
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 165–182
December 6–7, 2023. ©2023 Association for Computational Linguistics

165

On the utility of enhancing BERT syntactic bias with Token Reordering
Pretraining

Yassir El Mesbahi†∗ Atif Mahmud2†∗ Abbas Ghaddar1♠∗

Mehdi Rezagholizadeh1 Philippe Langlais3 Prasanna Parthasarathi1
1 Huawei Noah’s Ark Lab

2 David R. Cheriton School of Computer Science, University of Waterloo
3 RALI/DIRO, Université de Montréal, Canada

abbas.ghaddar@huawei.com

Abstract

Self-supervised Language Modelling (LM) ob-
jectives —like BERT masked LM— have be-
come the default choice for pretraining lan-
guage models. TOken Reordering (TOR) pre-
training objectives, beyond token prediction1,
have not been extensively studied yet. In this
work, we explore challenges that underlie the
development and usefulness of such objectives
on downstream language tasks. In particular,
we design a novel TOR pretraining objective
which predicts whether two tokens are adjacent
or not given a partial bag-of-tokens input. In ad-
dition, we investigate the usefulness of Graph
Isomorphism Network (GIN), when placed on
top of the BERT encoder, in order to enhance
the overall model ability to leverage topolog-
ical signal from the encoded representations.
We compare language understanding abilities
of TOR to the one of MLM on word-order sen-
sitive (e.g. Dependency Parsing) and insensi-
tive (e.g. text classification) tasks in both full
training and few-shot settings. Our results in-
dicate that TOR is competitive to MLM on the
GLUE language understanding benchmark, and
slightly superior on syntax-dependent datasets,
especially in the few-shot setting.

1 Introduction

Pretraining with self-supervised language mod-
elling objectives (Devlin et al., 2019; Radford et al.,
2019; Yang et al., 2019; Clark et al., 2019; Song
et al., 2019) has become indispensable for state-
of-the-art performances on Natural Language Un-
derstanding (NLU) benchmarks (Rajpurkar et al.,
2018; Wang et al., 2018, 2019a; Hu et al., 2020).
Identifying the mechanisms those models use for

∗ Equal contribution. Listing order is random
†Work done while at Huawei Noah’s Ark Lab.
♠Corresponding author.

1The term point to objectives that project the last layer
representation to vocabulary space in order to output tokens
(e.g. MLM, casual LM, or the one of T5).

task solving gained prominence (Tenney et al.,
2019; Goldberg, 2019; Kulmizev and Nivre, 2021;
Kazemnejad et al., 2023). Such works attempted to
shed light on whether Pretrained Language Mod-
els (PLMs) (Liu et al., 2019; Brown et al., 2020a;
Conneau et al., 2020; Raffel et al., 2019) learn to en-
code language through appropriate inductive biases
that align with the human understanding of syntax
in languages. Models not demonstrating this behav-
ior suggest that existing pretraining objectives (like
MLM (Devlin et al., 2019) and its variants) may
not be sufficient at encoding the essential aspects of
syntax that potentially guide language understand-
ing (Sinha et al., 2021a,b; Alajrami and Aletras,
2022).

Figure 1: Illustration of input and target of the MLM
(left) and TOR (right) pretraining objectives. Green
solid and yellow dotted boxes indicate token and po-
sition indexes respectively. x[M] and p[M] indicate a
randomly masked token and position respectively, while
transparent targets are ignored during loss calculation.
The target of TOR is a matrix that point to neighbor
token at distance k (+1 in this example).

Order of tokens being an essential artifact to cap-
ture syntactic cues, we propose TOken Reordering
(TOR), a novel self-supervised task that boosts
the awareness to word-order in models. Figure 1
shows the difference between MLM (Devlin et al.,
2019) and TOR objectives, where in pretraining
with MLM some input tokens are masked and the
model is tasked with predicting the masked tokens.

