
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 200–210
December 6–7, 2023. ©2023 Association for Computational Linguistics

200

Quantifying Information of Tokens for
Simple and Flexible Simultaneous Machine Translation

DongHyun Lee, Minkyung Park, Byung-Jun Lee
Department of Artificial Intelligence
Korea University, Republic of Korea

{2022020880, swwwjkl538, byungjunlee}@korea.ac.kr

Abstract

Simultaneous Translation (ST) involves trans-
lating with only partial source inputs instead
of the entire source inputs, a process that can
potentially result in translation quality degrada-
tion. Previous approaches to balancing transla-
tion quality and latency have demonstrated that
it is more efficient and effective to leverage an
offline model with a reasonable policy. How-
ever, using an offline model also leads to a dis-
tribution shift since it is not trained with partial
source inputs, and it can be improved by train-
ing an additional module that informs us when
to translate. In this paper, we propose an Infor-
mation Quantifier (IQ) that models source and
target information to determine whether the of-
fline model has sufficient information for trans-
lation, trained with oracle action sequences gen-
erated from the offline model. IQ, by quantify-
ing information, helps in formulating a suitable
policy for Simultaneous Translation that better
generalizes and also allows us to control the
trade-off between quality and latency naturally.
Experiments on various language pairs show
that our proposed model outperforms baselines.
1

1 Introduction

Simultaneous Translation (ST)(Kreutzer et al.,
2018; Gu et al., 2017) is a setting that employs
incremental translation as the source input is being
received, unlike conventional Machine Translation
(MT)(Vaswani et al., 2017) which translates using
full source sentences, providing a sufficient con-
text for high-quality translation. Despite its invalu-
able potential in numerous real-world scenarios,
ST poses a significant challenge as the translation
model may not always have access to sufficient
source context, particularly under low latency con-
ditions.

1Code is available at https://github.com/ku-
dmlab/info_quantifier

In the pursuit of achieving Simultaneous Trans-
lation (ST), a multitude of methods have been pro-
posed for the training of online models, employing
either fixed policies (i.e., Wait-k) (Ma et al., 2019;
Zheng et al., 2020; Elbayad et al., 2020; Zhang
and Feng, 2021), or adaptive policies (Chiu and
Raffel, 2018; Arivazhagan et al., 2019; Ma et al.,
2020b; Zhang and Feng, 2022a, 2023). Regard-
less, the training of a dedicated online model for
ST often requires calibration of diverse factors to
control latency, such as the count of reading win-
dows (i.e., k), and latency weight. This typically
induces the training of multiple models, thereby
incurring high computational costs. While it is pos-
sible to consider multiple latency regimes within
a single model (Elbayad et al., 2020; Zhang and
Feng, 2021), it does not account for the correlation
between different latency conditions (Zhang and
Feng, 2022b).

In recent research, (Papi et al., 2022) showed
the effectiveness of directly deploying an offline
model with a suitable decision policy for ST. Their
promising results demonstrate that we can attain
superior performance without having to depend on
online models that are trained using incomplete in-
puts. Despite their promising results, it is apparent
that employing the offline model directly will suf-
fer from a distributional shift caused by the partial
source sentences that were not encountered during
the training time. One previous work (Alinejad
et al., 2021) has alleviated it by training a policy to
predict optimal translation points, we empirically
found that such an approach struggles to gener-
alize effectively when faced with unseen source
sentences.

To this end, we propose Information Quantifier
(IQ) which models source and target information
based on the given oracle action sequences. IQ is
capable of quantifying the information contained
within the source/target sentences, thereby guiding
READ/WRITE decisions across diverse latency

https://github.com/ku-dmlab/info_quantifier
https://github.com/ku-dmlab/info_quantifier
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Offline Decoding schauen sie nach mi@@ gu@@ el , bauern wie mi@@ gu@@ el . <eos>

Source look to mi@@ gu@@ el , farmers like mi@@ gu@@ el . <eos>

Online Decoding   sehen schauen sie auf nach nach mi@@ gu@@ gu@@ el , bauern wie …

