-
ples (i.e. the exact few-shot setting) promises to be
less impactful or mostly dependent on other setup
factors. Instead, our findings suggest that the exact
phrasing of instruction templates is pivotally impor-
tant. To get hold of inconsistent predictions in ICL,
finding the exact properties of instructions that so
strongly influence model predictions is a sensible
next step (potentially with a similar methodology
as it is presented here). Insights into the impact of
instruction properties can help us to find the source
of inconsistencies and avoid them in production,

while they can also contribute to the theoretical
understanding of in-context learning which is cur-
rently still under investigation. While our analysis
focused on the few-shot setting, it also significantly
impacts the increasingly popular zero-shot learning,
as instructions are central in that setting. For model
deployment, our findings demand caution as minor
changes to certain parts of prompts (e.g. the instruc-
tions) can change the performance of the general
setup. This is especially true for employing smaller,
untuned models. A consistent finding across all our
experiments is that instruction tuning improves con-
sistency and robustness to irrelevant factors across
all setups. Therefore, we advocate for the use of
tuned models to improve robustness. Finally, re-
cent research has suggested that dynamics in ICL
are, to a certain degree, chaotic (Khashabi et al.,
2022). It might be advised to use more diverse
evaluation setups and a rigorous statistical analysis
of the results to guarantee the generality of results
and avoid Type-I errors in publications (Ioannidis,
2005).

6 Conclusion

We here analysed robustness and variability in the
recent learning paradigm of ICL, showing that they
are generally different from in task-tuning. By
using a methodology that covers a wide range of
potential prompt design decisions, we show which
factors actually matter in prompt design and how
these factors influence each other.

Limitations and Acknowledgements

For a discussion of the limitations of our work and
the acknowledgements, we refer to Appendix I and
Appendix J, respectively.
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A Experiment 1: List of TT models

We compare the sensitivity to spurious correlations of ICL models with TT models. The following
table contains all TT models we used during these experiments, providing the respective handle for the
huggingface hub or indicating with ‘own’ that we fine-tuned the respective model ourselves.

Models
RoBERTaBASE RoBERTaLARGE

MNLI textattack/roberta-base-MNLI roberta-large-mnli
Base datasets SQuAD deepset/roberta-base-squad2 deepset/roberta-large-squad2

QQP own own

HANS own own
ANLI own own

Adv. datasets
PAWS own own
SQuAD adversarial own own
adversarial QA own own
SQuAD shifts own own

B Experiment 1: Finetuning details of own models

We finetuned all RoBERTa models using the same set of hyperparameters, based on the literature and
experience.

Hyperparameters We train using the ADAM Optimizer with γ = 1e-05, inverse square root decay and
β1/2 = (0.9, 0.999), no weight decay, 250 warmup steps and a batch size of 8. We stop training if the
model does not show improvement on the validation set for 1 epoch of training.

Data For adversarially tuned models, we mixed the training set of the base data with 70% of the
adversarial data (30% retained for evaluation). We ensured a mixing ratio of 20%/80% adversarial/base
data.

C Experiment 1: Datasets details

We here provide additional information about the datasets we use in Experiment 1:

C.1 Base datasets

MNLI (Multi Natural Language inference; Williams et al. 2018)
A large-scale natural language inference dataset. It contains sentence pairs annotated with three
categories: entailment, contradiction, and neutral. The dataset is sourced from a variety of genres,
like fiction, government documents, and telephone conversations, thus encouraging models to learn
domain-agnostic representations.

QQP (Quora Question Pairs; Wang et al. 2017)
A collection of question pairs from the Quora platform, labelled as either duplicates or non-duplicates.
The aim is to identify semantically equivalent questions, addressing challenges such as paraphrasing
and varying levels of detail.

SQuAD (Stanford Question Answering Dataset; Rajpurkar et al. 2016)
A reading comprehension dataset consisting of questions about passages from Wikipedia. The
questions are human-annotated, and the answer to each question is a segment (or span) of the passage.
The goal of models is to identify and extract the correct span from the passage that answers the
question.
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C.2 Adversarial datasets

HANS (Heuristic Analysis for NLI Systems; McCoy et al. 2019)
Constructed to evaluate models on non-entailment cases that appear entailed due to spurious biases.
Built upon common NLI datasets like SNLI and MultiNLI, it dissects three heuristic strategies that a
model might utilise: lexical overlap, subsequence, and syntactic structure.

