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Abstract

Self-supervised Language Modelling (LM) ob-
jectives —like BERT masked LM— have be-
come the default choice for pretraining lan-
guage models. TOken Reordering (TOR) pre-
training objectives, beyond token prediction1,
have not been extensively studied yet. In this
work, we explore challenges that underlie the
development and usefulness of such objectives
on downstream language tasks. In particular,
we design a novel TOR pretraining objective
which predicts whether two tokens are adjacent
or not given a partial bag-of-tokens input. In ad-
dition, we investigate the usefulness of Graph
Isomorphism Network (GIN), when placed on
top of the BERT encoder, in order to enhance
the overall model ability to leverage topolog-
ical signal from the encoded representations.
We compare language understanding abilities
of TOR to the one of MLM on word-order sen-
sitive (e.g. Dependency Parsing) and insensi-
tive (e.g. text classification) tasks in both full
training and few-shot settings. Our results in-
dicate that TOR is competitive to MLM on the
GLUE language understanding benchmark, and
slightly superior on syntax-dependent datasets,
especially in the few-shot setting.

1 Introduction

Pretraining with self-supervised language mod-
elling objectives (Devlin et al., 2019; Radford et al.,
2019; Yang et al., 2019; Clark et al., 2019; Song
et al., 2019) has become indispensable for state-
of-the-art performances on Natural Language Un-
derstanding (NLU) benchmarks (Rajpurkar et al.,
2018; Wang et al., 2018, 2019a; Hu et al., 2020).
Identifying the mechanisms those models use for
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1The term point to objectives that project the last layer
representation to vocabulary space in order to output tokens
(e.g. MLM, casual LM, or the one of T5).

task solving gained prominence (Tenney et al.,
2019; Goldberg, 2019; Kulmizev and Nivre, 2021;
Kazemnejad et al., 2023). Such works attempted to
shed light on whether Pretrained Language Mod-
els (PLMs) (Liu et al., 2019; Brown et al., 2020a;
Conneau et al., 2020; Raffel et al., 2019) learn to en-
code language through appropriate inductive biases
that align with the human understanding of syntax
in languages. Models not demonstrating this behav-
ior suggest that existing pretraining objectives (like
MLM (Devlin et al., 2019) and its variants) may
not be sufficient at encoding the essential aspects of
syntax that potentially guide language understand-
ing (Sinha et al., 2021a,b; Alajrami and Aletras,
2022).

Figure 1: Illustration of input and target of the MLM
(left) and TOR (right) pretraining objectives. Green
solid and yellow dotted boxes indicate token and po-
sition indexes respectively. x[M ] and p[M ] indicate a
randomly masked token and position respectively, while
transparent targets are ignored during loss calculation.
The target of TOR is a matrix that point to neighbor
token at distance k (+1 in this example).

Order of tokens being an essential artifact to cap-
ture syntactic cues, we propose TOken Reordering
(TOR), a novel self-supervised task that boosts
the awareness to word-order in models. Figure 1
shows the difference between MLM (Devlin et al.,
2019) and TOR objectives, where in pretraining
with MLM some input tokens are masked and the
model is tasked with predicting the masked tokens.
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In TOR, token-order information is removed2 from
the input sequence, and a model is tasked to pre-
dict the neighbor token-to-token positional rela-
tions. We further investigate the utility of a novel
structure-aware architecture that consists in end-to-
end pretraining of a Graph Isomorphism Network
(GIN) model (Xu et al., 2018) placed on top of the
BERT encoder (Devlin et al., 2019).

As some NLU tasks may not always require
strong syntactic understanding (Glavaš and Vulić,
2021; Kulmizev and Nivre, 2021; Haidar et al.,
2021), we conduct a thorough empirical analy-
sis on both word-order insensitive tasks from the
GLUE (Wang et al., 2018) benchmark, as well as
syntax-sensitive ones, namely Dependency Parsing
(DP) (Kübler et al., 2009).

Our study shows that learning representations
with an order reconstruction objective is highly ef-
fective only when the input sequence is partially
(compared to fully) shuffled. Second, pretraining
with TOR leads to competitive performances on
order insensitive tasks compared with MLM, and
superior performance on order sensitive ones espe-
cially in the few-shot setting. Third, BERT trained
with TOR shows better sensitivity to absence of
word-order information than BERT-MLM, thereby
being a potential method to alleviate some of the
concerns raised on PLM’s syntax understanding.
Yet, we find that with enough labelled data, TOR
have hardly any additional value, which is consis-
tent with other task-specific objectives (Ram et al.,
2021; Jia et al., 2022).

2 Related Work

Language Modelling objectives such as BERT’s
masked language modelling (Devlin et al., 2019),
XL-NET’s permutation language modelling (Yang
et al., 2019), GPT next word prediction (Rad-
ford et al., 2018), as well as auto-regressive se-
quence denoising ones of BART (Lewis et al.,
2019) and MASS (Song et al., 2019) are popu-
lar self-supervised representation learning routines
used in NLU tasks. Learning contextual word rep-
resentations is grounded in linguistics (Culbertson
and Adger, 2014; Futrell et al., 2020) and psy-
cholinguistics (Hale, 2017; Mollica et al., 2020)
literature that supports that the natural order of
words helps humans better capturing semantic in-
formation. Mollica et al. (2020) in their studies
with humans found that local ordering of words

2Through the removal of spatial (positional) information.

when preserved eased comprehension when small
perturbations affected word-order in the input text.

Despite large data and sophisticated inductive
biases, PLMs seem to not quite understand the
language like humans do (O’Connor and Andreas,
2021). Recent studies (Sinha et al., 2021b; Gupta
et al., 2021; Pham et al., 2020) show that large
language models are insensitive to word-order.
These works measure the sensitivity of PLMs to
task performance when a language model is pre-
trained (Sinha et al., 2021a; Alajrami and Aletras,
2022) or fine-tuned (Sinha et al., 2021b; Hessel and
Schofield, 2021) with text sequences with deleted
or shuffled tokens. Notably, (Abdou et al., 2022;
Clouâtre et al., 2022) demonstrate that PLMs are in-
sensitive to word-order information suggesting fur-
ther that language modeling objectives alone may
not be sufficient to encode the essential aspects of
syntactic abstraction of language understanding.

Exploring alternative pretraining objectives,
such as linguistically (e.g. character, part of speech)
informed (Yamaguchi et al., 2021), task-specific
(e.g. question answering) (Ram et al., 2021; Jia
et al., 2022), and word-order aware ones (Raffel
et al., 2019; Wang et al., 2019b) has been gain-
ing attention lately. With that, exploring induc-
tive biases that better capture such objectives too
has been gaining attention. Among such inductive
biases, Graph Neural Network (GNN) (Scarselli
et al., 2008) has become popular due to their con-
ventional use of structure prediction tasks that in-
volve entities and relations, which also aligns with
syntactic tasks such as parsing (Ji et al., 2019), or-
dering or tagging (Zhu et al., 2021; Zhang et al.,
2021). Also, Yasunaga et al. (2021) use GNNs
in pretraining language models for the Question
Answering task.