R W W R W R W W R W W W W …

Figure 1: Example of oracle action sequences generation as suggested by SSMT (Alinejad et al., 2021). It assumes
that WRITE (W) is the right action to do when the decoder with partial source sentence (Online Decoding above)
produces the same target token as the decoder with full source sentence (Offline Decoding above), and READ (R)
otherwise.

regimes by measuring the amount of excessive in-
formation in source/target sentences when com-
pared to each other. This allows our approach
to have improved generalization to mitigate distri-
bution shift on unfamiliar source/target sentences
compared to methods that directly predict actions.
Through experiments across various language pairs,
we demonstrate that IQ, despite its straightforward
usage, delivers notable performance improvement
over a number of baselines.

2 Related Work

Online models for ST Online models with a
fixed policy (i.e., Wait-k) (Ma et al., 2019) are
trained by waiting for a predefined number of k
source tokens. Instead of training multiple k mod-
els (Zheng et al., 2020), strategies for training a
single model for different latencies have been pro-
posed. (Zhang and Feng, 2021) use each head
in multi-head attention modules as an expert with
its own k, while (Elbayad et al., 2020) samples k
randomly during training. Online models with an
adaptive policy employ specific signals to guide
READ/WRITE decisions, thereby learning a flexi-
ble policy. For instance, (Ma et al., 2020b) incor-
porates (Arivazhagan et al., 2019), which predicts
a Bernoulli variable to determine when to translate
within a transformer by jointly learning with multi-
head attention. Furthermore, (Zhang and Feng,
2022b; Zhang et al., 2022; Dong et al., 2022) learn
the ST model with the module that quantifies infor-
mation to grasp READ/WRITE decisions. While
the latter provides a better trade-off between qual-
ity and latency than the former, its learning process
is more intricate.

Offline model with decision policy Recent stud-
ies (Papi et al., 2022) demonstrate the efficiency
and effectiveness of applying predefined or learned
policy to an offline model for Simultaneous Speech

Translation, as opposed to training online models.
Predefined policies such as Wait-k (Ma et al., 2019),
Wait-k-Stride-n (Zeng et al., 2021), SP-n (Shared
prefix) (Nguyen et al., 2021), LA-n (Local Agree-
ment) policy (Liu et al., 2020; Polák et al., 2022)
can be applied to the offline model for ST. Addi-
tionally, (Papi et al., 2023) incorporates a policy
that takes into account the attention weights of the
most recent source tokens.

(Alinejad et al., 2021) suggested learning a pol-
icy model separately using oracle action sequences.
We follow the same process to generate oracle ac-
tion sequences. However, instead of training a pol-
icy to directly predict the actions, we introduce in-
formation quantification for decision policy which
subsequently enhances the generalization capabili-
ties of the model. In contrast to previous methods
that quantify information (Zhang and Feng, 2022b;
Zhang et al., 2022; Dong et al., 2022) based on
heuristic policies such as the Wait-k policy or cross-
attention values within the online model learning
framework, our approach strategically aligns infor-
mation learning with the action sequences gener-
ated by the oracle policy, which is entirely indepen-
dent of the translation learning pipeline.

3 Background

Offline and online decoding We denote the
source tokens as x = (x1, . . . , xm) ∈ X and the
generated target tokens as y = (y1, . . . , yn) ∈ Y .
Offline decoding uses full-sentence inputs for train-
ing, with the greedy target token at a time step t
defined as:

yt = argmax
y

p(y|x, y<t)

Oracle action sequences Oracle action se-
quences are the reference that can achieve high
quality under low latency in online decoding for
ST. For the parallel corpus for training, the target
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Offline MT model

xmx1 x2 yn−1y1 y2

fe(x1, x2, . . xm) fd(y1, y2, . . yn−1, ỹn)

IQsrc IQtrg

1.24 1.26 0.16 1.11 0.94 … 0.82 2.97 1.31 1.27 1.09 0.7 0.48 … 0.87 0.86

ỹn

0.05

-

Violation > ϵ Write
< ϵ Read

Infosrc Infotrg

Figure 2: Overall Information Quantifier (IQ) frame-
work. IQ networks are trained to not violate the assump-
tions on information of source tokens and target tokens
(including the predicted candidate target token at the
last). After training, the information on source tokens
and partial translation information are compared to de-
cide the next action.

sentences are given, and such action sequences can
be generated in many different ways (e.g. perform-
ing a search).