ANLI (Adversarial Natural Language Inference; Nie et al. 2020)
Generated by first training models on existing datasets (e.g., SNLI and MultiNLI) and then having
human annotators produce examples that the models predict incorrectly. Generation of additional
examples was done in multiple rounds with respectively improved models, accordingly each round
increases the adversarial difficulty.

PAWS (Paraphrase Adversaries from Word Scrambling; Zhang et al. 2019)
Comprises sentence pairs with high lexical overlap but differing semantics, challenging models that
heavily weigh word overlap. An adversarial expansion to datasets like the Quora Question Pairs
dataset (QQP).

SQuAD Adversarial (Jia and Liang, 2017)
A derivative of the Stanford Question Answering Dataset (SQuAD) where adversarial sentences are
introduced into the context paragraphs, aiming to mislead models into selecting incorrect answers
while the correct answers remain unchanged.

Adversarial QA (Bartolo et al., 2020)
A reading comprehension dataset, where each question is tied to a Wikipedia passage. Distinctively,
answer annotations are freeform human responses rather than extracts from the passage, testing the
extractive capability boundaries of SQuAD-inspired models.

SQuAD Shifts (Miller et al., 2020)
Formed by perturbing the original SQuAD distribution in terms of linguistic and stylistic attributes.
This dataset gauges model robustness against unseen data distributions, such as domain shifts or
synthetic noise.

D Experiment 1: Impact of spurious correlations in ICL

We conducted an additional analysis of the results in Section 3.2. The goal of this additional analysis is to
understand the impact of the type of adaptation data (adversarial vs. base) on the prediction outcomes
in comparison with other factors that we varied in our experiments (such as the type of instruction
template, whether the model was instruction tuned or the size of the model). Type data is a
binary factor indicating whether the model was adapted on base or adversarial data; Size is a quarternary
factor indicating model size; Type instructions is a binary factor indicating the type of template that
was used; Instruction tuned is a binary factor indicating whether the tested model was instruction
tuned or not.

Table 4 shows the summary statistics of an ANOVA that we apply to these factors and their impact
on the model accuracy. We can see from Table 4 that adaptation data is the only factor that does not
significantly impact prediction outcomes.
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df sum_sq mean_sq F PR(>F)

Type data 1.0 8.67 8.67 0.12 0.72
Size 3.0 6626.73 2208.91 31.26 5.71e-18
Type instruction 1.0 95.32 95.32 1.34 0.024
Instruction tuned 1.0 900.55 900.55 12.74 4.05e-04
Residual 357.0 25220.11 70.64 NaN NaN

Table 4: Results of ANOVA

E Experiment 1 & 2:Prompt template examples

E.1 FLAN instructions

Input:
Does the Hypothesis in the input entail (True) or contradict (False) the Premise or is it independent
(Neither)?
Premise: Kirklees Stadium (known as the John Smith’s Stadium due to sponsorship), is a multi-use sports
stadium in Huddersfield in West Yorkshire, England. Since 1994, it has been the home ground of football
club Huddersfield Town and rugby league side Huddersfield Giants, both of whom moved from Leeds
Road.
Hypothesis: Kirklees Stadium is in Scotland.

OPTIONS:
- True
- Neither
- False

ANSWER: False.

[...]

Does the Hypothesis in the input entail (True) or contradict (False) the Premise or is it independent
(Neither)?
Premise: Jonathan Smith (born January 17, 1971), better known by his stage name Lil Jon, is an American
rapper, record producer, and DJ. He was the frontman of the group Lil Jon & The East Side Boyz, which
he formed in 1997, and they released several albums until 2004.
Hypothesis: Jonathan Smith spent much of his time in China.

OPTIONS:
- True
- Neither
- False

ANSWER:

Target:
Neither.