166

In TOR, token-order information is removed2 from
the input sequence, and a model is tasked to pre-
dict the neighbor token-to-token positional rela-
tions. We further investigate the utility of a novel
structure-aware architecture that consists in end-to-
end pretraining of a Graph Isomorphism Network
(GIN) model (Xu et al., 2018) placed on top of the
BERT encoder (Devlin et al., 2019).

As some NLU tasks may not always require
strong syntactic understanding (Glavaš and Vulić,
2021; Kulmizev and Nivre, 2021; Haidar et al.,
2021), we conduct a thorough empirical analy-
sis on both word-order insensitive tasks from the
GLUE (Wang et al., 2018) benchmark, as well as
syntax-sensitive ones, namely Dependency Parsing
(DP) (Kübler et al., 2009).

Our study shows that learning representations
with an order reconstruction objective is highly ef-
fective only when the input sequence is partially
(compared to fully) shuffled. Second, pretraining
with TOR leads to competitive performances on
order insensitive tasks compared with MLM, and
superior performance on order sensitive ones espe-
cially in the few-shot setting. Third, BERT trained
with TOR shows better sensitivity to absence of
word-order information than BERT-MLM, thereby
being a potential method to alleviate some of the
concerns raised on PLM’s syntax understanding.
Yet, we find that with enough labelled data, TOR
have hardly any additional value, which is consis-
tent with other task-specific objectives (Ram et al.,
2021; Jia et al., 2022).

2 Related Work

Language Modelling objectives such as BERT’s
masked language modelling (Devlin et al., 2019),
XL-NET’s permutation language modelling (Yang
et al., 2019), GPT next word prediction (Rad-
ford et al., 2018), as well as auto-regressive se-
quence denoising ones of BART (Lewis et al.,
2019) and MASS (Song et al., 2019) are popu-
lar self-supervised representation learning routines
used in NLU tasks. Learning contextual word rep-
resentations is grounded in linguistics (Culbertson
and Adger, 2014; Futrell et al., 2020) and psy-
cholinguistics (Hale, 2017; Mollica et al., 2020)
literature that supports that the natural order of
words helps humans better capturing semantic in-
formation. Mollica et al. (2020) in their studies
with humans found that local ordering of words

2Through the removal of spatial (positional) information.

when preserved eased comprehension when small
perturbations affected word-order in the input text.

Despite large data and sophisticated inductive
biases, PLMs seem to not quite understand the
language like humans do (O’Connor and Andreas,
2021). Recent studies (Sinha et al., 2021b; Gupta
et al., 2021; Pham et al., 2020) show that large
language models are insensitive to word-order.
These works measure the sensitivity of PLMs to
task performance when a language model is pre-
trained (Sinha et al., 2021a; Alajrami and Aletras,
2022) or fine-tuned (Sinha et al., 2021b; Hessel and
Schofield, 2021) with text sequences with deleted
or shuffled tokens. Notably, (Abdou et al., 2022;
Clouâtre et al., 2022) demonstrate that PLMs are in-
sensitive to word-order information suggesting fur-
ther that language modeling objectives alone may
not be sufficient to encode the essential aspects of
syntactic abstraction of language understanding.

Exploring alternative pretraining objectives,
such as linguistically (e.g. character, part of speech)
informed (Yamaguchi et al., 2021), task-specific
(e.g. question answering) (Ram et al., 2021; Jia
et al., 2022), and word-order aware ones (Raffel
et al., 2019; Wang et al., 2019b) has been gain-
ing attention lately. With that, exploring induc-
tive biases that better capture such objectives too
has been gaining attention. Among such inductive
biases, Graph Neural Network (GNN) (Scarselli
et al., 2008) has become popular due to their con-
ventional use of structure prediction tasks that in-
volve entities and relations, which also aligns with
syntactic tasks such as parsing (Ji et al., 2019), or-
dering or tagging (Zhu et al., 2021; Zhang et al.,
2021). Also, Yasunaga et al. (2021) use GNNs
in pretraining language models for the Question
Answering task.