As shown in Figure 1, (Alinejad et al., 2021)
finds a near-optimal oracle action sequence by
defining the optimal segment. It is the point when
the target token in offline decoding (i.e., generating
with complete source inputs) and the target token in
online decoding (i.e., generating with incomplete
source inputs) are the same. We used the same pro-
cess to get oracle action sequences, primarily ow-
ing to its straightforwardness and efficiency. How-
ever, it should be noted that our proposed method
can be integrated with any other oracle action se-
quences such as (Zheng et al., 2019b,a).

4 Propose Method

In this section, we introduce Information Quan-
tifier (IQ), which quantifies the information in
both source and target sentences to make the
right READ/WRITE decisions. Based on oracle
READ/WRITE action sequences of training paral-
lel corpus (e.g., (Alinejad et al., 2021)), we train
IQ with a novel training objective in the following
subsections.

4.1 Quantify information

Motivated by previous studies (Zhang et al., 2022;
Zhang and Feng, 2022b), we quantify the informa-

tion contained in each token using a scalar value.
We sum up the amount of information of tokens
in a partial sentence to get the amount of informa-
tion of a partial sentence. These amounts of infor-
mation of source/target sentences are denoted as
Infosrc : X 7→ R and Infotrg : Y 7→ R, respec-
tively. We utilize the contextual token features and
a feed-forward network to quantify the information
contained in the source sequence x = (x1, . . . , xm)
and target sequence y = (y1, . . . , yn−1, ỹn):

Infosrc(x) =

m∑
k=1

IQsrc(fe(xk)) (1)

Infotrg(y) =
n∑

k=1

IQtrg(fd(yk)) (2)

IQsrc and IQtrg stand for Source Information
Quantifier and Target Information Quantifier
respectively. These are the feed-forward networks
that map contextual token features to the amount
of information contained in the token. We use the
softplus activation function at the end of these net-
works to ensure the positivity of the amount of
information in each token. fe and fd are contextual
token feature extractors from the encoder/decoder
pre-trained for offline translation.

One important detail here is that, in addition
to current partial source/target sentences, we also
include the candidate target token ỹn that will be
decoded if we perform the WRITE action for the
information quantification of the target sentence. It
allows the IQ model to peak into the future to make
more accurate decisions.

4.2 Violation and objective

To train IQ, we introduce a novel objective based
on a measure of violation that current IQ has on the
oracle action sequences. The definition of violation
is as follows:

viol(x,y) =

{
Infotrg(y)− Infosrc(x) if READ
Infosrc(x)− Infotrg(y) if WRITE

(3)

The idea behind violation we have assumed is as
follows:

• For READ in action sequences, the amount
of information of the target tokens should be
greater than that of the source tokens (i.e., we
do not have enough information in the source
sentence to write).
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• For WRITE in action sequences, the amount
of information of the source tokens should ex-
ceed that of the target tokens (i.e., we do have
enough information in the source sentence to
write).

Based on these ideas, violation measures how much
of these assumptions are violated. If viol(x,y) is
less than zero, we can safely state that none of these
assumptions are violated for current x,y. These
give rise to the following objective:

minmax {viol(x,y), 0}, (4)

which is designed to only penalize the positive vio-
lation and ignore it if it is negative. One particular
loss function to achieve it would be:

Lviol = max(viol(x,y), 0)2. (5)

However, solely using Lviol can easily lead
to the trivial degenerate solution Infosrc(x) =
Infotrg(y) = 0 for all x,y, which gives Lviol = 0.
Such a solution is obviously not a desired outcome.
To address this issue, we introduce an auxiliary
objective to the information quantifier that benefits
non-zero quantification:

Linfo = ∥Infotrg(y) + Infosrc(x)− ζ∥2, (6)

where ζ represents the total information. We use
the simple heuristics to set ζ = n + m, which
tries to equate the total sum of the amount of infor-
mation to the total length of the source and target
sequences. Note that, as we use contextual feature
vectors as input to IQs, this auxiliary objective does
not harm the expressivity of our framework.