The proposed TOR objective is different along
two major aspects when compared with its relevant
counterparts. First, it uses a partial bag-of-words
representation of input sequence compared to full
(T5 (Raffel et al., 2019) deshuffling objective) or
trigram window (StructBERT (Wang et al., 2019b)
word structural objective) tokens shuffling. Sec-
ond, TOR uses a pairwise token-to-token relation
to represent the output target, compared to project-
ing hidden representations to the token vocabulary
space unlike deshuffling and word structural. Fur-
ther, using the tokens in the input to re-order instead
of predicting over the entire vocabulary provides
significant computational gains over the other ob-
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jectives; with TOR, we could fit a batch size which
is 33% larger than token prediction objectives like
MLM.

3 TOR

We formulate a new pre-training task for self-
supervised representation learning for NLU by
proposing TOR, a TOken Reordering objective.
We describe the input representations and target
design in §3.1 and §3.2 respectively, and the main
details of our proposed BERT+GIN model and the
motivations behind it in §3.3.

3.1 Model Input

For a given pretraining token sequence
X={x1, x2, . . . , xn} of length n, let
P=[0, 1, . . . , n−1] ∈ Nn be the absolute po-
sition index of X . First, we generate a random
binary vector P ′ = [p′1, p

′
2, . . . , p

′
n], where 1 and 0

respectively indicate if a position pi (element in P )
will be masked or not during pre-training:

p′i =

{
1 u ∼ U(0, 1) ≤ λ

0 o.w.
(1)

where λ is a threshold parameter and U(0, 1) refers
to the uniform distribution in the range [0, 1]. Then,
we update pi as follow:

pi =

{
pi p′i == 0

n o.w.

For implementation efficiency, we use an extra po-
sitional index n as a special mask index (p[M ] in
Figure 1). Also, we define F ∈ Nn where fi is the
frequency count of xi in X . For instance, if the
same token occurs three times in X at positions
i, j, k, then fi, fj , and fk would equal to 0, 1 and 2
respectively. F is crucial to distinguish between the
representations of same tokens when their positions
are masked. Finally, we obtain a continuous vector
representation of the input sequence as follow:

Hs = EX(X) + EP (P ) + EF (F ) (2)

EX(·), EP (·), EF (·) are embedding lookup
functions that are parameterized by WX ∈ Rv×d,
WP ∈ R(n+1)×d, WF ∈ Rn×d respectively, where
d and v are the hidden dimension and vocabulary
size, respectively. The sum of the resultant vectors
Hs ∈ Rn×d is used as input representation of the

encoder described in §3.3. P ′ and F are dynam-
ically generated using highly efficient vectorized
operations on GPU, thus adding no computational
overhead during pretraining. Also, it is important
to mention that TOR, and MLM can be coupled.
However, when pre-training with both objectives,
we avoid masking positions P [i−1:i+1] if the to-
ken xi is masked by MLM (xi ← x[M ]).

3.2 Model Output

Given Hf=[hf
1 ,h

f
2 , . . . ,h

f
n]

T ∈ Rn×d, a sequence
of representation vectors output by an encoder mod-
ule (§3.3), we apply a normalized version of a self-
attention operator to Hf in order to obtain the out-
put matrix O ∈ Rn×n:

O = Softmax(HfWQWKHf T ) (3)

WQ, WK ∈ Rd×d are learnable self-attention
matrices. Then, our training objective is defined as
cross-entropy between the output matrix O and the
ground-truth target matrix T :

L = −
n∑

i=1

Γ(i, i+ k)T (i) log (O[i]) (4)

where T (i) and O[i] refer to the ith row of the
T and O matrices respectively. The ground-truth
target matrix T ∈ {0, 1}n×n (TARGET matrix in
Figure 2) is defined based on the neighbor position
of tokens at distance k (k is a hyper-parameter):

T (i) =

{
One-Hot(i+ k, n), 0 ≤ i+ k < n

0 ∈ Rn, o.w.
(5)

It generates an n dimensional one-hot row vector
at index i+ k when possible and generates a zero
vector otherwise, k is a hyper-parameter which
we set to +1 in this work. Note that we don't
compute loss at position i, if both pi and pi+k are
not masked:

Γ[i, j] =

{
0, (p′i & p′j) == 0

1, o.w.
(6)

3.3 Encoder

In this section, we investigate two encoder archi-
tectures that take Hs as input, and output Hf .
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Figure 2: Illustration of our GIN encoder placed on top of BERT output during pretraining. Circled numbers are
per-token hidden states, while gray and cyan indicate masked and unmasked input positions (same example of
Figure 1) respectively. Bold underscored entries indicate that values were overwritten by the edge masking function
EM(., .) of equation 8. Solid and dotted arrows indicate overwritten and predicted arc weights respectively, while
the opacity level of arcs reflect its value in the adjacency matrix. w is the windows size, Hb and Hg are BERT and
GIN output hidden states respectively. HG1

, and HG2

, HG4

are hidden output of GINs G1, G2, and G4 respectively.⊕
is concatenation and transparent target lines are ignored during loss calculation.

3.3.1 BERT
We pass Hs to a b−layer BERT encoder to ob-
tain a sequence of hidden representations Hb =
[hb

1,h
b
2, ...,h

b
n]

T ∈ Rn×d. We set Hf ← Hb in
Equation 3 to compute L when this encoder is used
for pretraining.

3.3.2 BERT+GIN
This encoder contains several GIN modules (as de-
picted in Figure 2) that are layered over the BERT

output to refine Hb. We constrain the input of the
graphs by explicitly injecting known neighbors in-
formation (Γ(i, j) == 0), in a context window w,
as a form of golden links that overwrite the pre-
dicted ones. For each window size w, we define a
GIN module Gw which takes as input BERT hidden
representations Hb and an adjacency matrix AGw

and produces HGw
= [hGw

1 ,hGw

2 , . . . ,hGw

n ]T ∈
Rn×d as follows:

HGw
= Gw(Hb,AGw

) (7)

We obtain the adjacency matrix Aw by passing
Hb to a self-attention function followed by an edge
masking EM(·, ·) operator:

AGw
= EM

(
Sigmoid(HbW Gw

Q W Gw

K

T
HbT );w

)

EM(aij ;w) =


0, i == j

1, C(i, j) & j ∈ ]i, i+ w]

0, C(i, j) & j /∈ ]i, i+ w]

aij , o.w.

(8)

where C(i, j) = Γ(i, j) == 0, indicates
whether the input positions of node i and j are
not masked, and WGw

Q , WGw

K , ∈ Rd×d are learn-
able parameters. Concretely, Gw consists of Lw

Multi Layer Perceptron (MLP) (Ramchoun et al.,
2016) which updates the representation of a node
hG

w

i at the lth layer:

h
(l+1)
i = MLP

( (
1 + ε(l)

)
hl−1
i +

∑
j∈Ni

h
(l−1)
j

)
(9)

we wrote hG
w(l)

i as h
(l)
i in Equation 9 for sim-

plicity, h(0)
i ← hb

i , ε(·) are hyper-parameters, and

h
(l)
i refers to the ith node representation at the
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lth layer within the GIN Gw. Ni is the set of
all neighbor nodes of the ith node obtained from
AGw

. Finally, we concatenate all HGw
and feed

them to a FFNN layer in order to obtain a sin-
gle hidden representation of all the GIN encoders
Hg = [hg

1,h
g
2, . . . ,h

g
n]

T ∈ Rn×d. The number of
GIN modules, and their corresponding layers and
window sizes are hyper-parameters. During pre-
training with the BERT+GIN, we set Hf ← Hg

in Equation 3 for TOR loss computation.