E.2 P3 details

In the following, we provide more details on the instruction templates (Bach et al., 2022), as used in
Experiments II.
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E.2.1 P3 details – Names

Names of all available P3-instructions, following the ordering of Figure 2:

1. ‘MNLI Crowdsource’

2. ‘Guaranteed Possible Impossible’

3. ‘Always Sometimes Never’

4. ‘Consider Always Sometimes
Never’

5. ‘Does This Imply’

6. ‘Guaranteed True’

7. ‘GPT 3 Style’

8. ‘Take the Following as Truth’

9. ‘Must Be True’

10. ‘Based on the Previous Passage’

11. ‘Should Assume’

12. ‘Can We Infer’

13. ‘Justified in Saying’

14. ‘Does It Follow That’

15. ‘Claim True False Inconclusive’

E.2.2 P3 details – Examples

We here show examples of P3 prompt templates as they are used in Experiment 2: The prompt templates
wrap the respective ANLI data point and provide natural language instructions about the task to the model.

High-performing templates ‘Claim true false inconclusive’
[...]

Jonathan Smith (born January 17, 1971), better known by his stage name Lil Jon, is an American rapper,
record producer, and DJ. He was the frontman of the group Lil Jon & The East Side Boyz, which he
formed in 1997, and they released several albums until 2004. Based on that information, is the claim:
"Jonathan Smith spent much of his time in China." true, false, or inconclusive?

ANSWER:

High-performing templates ‘Does it follow that’
[...]
Given that Jonathan Smith (born January 17, 1971), better known by his stage name Lil Jon, is an
American rapper, record producer, and DJ. He was the frontman of the group Lil Jon & The East Side
Boyz, which he formed in 1997, and they released several albums until 2004. Does it follow that Jonathan
Smith spent much of his time in China. Yes, no, or maybe?

ANSWER:

Low-performing templates ‘MNLI crowdsource’
[...]
Jonathan Smith (born January 17, 1971), better known by his stage name Lil Jon, is an American rapper,
record producer, and DJ. He was the frontman of the group Lil Jon & The East Side Boyz, which he
formed in 1997, and they released several albums until 2004. Using only the above description and
what you know about the world, "Jonathan Smith spent much of his time in China." is definitely correct,
incorrect, or inconclusive?
ANSWER:

Low-performing templates ‘Guaranteed possible impossible’
[...]
Assume it is true that Jonathan Smith (born January 17, 1971), better known by his stage name Lil Jon, is
an American rapper, record producer, and DJ. He was the frontman of the group Lil Jon & The East Side
Boyz, which he formed in 1997, and they released several albums until 2004.

Therefore, "Jonathan Smith spent much of his time in China." is guaranteed, possible, or impossible?

ANSWER:
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F Experiment 2: Factors details

In the following, we provide a more detailed description of the factors used in Section 4 and also provide
our motivation to include these factors.

F.1 Invariance factors

Size We consider models of different sizes. Model size has been shown to be an important moderating
factor in probably all previous studies on in-context learning.

Instruction tuning We have seen previously that instruction tuning improves the consistency of a model
across templates (see Section 4.1.4). We introduce it as a factor to show which other invariance factors it
may affect.

Calibration Previous research has shown how small models are especially biased towards single labels
when prompted. We find similar tendencies for our model: We exploratively calculate the entropy of
a model’s predictions across all data points in a dataset. This allows us to estimate whether a model is
biased toward predicting a single label (low entropy). Optimally, a model’s prediction should be close
to the entropy of the target distribution H(Y ). We find that smaller models have a larger bias towards
predicting a single label (lower prediction entropy), while larger and IT models get closer to H(Y ) (see
Figure 6).
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Figure 6

Zhao et al. (2021) suggests solving this issue by calibrating the model probabilities using ‘content-free’
prompts. We add the factor of calibration to assess its effects systematically.

n-shots The number of in-context examples has been shown to interact with other factors (e.g. according
to Zhao et al., 2021, calibration has a more significant effect for fewer in-context examples). We would
also expect that n-shots interacts with many other in-context factors such as one label, in which we
show the model just examples with the same label in-context, is modulated by the number of in-context
examples. We introduce ‘few’ (k = 2) and ‘many’ (k = 5) examples as a factor.

Instruction quality Ultimately, we have seen how some instructions produce consistent and relatively
well-performing responses across different models while others do not (see Section 4.1.4. We add this
last factor to see which other types of factors help the in-context learner cope with varying instruction
quality. We chose the two best and two worst-performing templates6 from our previous analysis.

6See Appendix E for an example of the instructions
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F.2 Invariance factors

The following briefly describes each of the tested λinv.