Based on the above, we optimize IQs based on
the combination of two losses:

L = Lviol + αLinfo (7)

where α is a hyperparameter to be tuned.

4.3 Inference
At a test time, based on IQs learned, we need to
decide whether to READ or WRITE. As we trained
IQs to minimally violate the assumptions, we can
expect them to follow the assumptions during the
test time if they generalize well. Consequently, the
main idea is to follow the assumptions to perform
a ST:

• Choose READ if the amount of information
of the target tokens is larger than that of the
source tokens.

Algorithm 1 Inference with IQs
1: Input: source tokens x, threshold ϵ
2: Output: translation y
3: Init: source index i = 1, target index j = 0
4: while yj−1 ̸= <EOS> do
5: Predict the candidate translation ỹj+1

6: Compute Infosrc = Infosrc(x1, ..., xi)
7: Compute Infotrg = Infotrg(y1, ..., ỹj+1)
8: if Infosrc − Infotrg ≥ ϵ then
9: WRITE, j← j+1

10: else
11: READ, i← i+1
12: end if
13: end while

• Choose WRITE if the amount of information
of the source tokens is larger than that of the
target tokens.

In practice, there is a need to control a trade-
off between quality and latency. One major ad-
vantage of the proposed framework is that we can
simply adjust it after training IQs. We can addi-
tionally adopt a threshold ϵ such that the WRITE
action is performed when Infosrc(x) is larger than
Infotrg(y) + ϵ, preventing the translator to write
until the additional information ϵ is provided. The
detailed algorithm is illustrated in 1.

5 Experiments

5.1 Datasets
We evaluated our method on IWSLT14 (Cettolo
et al., 2013) De→ En, En→ De, and IWSLT15
(Cettolo et al., 2015) Vi→ En, En→ Vi datasets.

For IWSLT14 De-En pairs, we applied Byte Pair
Encoding (BPE) (Sennrich et al., 2016) to create
subword vocabularies with 8.8K German and 6.6K
English tokens. We used 160K and 7K sentences
for the training and validation sets respectively. The
test set included 6.7K sentences from dev2020 and
tst2010-2013.

For the IWSLT15 Vi-En pairs, we followed the
settings outlined in (Luong and Manning, 2015).
We utilized pre-tokenized sentence datasets with
vocabularies of 17K for English and 7.7K for Viet-
namese. We maintained casing for words and re-
placed words occurring less frequently than 5 times
with <UNK>, as done in (Luong and Manning,
2015). The training set consisted of 133K sen-
tences, with 1.5K sentences from tst2012 serv-
ing as the validation set, and 1.2K sentences from
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Figure 3: Comparison with related methods: we perform evaluations across 4 language pairs, comparing the
performance of the IQ against the offline model with the Wait-k policy, SSMT, and Wait-Info.
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Figure 4: Evaluation against diverse algorithms: assessing online and offline models with decision policies on
Simultaneous Translation (ST) results for the IWSLT14 De→ En language pair. The dashed line represents the
online model, while the solid line denotes the offline model with policy. The pre-trained offline model used in some
of the algorithms attains a BLEU score of 36.25 when full source sentences are given.

tst2013 used as the test set to train our model.

5.2 Baseline settings
We conducted experiments with the following base-
lines. If a hyperlink is accompanied by a baseline
below, it implies that we used the implementation
and hyperparameters of the linked implementation.

Offline Model We adopted the conventional
transformer architecture model (Vaswani et al.,
2017) as the offline MT model with greedy de-
coding. For training the policy model, we use
the same offline model for each language pair,
adapted from the Fairseq2 (Ott et al., 2019) Li-
brary (transformer_iwslt_de_en architecture).
We retained all the original hyperparameters as
per the Fairseq settings, without any changes. Of-
fline Model with Wait-k Policy Offline model with
Wait-k policy (Ma et al., 2019) which waits for a
fixed number of source tokens to be fed into the
pre-trained offline model.