3.3.3 Motivation behind BERT+GIN
GINs, a special family of GNNs, are characterized
by their ability to leverage topological signals from
an adjacency matrix in order to capture and fuse
information from both local and global neighbor
nodes (Chen et al., 2019; Zhu et al., 2021). We find
GIN's sparsity characteristic to align with the induc-
tive biases required to support the TOR task. Fur-
ther, it is important to mention that we discard the
GIN encoder and only use the BERT representation
when fine-tuning models trained with TOR. Since
we deactivate TOR during fine tuning, the edge of
Aw will be fully masked by EM(·, ·). Therefore,
each node will only have access to its immediate
neighbors, which is not suitable for downstream
tasks. However, we empirically found that explic-
itly injecting known neighbor edges over disjoint
w-hops is beneficial for pretraining. It allows us to
generate multiple views of the same graph. Since
the GIN encoders are disjoint, this enforces the
BERT intermediate representations to be compre-
hensive in order to successfully solve the task.

4 Experiments

4.1 Baselines

We conduct experiments on 4 configurations in
order to compare between models pretrained with
MLM and TOR objectives. All models use the
BERT-base configuration of Devlin et al. (2019)
(d=768; b=12) as the encoder. BERT-M, BERT-
T, and BERT-MT are models with BERT encoder
of §3.3.1 pretrained with MLM only, TOR only,
and both MLM and TOR objectives respectively.
BERT+GIN-Ts use the encoder of §3.3.2 where
TOR is the only used pretraining objective.

4.2 Implementation Details

Due to limited computational resources, we define
an experimental pretraining protocol similar to the
one of Yamaguchi et al. (2021). It consists in pre-

training our four baseline models from scratch on 8
V100 GPUs during a maximum of 5 days each with
the BERT-base configuration (Devlin et al., 2019).
The pretraining configurations and implementation
details are listed in Appendix A.1. On the fine tun-
ing side, we conduct extensive experiments on 8
GLUE (Wang et al., 2018) text classification tasks,
and 6 Dependency Parsing (DP) datasets. When
referring to a score, GLUE and DP indicate the
unweighted average scores over benchmark respec-
tive tasks. A detailed description of the datasets,
evaluation metrics, and fine tuning implementation
details are available in Appendix A.3, A.2.

4.3 Results Integrity

Table 1 shows the average GLUE score of the
original BERT-base of Devlin et al. (2019) (BERT-
ORG), the MLM model re-implementation of Ya-
maguchi et al. (2021) (BERT-5D8G), as well as
our BERT-M and BERT-T models. The last three
models are all pretrained during 5 days on 8 V 100
GPUs.

Model GLUE Model GLUE

BERT-ORG 82.9 BERT-M 81.6
BERT-5D8G 77.6 BERT-T 79.4

Table 1: Average GLUE dev scores of MLM models of
(Devlin et al., 2019) (BERT-ORG), (Yamaguchi et al.,
2021) (BERT-5D8G), our re-implementation (BERT-
M), as well as our BERT-T model.

BERT-M is only 1.3% behind BERT-ORG,
while significantly outperforming BERT-5D8G by
4 points, despite using the same computational bud-
get. This is because we are able to fit a larger batch
size (270) on a single GPU compared to the latter
work (32). The above figures confirms the valid-
ity of our pretraining settings, and subsequently
the reliability of our end-task results. It is worth
mentioning that BERT-T (79.4) is not only outper-
forming the MLM implementation of (Yamaguchi
et al., 2021), but also their best model (79.2) pre-
trained with their the Shuffle+Random objective.

4.4 Full vs. Partial Re-order Pretraining

We highlight the importance of partial token re-
ordering by running three pretraining experiments
on the BERT-T model by varying the λ reordering
probability. Table 2 reports the average GLUE
and DP results when BERT-T is pretrained with
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Figure 3: Models performance on 3 GLUE tasks, as well as average GLUE average score across training set sizes.

different λ values. We notice that values of 0.3 and
0.5 perform similarly, therefore we used the latter
as a default to also pretrain (and report results with)
all three TOR models.

λ GLUE ∆ DP ∆

0.3 78.2 -3.4 90.2 -0.5
0.5 79.4 -2.2 90.4 -0.3
1.0 72.6 -9.0 70.5 -20.2

Table 2: Average GLUE and DP Test score when vary-
ing λ during the pretraining of BERT-T model. ∆
shows absolute performance gap with BERT-M.

Moreover, full token re-ordering (λ=1.0) per-
forms poorly on downstream tasks, 9.0% and
20.2% below BERT-M on GLUE and DP respec-
tively. Interestingly, roughly the same gap on
GLUE is reported between the deshuffling and
MLM objectives in T5 (Raffel et al., 2019) exper-
iments. This pushed the authors to prematurely
dismiss this objective in their experimental stage.
Our work demonstrates that word-order pretraining
is meaningful when performed on partially shuffled
sequences, which is one of the core features (beside
efficiency) supported by TOR.

4.5 Impact of the GIN Module

Figure 4 shows the GLUE and DP average scores
(full results are in Appendix B) of our two models
trained with the TOR objective only. We observe
that BERT+GIN-T always performs better com-
pared to BERT-T across all settings. For instance,
when using 32 and 64 examples we respectively
observe a gap of 5.9% and 5.5% on GLUE av-
eragescore, and 14.2% and 9.5% on DP average.
However, we observe that the gap steadily reduces
when more examples are added. Not shown in Fig-

ure 4, fine-tuning on the full dataset reduce the
gap to +0.5%. Since the GIN is discarded during
fine tuning (no extra parameter), it is reasonable
to conclude that pretraining GIN was a key fac-
tor in forcing BERT to encode representations that
generalize better on downstream tasks.
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Figure 4: Average GLUE (left) and DP (right) perfor-
mances of BERT-T and BERT+GIN-T models across
training set size (few shot setting).

4.6 MLM vs. TOR: Order Insensitive Tasks
Figure 3 shows few shot setting performances on
3 GLUE tasks,3 as well as the average GLUE
score for the best TOR model (BERT+GIN-T),
our MLM only model (BERT-M), as well as our
model using both MLM and TOR (BERT-MT).
We observe that BERT+GIN-T underperforms
models that use MLM (BERT-M and BERT-MT)
across all data sizes. A Similar pattern is observed

3We couldn’t put the full dataset performances in the plot
for visualization purposes (curves will collapse on each other).
We selected RTE because it shows specific results, CoLA since
with MNLI they show similar result patterns, and SST-2 as
a representative of trends observed for tasks MRPC, STS-B,
QQP, MLNI. However, the detailed performances are pre-
sented in table 4 of Appendix B.
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on MRPC, STS-B, QQP, MLNI order-insensitive
tasks. This observation was expected and is inline
with previous works (Abdou et al., 2022; Hessel
and Schofield, 2021; Sinha et al., 2021a) that state
that most of GLUE tasks can be solved by ignoring
word order.