The proposed TOR objective is different along
two major aspects when compared with its relevant
counterparts. First, it uses a partial bag-of-words
representation of input sequence compared to full
(T5 (Raffel et al., 2019) deshuffling objective) or
trigram window (StructBERT (Wang et al., 2019b)
word structural objective) tokens shuffling. Sec-
ond, TOR uses a pairwise token-to-token relation
to represent the output target, compared to project-
ing hidden representations to the token vocabulary
space unlike deshuffling and word structural. Fur-
ther, using the tokens in the input to re-order instead
of predicting over the entire vocabulary provides
significant computational gains over the other ob-

167

jectives; with TOR, we could fit a batch size which
is 33% larger than token prediction objectives like
MLM.

3 TOR

We formulate a new pre-training task for self-
supervised representation learning for NLU by
proposing TOR, a TOken Reordering objective.
We describe the input representations and target
design in §3.1 and §3.2 respectively, and the main
details of our proposed BERT+GIN model and the
motivations behind it in §3.3.

3.1 Model Input

For a given pretraining token sequence
X={x1, x2, . . . , xn} of length n, let
P=[0, 1, . . . , n−1] ∈ Nn be the absolute po-
sition index of X . First, we generate a random
binary vector P ′ = [p′1, p

′
2, . . . , p

′
n], where 1 and 0

respectively indicate if a position pi (element in P)
will be masked or not during pre-training:

p′i =

{
1 u ∼ U(0, 1) ≤ λ

0 o.w.
(1)

where λ is a threshold parameter and U(0, 1) refers
to the uniform distribution in the range [0, 1]. Then,
we update pi as follow:

pi =

{
pi p′i == 0

n o.w.

For implementation efficiency, we use an extra po-
sitional index n as a special mask index (p[M] in
Figure 1). Also, we define F ∈ Nn where fi is the
frequency count of xi in X . For instance, if the
same token occurs three times in X at positions
i, j, k, then fi, fj , and fk would equal to 0, 1 and 2
respectively. F is crucial to distinguish between the
representations of same tokens when their positions
are masked. Finally, we obtain a continuous vector
representation of the input sequence as follow:

Hs = EX(X) + EP (P) + EF (F) (2)

EX(·), EP (·), EF (·) are embedding lookup
functions that are parameterized by WX ∈ Rv×d,
WP ∈ R(n+1)×d, WF ∈ Rn×d respectively, where
d and v are the hidden dimension and vocabulary
size, respectively. The sum of the resultant vectors
Hs ∈ Rn×d is used as input representation of the

encoder described in §3.3. P ′ and F are dynam-
ically generated using highly efficient vectorized
operations on GPU, thus adding no computational
overhead during pretraining. Also, it is important
to mention that TOR, and MLM can be coupled.
However, when pre-training with both objectives,
we avoid masking positions P [i−1:i+1] if the to-
ken xi is masked by MLM (xi ← x[M]).

3.2 Model Output

Given Hf=[hf
1 ,h

f
2 , . . . ,h

f
n]

T ∈ Rn×d, a sequence
of representation vectors output by an encoder mod-
ule (§3.3), we apply a normalized version of a self-
attention operator to Hf in order to obtain the out-
put matrix O ∈ Rn×n:

O = Softmax(HfWQWKHf T) (3)

WQ, WK ∈ Rd×d are learnable self-attention
matrices. Then, our training objective is defined as
cross-entropy between the output matrix O and the
ground-truth target matrix T :

L = −
n∑

i=1

Γ(i, i+ k)T (i) log (O[i]) (4)

where T (i) and O[i] refer to the ith row of the
T and O matrices respectively. The ground-truth
target matrix T ∈ {0, 1}n×n (TARGET matrix in
Figure 2) is defined based on the neighbor position
of tokens at distance k (k is a hyper-parameter):

T (i) =

{
One-Hot(i+ k, n), 0 ≤ i+ k < n

0 ∈ Rn, o.w.
(5)

It generates an n dimensional one-hot row vector
at index i+ k when possible and generates a zero
vector otherwise, k is a hyper-parameter which
we set to +1 in this work. Note that we don't
compute loss at position i, if both pi and pi+k are
not masked:

Γ[i, j] =

{
0, (p′i & p′j) == 0

1, o.w.
(6)

3.3 Encoder

In this section, we investigate two encoder archi-
tectures that take Hs as input, and output Hf .