Offline Model with LA-n Policy Offline model
2https://github.com/facebookresearch/fairseq

with the local agreement (LA-n) policy (Liu et al.,
2020), which emits the agreeing prefix tokens of the
consecutive tokens. After the model receives the
number of n source tokens, the LA-n policy deter-
mines the longest common prefix of the hypothesis
tokens from the n consecutive source tokens.

Wait-k Model An online model is trained with a
dedicated ktrain and evaluated with ktest (Ma et al.,
2019) to accommodate different latency regimes.

GMA3 An online model employs a gaus-
sian prior to learn the alignments within the
attention mechanism that is used to determine
READ/WRITE action (Zhang and Feng, 2022a).

MMA An online model that uses the prediction
of a Bernoulli variable to determine READ/WRITE
actions within a Transformer (Ma et al., 2020b).

MoE Wait-k4 An online model that employs
each head in the multi-head attention as an expert,
which each one processing its own k (Zhang and
Feng, 2021).

3https://github.com/ictnlp/GMA
4https://github.com/ictnlp/MoE-Waitk

https://github.com/facebookresearch/fairseq
https://github.com/ictnlp/GMA
https://github.com/ictnlp/MoE-Waitk
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Source ich sehe den d@@ al@@ ma@@ tin@@ er .

Reference then i see the d@@ al@@ ma@@ ti@@ an .

SSMT
Input ich sehe den d@@ al@@ ma@@ tin@@ er .

Output i see the d@@ al@@ ma@@ tin@@ er .

IQ(Ours)

Input ich sehe den d@@ al@@ ma@@ tin@@ er .

Output i i see see it the the d@@ d@@ al@@ al@@ ma@@ tin@@ tin@@ er er .

Src info 1.24 2.5 2.5 2.66 2.66 3.37 4.31 4.31 5.11 5.11 6.04 6.04 6.04 6.86 6.86 9.83 9.83

Trg info 1.31 1.31 2.58 2.58 3.8 3.67 3.67 4.37 4.37 5.4 5.4 5.88 6.64 6.64 8.05 8.92 9.78

Viol -0.06 1.19 -0.07 0.07 -1.14 -0.29 0.64 -0.06 0.73 -0.29 0.64 0.166 -0.59 0.223 -1.19 0.91 0.05

   WRITE    Trg Info Degration

Figure 5: The table illustrates the different approaches IQ and SSMT take in ST processes. READ/WRITE decisions
of IQ are guided by the violation value, offering control over latency. Notably, the portion marked red indicates
situations where higher target information leads to READ when the current hypothesis lacks information for target
token emission. The information for ’it’ drops to 3.67 upon decoding ’the’.

Multipath5 An online model is trained through
random sampling of k, enabling it to operate un-
der different latency conditions with just a single
model (Elbayad et al., 2020).

Wait-Info6 An online model used the attention
distribution to measure the information contained
in each token in an unsupervised manner (Zhang
et al., 2022).

SSMT7 A policy model is trained with oracle
action sequences generated from the offline model
in a supervised manner to predict READ/WRITE
decisions directly (Alinejad et al., 2021). SSMT-
distor introduces distortion by swapping READ
to WRITE or vice versa if both source and target
tokens are not the <EOS> token in the generated
action sequence, which enhances model robustness.
We used the same offline model as IQ to generate
oracle action sequences.

IQ Proposed framework in Sec. 4. As illustrated
in Figure 2, we adopted fully connected neural
networks with 3 hidden layers for both IQsrc and
IQtrg to learn the source and target information.
The dimensions of the layers were set to 512 to
match the dimensions of the Transformer. In the
encoder and decoder of the offline model, the last
hidden states of the source and target are fed into
the IQsrc and IQtrg, respectively.