Pretraining with both MLM and TOR improves
the overall performance of BERT-M up to cer-
tain number of fine tuning examples, especially on
RTE. On very low resource settings, we notice that
BERT-MT performs on par with BERT-M on 16
and 32 examples GLUE average, and significantly
better (55.8% vs 54.7%) on 64 examples. However,
increasing the training data size gradually demol-
ishes gains that come from pretraining with the
TOR objective. For instance, when fine tuning on
128 or more examples, BERT-M consistently out-
performs BERT-MT on SST-2 (and MRPC, STS-
B, QQP, MLNI). Note that BERT-MT has roughly
the same average score performance of BERT-M
trained with 128 examples, which is due to an un-
expected gain of 7.6% on CoLA. While on full
dataset, BERT-MT is only able to retain a gain
of 1.1% and 0.8% on CoLA and RTE respectively
compared to BERT-M. The observations suggest
that word-order pretraining objectives, like TOR,
are useful when the end task requires syntax under-
standing, and the labeled data is not abundant.

4.7 MLM vs. TOR: Order Sensitive Tasks

Nevertheless, we notice that BERT+GIN-T signif-
icantly outperforms BERT-M and BERT-MT on
CoLA (QNLI shows a similar pattern) on all few
shot settings. For instance, BERT+GIN-T reports
a gain of 3.1% and 7.9% on top of BERT-M on
32 and 128 examples respectively. CoLA, which
tests a model’s ability to predict the linguistic ac-
ceptability of sentences, presumably relies on word
order. However, BERT+GIN-T is only able to
maintain top performance on CoLA (and QNLI)
for up to 256 examples, before being outperformed
by BERT-MT on the full dataset.

The results on CoLA motivated us to evaluate on
Dependency Parsing (DP), a task that requires pre-
dicting if the head relationship exists between all
word pairs of a sentence (link prediction), and its
relation type (classification). The arcs prediction
sub-task of DP is inline with the decision making
in TOR. Figure 5 shows the LAS average score on
the test set 4 of 6 dependency parsing benchmarks

4Performances on DEV set show very similar trends.

across various training set sizes. Per dataset dev
and test performances and standard deviation statis-
tics are presented in Table 5 and 6 in Appendix B.
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Figure 5: LAS average score on test set of six depen-
dency parsing datasets across training set sizes.

First, it is important to note that our BERT-M
performance on PTB full dataset (94.7) is inline
with that of the BERT-base model of Zhou and
Zhao (2019) (95.4). Second, BERT+GIN-T sys-
tematically outperforms BERT-M and BERT-MT
across all few shot configurations. These observa-
tions were expected as dependency parsing relies
more on word-order indicative bias compared to
GLUE tasks. The results highlight the importance
of order-aware pretraining objective (e.g. TOR)
and encoder (e.g. GIN) when the task comprises
word-word relationships.

However, we observe that the gains of
BERT+GIN-T on top of BERT-M is — again —
inversely proportional to the number of fine tuning
examples. For instance, BERT+GIN-T outper-
forms BERT-M by 12.3%, 7.2% and 2.8% on 16,
32, and 64 examples respectively. Unfortunately,
training on more data (e.g. 40k PTB examples)
steadily decreases this gain.

Based on those extensive experiments, we con-
clude the following. First, pretraining with lan-
guage modelling objectives (MLM and its variants)
is vital for end task NLU performance. Second,
we highlight the importance of labelled data size
as the most critical factor for NLU performance.
For those reasons, new pretraining objectives (like
TOR) should be used as auxiliary objectives when
training a language (e.g. MLM+TOR). The contri-
bution of the novel pretraining objectives we pro-
pose become however less important when enough
fine-tuning data is available. A similar observation
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is reported in (Ram et al., 2021; Jia et al., 2022),
both proposing new pretraining objectives specif-
ically designed for the Question Answering task.
This also may partially explain why works on ex-
tremely large PLM (Brown et al., 2020b; Du et al.,
2021; Chowdhery et al., 2022) also prefer to report
results on few shot and zero shot settings.

4.8 MLM vs. TOR: Perturbation Probing

Following recent works on probing (Sinha et al.,
2021b,a; Clouâtre et al., 2022; Abdou et al., 2022),
we modify the dev set of GLUE tasks by randomly
shuffling n-grams5, and also by randomly masking
some tokens in the input sequence. Figure 6 shows
the average GLUE score of BERT-M and BERT-T
models on shuffling (left) and masking (right) per-
turbation experiments respectively. Detailed results
can be found in Table 7 and 8 in Appendix B.

1 2 3 4 5
Shuffling (N-Gram)

66

68

70

72

74

76

5040302010
Masking (%)
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Figure 6: Average dev GLUE score of n-gram shuffling
(left) and token masking (right) perturbation probing.

We observe that BERT-T outperforms BERT-M
on fully shuffled sequences (n = 1) by 2.1%. We
think that, even after fine-tuning, BERT-T has pre-
served some of its ordering ability induced by the
TOR objective. Increasing n (span-level shuffling)
reduces the gap between models, as results tend to
converge to the pattern saw on full dataset in Ta-
ble 2. Results are inline with the ones of the PLMs
probing literature (Sinha et al., 2021a; Clouâtre
et al., 2022; Abdou et al., 2022), which confirms
that PLMs are insensitive to global language struc-
ture. Expectedly, the performance of BERT-M is
significantly higher (+4.5%) compared to BERT-
T when the range of masking probability is similar
to the one that BERT-M was pretrained with (10-
20%). However, the performances of both models

5We concatenate n-grams before performing shuffling

steadily converge to the one of the random guessing
baseline, when increasing the masking probability
to high values.

4.9 Token Reordering Ability

We leverage the token ordering performance of pre-
trained BERT-T and BERT+GIN-T models by
measuring their token re-ordering abilities on raw
sentences. We do so by partially masking the ab-
solute position (as in §3.1) of GLUE and DP dev
sets input sequences using a λ={0.5, 1.0}. Then,
we measure pairwise ordering accuracy, which is
a binary score indicating if a true subsequent to-
kens pairs are correctly predicted. Table 3 shows
models average pairwise ordering accuracy (binary
score indicating if a true subsequent tokens pairs
are correctly predicted.) on 8 GLUE and 6 DP
datasets with different values of λ applied on input
sequence. Per-task detailed results are presented in
Table 9 and 10 of Appendix B.

GLUE DP
0.5 1.0 0.5 1.0

BERT-T 24% 17% 27% 24%
BERT+GIN-T 32% 19% 37% 26%

Table 3: Average pairwise ordering accuracy on 8
GLUE dev sets, where the position of input sequence
are masked a with probability λ (0.5 and 1.0).

Expectedly, BERT+GIN-T systematically out-
performs BERT-T which showcases the value of
our proposed BERT+GIN architecture. Also, it is
promising to see a positive correlation between the
token ordering and end-task performance, where
improving the first may naturally reflect as an im-
provement on the second. The overall poor perfor-
mances, especially on full re-reordering (λ = 1.0),
is not surprising since TOR is designed for repre-
sentation learning, not for text linearization (Elman,
1990). The latter is out of the scope of this paper, as
its is commonly approached with computationally
expensive search algorithms powered with a LM
scorer (De Gispert et al., 2014; Malkin et al., 2021).
For instance, the IBSB algorithm of (Malkin et al.,
2021) performs 27.8k query per sentence on aver-
age to GPT-small (Radford et al., 2018) to guide
the re-ordering heuristic.
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5 Conclusion

We revisit word-order pretraining for NLU by
proposing a novel self-supervision task (TOR),
as well as a dedicated encoder architecture. The
goal is to investigate if injecting syntactic biases
into PLM during pretraining would improves their
awareness to language structure. While experi-
ments on TOR show promises in enhancing PLM
understanding of language structure, still many
challenges remain in maintaining performances on
word order insensitive tasks. We thereby highlight
the importance of word-order pretraining objec-
tives as an interesting research direction to explore
in future.