Balanced labels Zhao et al. (2021) additionally showed how a majority label among the in-context
example can influence the distribution of model outputs. Therefore, we compare contexts with balanced in-
context label distribution with randomly sampled labels and an extreme case with only a single in-context
label.
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Cross-instruction We include cross-templates as a factor to assess model robustness to shifts in
label space and surface form of instruction formulation. Previous research has shown how in-context
learners are sensitive to the instructions (Mishra et al., 2022) as well as the label distribution C (Min
et al., 2022). The experiments of Min et al. (2022) represent an extreme case in which C is resampled to
be random tokens. While these edge cases are theoretically attractive, we here change this scenario to
a practically common one, where instructions and labels are semantically equivalent but have different
surface forms by randomly sampling from the available p3 instructions for the in-context examples. We
test the impact of in-context instructions in a single setting with results shown in Figure 7 Surprisingly,
almost all models are robust to semantic-invariant changes to instructions of the in-context examples
despite changes in the label space and substantial changes in surface form and format across different
instructions.
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Figure 8: Accuracy scores of all models in all possible setups, with vanilla models on the left and instruction-tuned
models on the right.

Cross-task In cross-task, we exchange the task of the in-context examples such that the only consis-
tency between in-context and target examples is the general format (x followed by y) and the truthfulness
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of the x to y mapping. To see whether conditioning on a fixed label space matters, we add tasks with a
discriminative (QQP) and a generative (SQuAD) objective as different factors. Compared to a zero-shot
baseline, we can see that large models can benefit from conditioning on other tasks (Figure 8). For our
principal analysis, we only include QQP as an in-context task, as SQuAD is incompatible with many other
factors (such as balanced labels, one label aso...)

Instructions Besides the quality of the instructions, we are also interested in how consistent model
behaviour is across instructions that are of similar quality. To get an insight into this, we bin the
high-quality instructions respectively into a new factor.

G Experiment 2: Accuracy distribution

We here show the distribution of accuracy scores for all setups in experiment 2, separated by model size
(hue) and whether the model is instruction tuned or not (i.e. vanilla).
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H Experiment 2: Interactions details

H.1 ANOVA using instructions factor
We fit an ANOVA using the factor instructions instead of instruction quality. In that case, we
find a similar pattern of interactions, showing that the size of the main effect can not merely explain the
number of interactions.
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Figure 10: Interactions when excluding Instruction quality and keeping Instructions instead. We find
similar patterns.
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H.2 Interaction mappings and effect sizes
The following shows the exact mapping of the interacting factors as well as the size of the corresponding
effect size, measured by βλ1×λ2 values from a post hoc regression analysis.

Figure 11: The exact mappings of all 2-way interactions in our experiments.
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Table 5: The exact mappings of all 3-way interactions in our experiments.

Model λ1 λ2 λ3 βλ1×λ2×λ3

7B Instruction quality Calibration Cross task 0.037106
13B Instruction tuned Calibration Instruction quality 0.002102
13B Instruction quality Cross task Calibration -0.013176

I Limitations

For the first set of experiments in Section 3, the comparison between TT models and ICL is not ‘fair’.
Model sizes are not comparable, the amount of adaptation data differs significantly (thousand for task-
tuning compared to 5 for ICL) and some of the adversarial datasets were created with some of the TT
models ‘in-the-loop’ (e.g. ANLI). However, our motivation here is not to be fair, but to show practically
relevant effects in either type of task adaptation. For a fair comparison, see Mosbach et al. (2023).

For the second set of experiments in Section 4, we only consider a subset of factors that we deemed
the most relevant or interesting. Adding more factors would enrich the analysis. However, the number
of model inferences to compute grows exponentially with the number of considered factors, which sets
soft limits for the number of analysed factors. For potential follow-ups, we suggest a more fine-grained
investigation of different instruction designs for the target example, as this potentially yields exciting
insights on what exactly leads to the large performance gains and high volatility. Our study is coarse in
this aspect.

Our analysis would have been more expressive if we chose an ‘easier’ task than the relatively ‘hard’
ANLI dataset to run our evaluation: our smaller models perform relatively poorly across many factors on
challenging datasets like ANLI and provide less variance for a meaningful analysis.
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