5.3 Main results

In this section, we evaluate the effectiveness of
our approaches. We employ SimulEval (Ma et al.,
2020a) to provide accurate reporting of Corpus-
BLEU, via SacreBLEU (Post, 2018), for translation

5https://github.com/elbayadm/attn2d
6https://github.com/ictnlp/Wait-info
7https://github.com/sfu-natlang/Supervised-

Simultaneous-MT

quality and Average Lagging (AL) (Ma et al., 2019)
for latency. All the performance metrics reported
herein are derived using greedy decoding.

Comparison to related algorithms Figure 3
shows the performance for the En ↔ De, En ↔
Vi pairs when evaluated with our model against
the closely related previous works: SSMT that is
trained with the same oracle action sequences, and
Wait-Info that also tries to capture the amount of
information in each token. These results show that
IQ successfully improves from other related algo-
rithms, outperforming all the other algorithms ex-
cept for En→ Vi pair. While we have only varied
the threshold ϵ from 0 to 4, increasing in steps
of 0.5, it is also possible to easily adjust latency
further by setting ϵ below 0 or above 4.

Comparison to diverse baselines We also com-
pare to various online models, namely, Wait-k,
GMA, MoE Wait-k, Multipath, MMA, and Wait-
Info, represented by dashed lines in Figure 4. For
offline models with predefined policy, we select the
Wait-k and LA-n policies represented by dashed
lines, along with the learned policy from SSMT.
Our proposed framework (IQ) outperforms all base-
lines in achieving the most advantageous quality-
latency trade-off.

It can be observed that baselines employing pol-
icy on offline models tend to exceed online models
in performance. These results support the premise
that an offline model, trained with complete sen-
tences, acquires a more comprehensive context,
thereby enhancing ST capabilities. In contrast, an
online model may suffer performance setbacks due
to inadequate information learned from incomplete
sentences, as indicated by (Papi et al., 2022).

https://github.com/elbayadm/attn2d
https://github.com/ictnlp/Wait-info
https://github.com/sfu-natlang/Supervised-Simultaneous-MT
https://github.com/sfu-natlang/Supervised-Simultaneous-MT
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Figure 6: Performance comparison with different data
generation strategies on En→ De.

6 Analysis

We conducted additional experiments and analyses
to better understand how our method works and
show improvements. All analyses are based on
either the IWSLT14 De→En test set or IWSLT14
En→De test set.

6.1 Impact of dataset generation strategies
We examined several different strategies for gener-
ating oracle action sequences:

1) Base The main strategy used in main experi-
ments. It does not generate more action sequences
after reading all source tokens.

2) Distortion The data distortion method from
SSMT that detailed in Sec 5.3.

3) Complete Strategy including all the WRITE
decisions after reading all source tokens.

The results are shown in Figure 6. Overall, our
proposed IQ framework shows robust performance
over a set of different oracle action generation
strategies. It can be noted that the distortion strat-
egy additionally proposed by (Alinejad et al., 2021)
is unnecessary for our framework. Excluding a se-
ries of WRITE actions at the end slightly improves
the performance of our framework, presumably due
to the removal of unnecessary regularization from
additional Linfo.

6.2 Differences across various α
To demonstrate the effects of varying the coeffi-
cient α, we conducted experiments by varying α
from 0.1 to 0.5 in steps of 0.1. As can be observed
in Figure 7, at lower latency, a coefficient of 0.3 de-
livers the best performance, while at higher latency,
the performances appear to be similar. This also
underscores that our method exhibits robustness to
variations in α.
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Figure 7: Performance comparison with varying param-
eter α on De→ En.

2 3 4 5 6 7

Average Lagging(AL)

28

30

32

34

B
L
E

U
Lviol

L1

L2

L3

L4

Figure 8: Performance comparison with varying loss
functions on De→ En.