Limitations

Ablations on pretraining hyperparameters, as well
as on GIN architecture design choices (e.g. num-
ber of layers and window sizes) may have further
enhanced the performance or provided informa-
tion on the sensitivity of the architecture to those
choices. The evaluation on syntactic tasks is done
on Dependency parsing only. Extending the experi-
ments to other syntactic tasks such as constituency
parsing or syntax diagnosing benchmarks like Syn-
taxGym (Gauthier et al., 2020) or BLiMP (Warstadt
et al., 2020) could have improved the generality of
the claims on the usefulness of word order pretrain-
ing objective.
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A Experimental Protocol

A.1 Pretraining Implementation Details
Following (Devlin et al., 2019), we use BERT-base-
uncased architecture (12 layers and model and 768
hidden size) as a backbone for all models. Also,
we use the same 32k WordPiece (Wu et al., 2016)
vocabulary and WikiBooks corpus of (Devlin et al.,
2019). More precisely, we use English Wikipedia
and BookCorpus (Zhu et al., 2015), that we obtain
from the datasets library (Lhoest et al., 2021).

Each model is pretrained on a single GPU server
that consists of 8 NVIDIA Tesla V100 cards with
32GB of memory. The pre-training code is based
on the PyTorch (Paszke et al., 2019) version of the
Transformers library (Wolf et al., 2020). We use the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate decay setting the initial learning
rate to 1e-4 with 10,000 warm-up steps.

To speed up the pretraining in our experiments,
we use mixed-precision training (Micikevicius
et al., 2018), and DeepSpeed library (Rasley et al.,
2020). In addition, we train all models on full
sequences (no padding) of 128 of length, and set
the maximum per-GPU batch size for each model,
which is 260 for MLM models and 390 otherwise.
However, all models are fairly pretrained for 35
epochs over the pretraining data. We ensure this
by setting the gradient accumulation step to 2 and
3 when the batch size is set to 390 and 260 re-
spectively. Pretraining experiments took approx-
imately take 5 days for the slowest models (ones
with MLM).

Following (Devlin et al., 2019), we use a proba-
bility of 15% when pretraining with MLM objec-
tive (BERT-M and BERT-MT models). We search
TOR probability lambda from {0.3, 0.5, 1.0} on
the BERT-T model and found 0.5 to work the best.
Therefore, we use a value of lambda = 0.5 with
to the three models using TOR. On top of BERT

encoder, the BERT+GIN-T model uses three GIN
encoders with context windows w={1, 2, 4} and
Lw={2, 3, 5} number of layers respectively. ε(·) are
always set to 0, while layer numbers and window
sizes where selected empirically based trade-off
between performance a pretraining latency, which
is inspired from (Zhu et al., 2021).

A.2 Fine-Tuning Datasets
We experiment on 8 tasks from the GLUE bench-
mark (Wang et al., 2018): 2 single-sentence
(CoLA and SST-2), one regression (STS-B), and

5 sentence-pair (MRPC, RTE, QQP, QNLI, and
MNLI) classification tasks. Following prior works,
we report Pearson correlation on STS-B, Matthews
correlation on CoLA, F1 score on MRPC, and use
the accuracy otherwise. We also report the un-
weighted average sum over the 7 tasks.

For Dependency parsing, we evaluate models
on the well established English Penn Treebank
(PTB) (De Marneffe and Manning, 2008) corpus
using the train/dev/test split of (Chen and Man-
ning, 2014). Also, we run experiments on 5 Uni-
versal Dependency (McDonald et al., 2013) cor-
pora: EWT (Silveira et al., 2014), PARTUT (San-
guinetti and Bosco, 2015), GUM (Zeldes, 2017),
LINES (Ahrenberg, 2007), and ATIS7. We report
the Labeled Attachment Score (LAS) score (Nivre
and Fang, 2017) for each corpus, as well as the un-
weighted average sum over the six corpora. Each
DP corpus is already have its default train/dev/test
splits.

A.3 Fine-Tuning Implementation Details
Following (Devlin et al., 2019), we use the repre-
sentation of the [CLS] token of the last layer as
input for GLUE classification tasks. For depen-
dency parsing, we first use the last layer represen-
tation of the first sub-token of each word as input
for Biaffine classifier (Dozat and Manning, 2016),
which in turn generates the arcs and relation types
between words. Then, we use greedy decoding to
get the final dependency parsing tree.

For full dataset experiments, we set the batch
size to 32, learning rate to 2e-5, and the dropout
rate of 0.1. We train all models under all settings
for a maximum of 20 epochs and use early stopping.
We report the average and standards deviation over
5 runs with different random seed.

We simulate a low resource setting for both
GLUE and Dependency Parsing by randomly sam-
pling tiny subsets of {16, 32, 64, 128, 256} exam-
ples of the training data. We report the average and
standard deviation of 5 randomly selected folds.
We use a batch size of 1 when training on low re-
source setting, as we find it to systematically work
the best across all models.

B Results

7https://github.com/UniversalDependencies/UD_
English-ATIS

https://github.com/UniversalDependencies/UD_English-ATIS
https://github.com/UniversalDependencies/UD_English-ATIS
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

16 Examples

BERT-M 6.6±1.4 66.2±0.9 55.9±0.5 57.1±1.8 33.5±1.5 34.2±0.1 57.3±0.4 55.7±0.6 45.9±0.7
BERT-MT 9.0±1.8 64.0±0.8 56.2±0.8 56.6±1.4 31.6±0.0 35.1±0.3 59.7±0.8 55.7±0.1 46.0±0.6
BERT-T 6.9±0.4 56.6±0.4 55.5±0.5 37.2±2.8 42.6±5.4 34.4±0.4 59.1±0.4 56.2±0.3 43.1±1.4
BERT+GIN-T 9.1±0.9 59.5±1.2 56.1±1.0 51.4±3.3 31.6±0.1 34.6±0.1 62.0±1.1 56.4±0.3 45.1±1.1

32 Examples

BERT-M 7.0±0.2 69.8±0.3 59.1±0.2 67.3±0.8 59.6±0.3 39.3±0.3 60.5±0.3 57.0±0.2 52.5±0.5
BERT-MT 9.5±0.9 69.1±0.3 60.7±0.9 68.3±0.5 55.5±1.5 38.8±0.2 59.7±0.6 58.2±1.1 52.6±0.8
BERT-T 8.4±0.8 57.0±2.5 59.8±0.9 45.8±6.1 40.0±5.1 35.4±0.1 61.4±0.5 55.8±0.7 45.5±2.1
BERT+GIN-T 10.1±1.4 62.1±0.7 57.4±1.2 68.5±0.7 51.1±4.7 36.3±0.5 66.0±1.1 56.8±1.1 51.4±1.3

64 Examples

BERT-M 9.8±1.7 77.0±0.6 58.0±0.7 68.6±0.7 63.2±0.9 40.6±0.4 63.3±1.1 57.0±0.5 54.7±0.8
BERT-MT 12.0±2.0 73.7±0.3 61.4±0.8 72.8±0.2 62.2±0.9 41.6±0.3 64.1±0.7 58.8±0.4 55.8±0.7
BERT-T 9.3±0.3 58.2±1.4 60.5±1.3 53.9±7.0 50.5±4.2 35.5±0.0 62.7±0.8 56.6±1.1 48.4±2.0
BERT+GIN-T 12.2±0.5 66.7±1.1 58.7±0.9 70.4±1.1 60.2±0.2 35.5±0.5 69.3±1.0 57.0±0.5 53.7±0.8

128 Examples

BERT-M 11.1±0.9 81.4±0.0 62.1±0.2 74.8±0.3 68.0±0.2 43.3±0.2 72.3±0.5 59.1±0.6 59.0±0.4
BERT-MT 18.7±2.9 78.4±0.7 62.2±0.6 73.4±0.5 65.1±0.5 44.2±0.3 69.8±0.3 60.9±0.6 59.1±0.8
BERT-T 13.7±0.8 68.9±0.9 61.9±0.4 71.5±0.8 64.3±0.7 38.0±0.6 71.0±0.7 58.2±0.7 55.9±0.7
BERT+GIN-T 19.0±2.1 73.1±0.5 61.3±0.3 73.0±1.5 66.1±0.3 41.0±0.3 74.7±0.4 59.3±0.7 58.4±0.8

256 Examples

BERT-M 13.0±1.2 84.0±0.3 68.4±0.3 76.0±1.4 71.6±0.2 52.3±0.5 75.9±0.4 60.0±0.6 62.6±0.6
BERT-MT 20.8±2.1 81.0±0.3 69.5±1.0 72.3±1.6 70.4±0.3 50.0±0.4 74.1±0.3 64.8±1.2 63.2±0.8
BERT-T 15.3±2.5 73.1±0.9 67.8±0.9 71.2±2.1 67.1±0.1 43.4±0.5 75.6±0.4 60.7±0.2 59.0±0.9
BERT+GIN-T 24.5±1.0 77.0±0.4 68.1±0.9 71.6±1.4 69.1±0.4 44.2±0.3 76.1±0.3 61.0±0.4 61.0±0.8

All Examples

BERT-M 57.3±0.5 91.3±0.1 84.5±0.4 88.3±0.1 89.3±0.0 83.2±0.1 90.3±0.1 69.0±0.7 81.6±0.2
BERT-MT 58.4±0.9 90.8±0.3 83.3±0.4 86.9±0.1 89.1±0.1 82.5±0.1 89.7±0.1 69.8±1.3 81.3±0.4
BERT-T 56.1±1.3 88.5±0.3 80.0±0.7 86.1±0.1 88.7±0.0 81.2±0.1 89.3±0.1 65.1±1.0 79.4±1.6
BERT+GIN-T 56.3±0.6 89.2±0.1 80.8±0.4 87.6±0.1 89.2±0.0 81.7±0.1 89.6±0.1 65.1±0.7 79.9±0.3
BERT-ORG 59.5 93.1 86.7 88.4 91.0 84.6 91.5 68.2 82.9
BERT-5D8G 49.6 89.6 81.6 84.7 85.9 80.1 88.2 61.4 77.6

Table 4: Dev GLUE performances across training set sizes. BERT-ORG and BERT-5D8G respectively refer to the
original BERT-base model of (Devlin et al., 2019) and to the MLM one of (Yamaguchi et al., 2021) pretrained
during 5 days with 8 GPUs.
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Model PTB EWT PARTUT ATIS GUM LINES Avg.

16 Examples

BERT-M 45.1±0.8 33.4±1.2 41.7±1.5 65.6±1.6 31.2±2.1 34.4±0.8 41.9±1.3
BERT-MT 48.6±0.8 33.7±1.7 45.2±1.2 65.6±1.5 32.6±2.5 37.6±0.9 43.9±1.4
BERT-T 36.9±1.0 24.1±1.0 34.7±1.3 56.5±2.6 22.3±1.9 28.8±1.0 33.9±1.5
BERT+GIN-T 56.2±0.8 46.8±0.9 55.0±0.9 69.4±1.5 47.1±2.4 49.5±0.6 54.0±1.2

32 Examples

BERT-M 61.7±1.4 48.1±0.4 59.9±0.5 74.7±0.6 49.5±1.5 50.2±0.9 57.3±0.9
BERT-MT 63.6±1.1 49.4±0.8 62.6±0.7 74.5±0.6 52.1±1.4 52.6±0.9 59.1±0.9
BERT-T 54.1±1.2 40.5±1.0 52.6±0.6 69.0±0.6 41.4±1.5 44.0±1.1 50.3±1.0
BERT+GIN-T 66.5±1.0 58.1±0.5 65.5±0.7 77.6±0.7 60.2±1.0 59.4±0.4 64.5±0.7

64 Examples

BERT-M 73.8±0.7 61.4±0.4 73.8±0.5 79.9±0.6 64.3±1.0 62.8±0.6 69.3±0.6
BERT-MT 74.5±0.4 62.0±0.7 74.8±0.7 79.7±0.5 65.6±0.8 64.0±0.3 70.1±0.6
BERT-T 68.2±0.6 55.6±0.9 67.3±0.9 77.0±0.3 57.4±0.8 57.6±0.3 63.8±0.6
BERT+GIN-T 74.7±0.4 66.4±0.5 75.1±0.7 81.0±0.5 69.2±0.4 67.1±0.4 72.3±0.5

128 Examples

BERT-M 80.5±0.4 71.8±0.5 80.8±0.5 82.9±0.4 74.0±0.8 71.7±0.3 77.0±0.4
BERT-MT 80.4±0.3 72.0±0.3 81.1±0.3 82.9±0.2 74.3±0.5 71.4±0.2 77.0±0.3
BERT-T 76.7±0.3 67.1±0.2 76.9±0.2 81.8±0.2 69.1±0.7 66.6±0.3 73.0±0.3
BERT+GIN-T 80.4±0.3 73.6±0.3 80.3±0.4 84.1±0.2 75.8±0.4 72.9±0.3 77.8±0.3

256 Examples

BERT-M 85.2±0.1 78.1±0.3 84.0±0.4 85.2±0.3 80.3±0.2 77.5±0.3 81.7±0.3
BERT-MT 85.2±0.2 78.1±0.2 84.8±0.3 84.9±0.2 80.6±0.2 77.4±0.2 81.8±0.2
BERT-T 82.9±0.2 74.0±0.4 82.6±0.1 83.7±0.1 77.3±0.2 74.2±0.2 79.1±0.2
BERT+GIN-T 84.8±0.2 78.4±0.2 84.1±0.1 85.9±0.2 80.9±0.2 77.7±0.2 82.0±0.2

Full Dataset Examples

BERT-M 94.2±0.0 90.6±0.0 89.3±0.1 89.8±0.1 91.3±0.0 86.4±0.1 90.3±0.1
BERT-T 94.0±0.0 90.1±0.0 88.3±0.2 89.6±0.1 90.9±0.0 86.2±0.1 89.9±0.1
BERT-MT 94.2±0.0 90.8±0.0 89.6±0.1 89.8±0.1 91.5±0.0 87.2±0.0 90.5±0.1
BERT+GIN-T 94.1±0.0 90.8±0.0 89.4±0.1 90.0±0.1 91.6±0.0 87.2±0.1 90.5±0.1

Table 5: Average Dev performance LAS across 5 dependency parsing datasets and training set sizes.
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Model PTB EWT PARTUT ATIS GUM LINES Avg.