6.3 Analysis of violation loss

Additionally, we conducted training with various
versions of Lviol. To ensure our objective remained
unaffected, we tested three additional different
loss functions. L1 is our original loss function
in Eq. (5), and L2, L3, L4 is defined as follows:

L2 = max(viol(x,y), 0)

L3 = max(viol(x,y), 0)− β ·min(viol(x,y), 0)

L4 =

{
viol(x,y) if viol(x,y) ≥ 0

exp(viol(x,y))− 1 otherwise

While L2 most directly resembles the idea of
our original objective of Eq. (4), we opted for the
square of L2 to enhance training efficiency. On the
other hand, L3 and L4 are the variants that keep
minimizing viol(x,y) even when it is negative, but
with a slower rate. The test results, shown in Figure
8, show no substantial differences, also confirming
that our method is robust to variations in the loss
function.
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gies to avoid degenerate solution on De→ En.
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Figure 10: Train performances of SSMT and IQ, show-
ing the improved generalization ability of IQ.

6.4 Importance of Linfo
In Sec 4.2, we introduced an auxiliary loss Linfo to
ensure that IQ does not converge to the degenerate
solution where all the information of tokens is zero.
However, such an auxiliary loss can be designed in
many different ways, and we conducted additional
experiments to see the effectiveness of proposed
Linfo. We compare the following three different
strategies:

Lower bounding information In this strategy,
we applied 1+softplus activation only to IQsrc net-
work to lower bound the source token’s informa-
tion to 1. While it has another degenerate solution
where all tokens’ information is 1, it is much harder
to converge to it. We denote this strategy as LBI in
Figure 9.

Equating length independently Similar to
(Zhang et al., 2022), we used the following auxil-
iary loss in this strategy:

Lavg = ∥Infosrc(x)− η∥2 + ∥Infotrg(y)− η∥2

where η = n+m
2 . With Lavg, we are trying to

equate the amount of information of source sen-
tences and the amount of information of target sen-
tences to the half number of all tokens. Unlike

Linfo, this loss strongly suppresses the expressiv-
ity of the framework as we increase α since we
make decisions based on the difference between
Infosrc and Infotrg.

Encouraging margins In this strategy, to not sup-
press the expressivity of the framework and avoid
degenerate solution at the same time, we aim to
encourage gaps between the amounts of informa-
tion of source/target sentences, making the deci-
sions clearer. To this end, we define Lgap in such
a way as to make the difference between Infosrc

and Infotrg larger than a constant value. We de-
noted this new definition as Lgap, which can be
formulated as follows:

Lgap = max(c− Infogap(x,y), 0),

where c is the constant that defines the desired gap,
and

Infogap(x,y) = ∥Infotrg(y)− Infosrc(x)∥2.

The test results are shown in Figure 9. While
different strategies are showing comparable per-
formance to each other (considering both BLEU
and AL), the proposed alternative strategies are
mostly either having very low-quality translation
with small AL or fully offline translation with
high AL. It demonstrates that using Linfo not only
avoids degenerate solution but also stabilizes the
scale of differences between Infosrc and Infotrg

unlike other methods, such that the quality-latency
trade-off is controllable with ϵ.

6.5 Generalization ability
Lastly, we demonstrate the improvement of the
generalization ability of our framework. We uti-
lize a sample of 6K instances from the training
set and additionally compare the performance of
SSMT and IQ. The results presented in Figure 10
indicate that SSMT, which trains a READ/WRITE
policy directly from oracle action sequences, per-
forms on par with IQ on the training set, unlike
the test set performances. As we observed in the
main experiments, SSMT shows relatively lower
test performances compared to IQ, implying that
IQ less over-fits and possesses better generalization
ability due to the clever design of the framework.

7 Conclusion

In this paper, we introduced a novel framework of
training and inferencing with Information Quan-
tifier (IQ) for Simultaneous Translation (ST) by
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using oracle action sequences. We demonstrated
that IQ exhibits high performance despite its sim-
plicity and flexibility, being able to adapt to various
latency regimes with a single model.

Limitations

We employed the strategy of accepting WRITE ac-
tions when the online decoding token is the same as
the offline decoding token as suggested by SSMT to
generate oracle action sequences. While we demon-
strated IQ framework is more robust to different
action sequence generations compared to SSMT,
degradation of performance is inevitable when the
given action sequences are far from optimal. Since
obtaining optimal action sequences is expensive in
many cases, the proposed framework will be hard
to apply when the oracle action sequence genera-
tion heuristics suggested by SSMT do not perform
well.
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