16 Examples

BERT-M 45.0±0.8 33.8±1.4 42.6±0.9 65.8±1.4 32.4±1.9 36.0±0.7 42.6±1.2
BERT-MT 48.5±0.7 34.2±1.8 46.8±1.6 65.7±1.5 34.2±2.3 39.1±0.8 44.7±1.5
BERT-T 36.9±1.0 24.5±1.1 36.6±1.1 56.4±2.7 23.4±1.9 29.6±1.1 34.6±1.5
BERT+GIN-T 56.0±0.5 46.9±1.0 57.6±1.1 69.7±1.4 48.6±2.4 50.6±0.7 54.9±1.2

32 Examples

BERT-M 61.6±1.4 48.4±0.4 61.8±0.7 76.2±0.6 50.3±1.4 52.6±0.7 58.5±0.9
BERT-MT 63.7±1.1 49.6±0.8 63.9±0.4 75.8±0.8 52.9±1.4 54.6±0.8 60.1±0.9
BERT-T 54.3±1.3 41.0±1.2 55.9±0.8 69.9±0.6 42.5±1.3 45.6±1.1 51.5±1.0
BERT+GIN-T 66.7±1.0 58.5±0.6 68.5±0.7 78.9±0.7 60.9±0.9 60.9±0.6 65.7±0.7

64 Examples

BERT-M 74.0±0.6 61.7±0.4 75.5±0.6 82.5±0.6 65.3±0.9 65.4±0.6 70.7±0.6
BERT-MT 74.8±0.3 62.1±0.8 75.4±0.7 82.1±0.6 66.5±0.8 66.2±0.4 71.2±0.6
BERT-T 68.4±0.4 55.9±0.8 69.7±0.8 79.9±0.4 58.9±0.8 59.7±0.4 65.4±0.6
BERT+GIN-T 75.0±0.3 66.4±0.4 76.6±0.4 83.6±0.9 70.1±0.4 69.2±0.5 73.5±0.5

128 Examples

BERT-M 80.8±0.3 71.8±0.5 82.3±0.2 86.0±0.3 74.9±0.7 74.0±0.3 78.3±0.4
BERT-MT 80.7±0.2 71.7±0.3 81.5±0.3 85.8±0.6 75.4±0.5 73.7±0.3 78.1±0.4
BERT-T 77.2±0.2 67.3±0.3 78.5±0.5 85.3±0.3 70.4±0.7 68.9±0.5 74.6±0.4
BERT+GIN-T 80.9±0.2 73.6±0.3 81.8±0.2 87.5±0.3 77.0±0.4 74.5±0.2 79.2±0.3

256 Examples

BERT-M 85.5±0.1 78.2±0.2 85.3±0.2 88.1±0.2 81.0±0.4 79.5±0.3 82.9±0.2
BERT-MT 85.5±0.3 78.0±0.2 84.7±0.4 88.1±0.1 81.5±0.3 79.3±0.2 82.8±0.3
BERT-T 83.3±0.3 74.4±0.3 83.0±0.5 87.5±0.2 78.2±0.3 76.3±0.1 80.4±0.3
BERT+GIN-T 85.3±0.3 78.2±0.2 84.8±0.3 89.1±0.2 81.8±0.3 79.3±0.2 83.1±0.2

Full Dataset Examples

BERT-M 94.7±0.0 90.0±0.0 89.9±0.1 92.3±0.2 90.3±0.0 86.9±0.0 90.7±0.1
BERT-MT 94.7±0.0 90.4±0.0 90.2±0.2 92.3±0.1 90.7±0.0 87.3±0.0 90.9±0.1
BERT-T 94.6±0.0 89.8±0.0 89.0±0.1 92.5±0.2 89.9±0.1 86.6±0.1 90.4±0.1
BERT+GIN-T 94.7±0.0 90.4±0.0 89.8±0.1 92.6±0.2 90.8±0.0 87.3±0.0 90.9±0.1

Table 6: Average Test performance LAS across 5 dependency parsing datasets and training set sizes.
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

1-Gram Shuffle

BERT-M 1.0±1.4 81.4±0.2 66.5±0.5 86.8±0.0 83.1±0.1 69.1±0.1 81.3±0.1 52.6±0.3 65.2±0.3
BERT-MT 1.9±0.8 80.9±0.4 61.5±0.9 85.8±0.1 83.6±0.1 70.4±0.1 80.1±0.2 55.1±0.8 64.9±0.4
BERT-T 2.3±0.9 82.5±0.1 69.7±0.7 85.9±0.1 83.9±0.0 72.8±0.1 83.1±0.1 58.5±0.6 67.3±0.3
BERT+GIN-T 7.4±1.0 82.8±0.3 65.0±1.3 86.7±0.1 84.6±0.1 72.5±0.1 82.2±0.2 60.9±0.8 67.8±0.5

2-Gram Shuffle

BERT-M 20.5±1.3 84.6±0.3 69.6±0.8 87.4±0.1 86.0±0.1 74.0±0.1 83.8±0.2 53.6±0.8 69.9±0.5
BERT-MT 20.6±1.1 83.6±0.2 67.5±1.0 86.2±0.1 86.0±0.0 74.5±0.1 83.0±0.2 58.3±0.7 70.0±0.4
BERT-T 22.1±1.8 84.5±0.5 72.6±0.6 86.2±0.1 85.6±0.0 75.2±0.1 84.5±0.2 58.2±0.8 71.1±0.5
BERT+GIN-T 24.9±1.7 85.6±0.2 68.5±0.5 87.1±0.1 86.2±0.1 75.3±0.1 83.9±0.1 61.4±1.1 71.6±0.5

3-Gram Shuffle

BERT-M 33.0±1.5 85.8±0.5 71.3±1.3 87.4±0.0 86.9±0.0 76.2±0.1 85.3±0.1 58.2±0.4 73.0±0.5
BERT-MT 32.9±0.6 85.2±0.4 70.0±0.7 86.3±0.1 86.9±0.1 76.8±0.1 84.8±0.1 59.6±1.1 72.8±0.4
BERT-T 34.0±0.6 85.6±0.2 74.5±0.9 86.0±0.0 86.3±0.1 76.8±0.0 85.5±0.1 59.3±0.6 73.5±0.3
BERT+GIN-T 36.8±0.5 85.9±0.4 68.9±0.3 86.9±0.1 86.8±0.0 76.7±0.1 84.8±0.1 62.2±0.4 73.6±0.2

4-Gram Shuffle

BERT-M 40.7±1.2 87.1±0.4 72.2±0.9 87.5±0.1 87.5±0.0 78.1±0.1 86.4±0.1 60.1±1.0 74.9±0.5
BERT-MT 43.5±0.5 85.6±0.2 74.0±1.2 86.2±0.1 87.4±0.0 78.3±0.1 85.6±0.2 63.2±0.6 75.5±0.4
BERT-T 40.8±1.3 85.3±0.3 76.7±0.6 85.9±0.1 86.7±0.0 77.8±0.1 86.0±0.0 59.2±0.9 74.8±0.4
BERT+GIN-T 42.5±0.7 86.2±0.3 72.3±0.7 86.9±0.0 87.3±0.0 77.7±0.1 85.4±0.1 63.0±0.9 75.2±0.4

5-Gram Shuffle

BERT-M 46.3±0.5 87.9±0.2 73.3±0.9 87.7±0.1 88.1±0.0 79.3±0.0 87.3±0.1 60.2±0.5 76.3±0.3
BERT-MT 48.6±0.7 87.3±0.2 73.2±0.7 86.6±0.1 87.8±0.1 78.9±0.1 86.6±0.1 59.8±0.8 76.1±0.3
BERT-T 45.2±0.8 85.8±0.3 76.0±0.6 86.4±0.1 87.1±0.0 78.3±0.1 86.1±0.1 62.0±0.9 75.9±0.4
BERT+GIN-T 47.5±0.4 87.3±0.3 72.2±1.3 87.3±0.1 87.7±0.0 78.5±0.1 86.1±0.2 62.6±0.8 76.2±0.4

Table 7: Dev GLUE performances and standards deviation (we run experiments on 5 different seeds) across word
shuffling n-grams.

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

10%

BERT-M 49.0±1.7 88.4±0.3 80.8±0.3 81.4±0.5 82.2±0.1 74.2±0.1 87.7±0.2 64.0±1.6 76.0±0.6
BERT-MT 49.7±1.0 88.1±0.2 79.7±0.5 79.8±0.6 82.0±0.0 75.7±0.1 86.5±0.2 64.3±0.6 75.7±0.4
BERT-T 33.0±0.6 84.3±0.1 77.8±0.4 74.3±0.5 78.3±0.1 72.0±0.1 84.8±0.2 59.4±0.6 70.5±0.3
BERT+GIN-T 29.3±0.8 86.7±0.3 77.3±0.7 77.7±0.3 80.9±0.1 73.2±0.1 84.8±0.2 62.0±0.9 71.5±0.4

20%

BERT-M 39.3±0.7 85.5±0.6 74.0±0.8 75.3±0.6 74.4±0.1 65.4±0.3 83.8±0.1 60.3±0.7 69.8±0.5
BERT-MT 40.8±1.2 86.1±0.2 73.6±0.7 73.5±0.5 74.4±0.1 69.3±0.3 82.8±0.0 62.9±1.1 70.4±0.5
BERT-T 22.7±1.4 82.2±0.4 72.2±0.8 68.2±0.4 70.6±0.1 65.0±0.3 81.2±0.1 59.9±0.8 65.3±0.6
BERT+GIN-T 20.5±0.9 84.3±0.6 73.5±0.6 72.6±0.3 74.1±0.1 66.4±0.2 80.9±0.1 59.0±0.6 66.4±0.4

30%

BERT-M 31.4±1.3 82.4±0.4 66.4±0.5 67.9±0.6 65.6±0.1 57.7±0.1 79.4±0.2 55.1±0.6 63.2±0.5
BERT-MT 32.4±1.5 82.5±0.3 68.6±0.7 65.4±0.6 66.2±0.1 62.8±0.1 78.5±0.2 58.8±1.4 64.4±0.6
BERT-T 18.5±1.1 78.9±0.8 68.4±0.9 60.0±0.9 61.3±0.1 58.3±0.3 77.1±0.1 55.4±0.8 59.7±0.6
BERT+GIN-T 14.2±1.7 80.6±0.5 68.6±1.0 65.6±0.7 66.1±0.1 60.3±0.1 76.6±0.1 58.0±1.3 61.2±0.7

40%

BERT-M 23.9±1.1 79.0±0.5 55.9±1.0 59.5±0.2 56.9±0.0 51.3±0.1 74.0±0.2 52.4±0.5 56.6±0.5
BERT-MT 24.5±1.4 80.0±0.4 58.5±0.4 57.5±0.4 57.9±0.0 57.0±0.2 73.7±0.3 54.7±0.5 58.0±0.5
BERT-T 12.4±0.5 74.6±0.7 59.4±0.8 51.3±0.3 52.1±0.1 52.8±0.2 72.2±0.2 52.7±1.5 53.4±0.5
BERT+GIN-T 9.9±2.0 77.0±0.7 63.5±0.7 57.3±0.4 57.1±0.2 54.8±0.2 71.2±0.2 54.8±0.7 55.7±0.6

50%

BERT-M 14.5±1.2 76.3±0.3 48.6±0.7 49.6±0.7 48.4±0.0 45.9±0.2 68.5±0.2 50.6±0.3 50.3±0.5
BERT-MT 14.3±1.3 76.6±0.4 51.1±1.5 47.2±1.0 50.0±0.1 51.4±0.2 68.2±0.1 51.0±0.4 51.2±0.6
BERT-T 6.3±1.2 70.7±0.4 55.9±0.7 40.5±1.3 44.7±0.1 47.8±0.2 67.1±0.2 51.0±1.2 48.0±0.7
BERT+GIN-T 3.6±0.7 74.0±0.4 57.2±0.9 46.2±1.0 48.2±0.1 49.4±0.3 66.9±0.2 52.0±1.0 49.7±0.6

Table 8: Dev GLUE performances and standards deviation (we run experiments on 5 different seeds) across masked
sequences.
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

50%

BERT-T 27±0.22 30±0.24 24±0.12 21±0.15 23±0.15 21±0.14 22±0.12 23±0.12 24±0.2
BERT+GIN-T 39±0.29 39±0.28 34±0.16 24±0.17 26±0.16 27±0.16 30±0.15 38±0.17 32±0.2

100%

BERT-T 28±0.2 26±0.22 14±0.09 16±0.12 16±0.13 14±0.10 11±0.07 12±0.09 17±0.12
BERT+GIN-T 28±0.2 33±0.24 17±0.10 18±0.12 19±0.14 15±0.11 12±0.08 14±0.09 19±0.14

Table 9: Pairwise token order accuracy and standards deviation on GLUE dev sets. % indicate lambda value applied
on input sequences, we run experiments on 5 different seeds.

Model PTB EWT PARTUT ATIS GUM LINES Avg.

50%

BERT-T 25±0.16 27±0.22 29±0.19 27±0.21 27±0.2 27±0.2 27±0.20
BERT+GIN-T 33±0.23 35±0.26 41±0.25 38±0.27 38±0.26 38±0.26 37±0.31

100%

BERT-T 19±0.16 25±0.2 27±0.19 26±0.19 25±0.2 24±0.19 24±0.19
BERT+GIN-T 20±0.16 27±0.21 27±0.18 28±0.2 26±0.2 25±0.19 26±0.19

Table 10: Pairwise Token order accuracy and standards deviation on Dependency parsing datasets. % indicate
lambda value applied on input sequences, we run experiments on 5 different seeds.