168

Figure 2: Illustration of our GIN encoder placed on top of BERT output during pretraining. Circled numbers are
per-token hidden states, while gray and cyan indicate masked and unmasked input positions (same example of
Figure 1) respectively. Bold underscored entries indicate that values were overwritten by the edge masking function
EM(., .) of equation 8. Solid and dotted arrows indicate overwritten and predicted arc weights respectively, while
the opacity level of arcs reflect its value in the adjacency matrix. w is the windows size, Hb and Hg are BERT and
GIN output hidden states respectively. HG1

, and HG2

, HG4

are hidden output of GINs G1, G2, and G4 respectively.⊕
is concatenation and transparent target lines are ignored during loss calculation.

3.3.1 BERT
We pass Hs to a b−layer BERT encoder to ob-
tain a sequence of hidden representations Hb =
[hb

1,h
b
2, ...,h

b
n]

T ∈ Rn×d. We set Hf ← Hb in
Equation 3 to compute L when this encoder is used
for pretraining.

3.3.2 BERT+GIN
This encoder contains several GIN modules (as de-
picted in Figure 2) that are layered over the BERT

output to refine Hb. We constrain the input of the
graphs by explicitly injecting known neighbors in-
formation (Γ(i, j) == 0), in a context window w,
as a form of golden links that overwrite the pre-
dicted ones. For each window size w, we define a
GIN module Gw which takes as input BERT hidden
representations Hb and an adjacency matrix AGw

and produces HGw
= [hGw

1 ,hGw

2 , . . . ,hGw

n]T ∈
Rn×d as follows:

HGw
= Gw(Hb,AGw

) (7)

We obtain the adjacency matrix Aw by passing
Hb to a self-attention function followed by an edge
masking EM(·, ·) operator:

AGw
= EM

(
Sigmoid(HbW Gw

Q W Gw

K

T
HbT);w

)

EM(aij ;w) =


0, i == j

1, C(i, j) & j ∈]i, i+ w]

0, C(i, j) & j /∈]i, i+ w]

aij , o.w.

(8)

where C(i, j) = Γ(i, j) == 0, indicates
whether the input positions of node i and j are
not masked, and WGw

Q , WGw

K , ∈ Rd×d are learn-
able parameters. Concretely, Gw consists of Lw

Multi Layer Perceptron (MLP) (Ramchoun et al.,
2016) which updates the representation of a node
hG

w

i at the lth layer:

h
(l+1)
i = MLP

((
1 + ε(l)

)
hl−1
i +

∑
j∈Ni

h
(l−1)
j

)
(9)

we wrote hG
w(l)

i as h
(l)
i in Equation 9 for sim-

plicity, h(0)
i ← hb

i , ε(·) are hyper-parameters, and

h
(l)
i refers to the ith node representation at the

169

lth layer within the GIN Gw. Ni is the set of
all neighbor nodes of the ith node obtained from
AGw

. Finally, we concatenate all HGw
and feed

them to a FFNN layer in order to obtain a sin-
gle hidden representation of all the GIN encoders
Hg = [hg

1,h
g
2, . . . ,h

g
n]

T ∈ Rn×d. The number of
GIN modules, and their corresponding layers and
window sizes are hyper-parameters. During pre-
training with the BERT+GIN, we set Hf ← Hg

in Equation 3 for TOR loss computation.

3.3.3 Motivation behind BERT+GIN
GINs, a special family of GNNs, are characterized
by their ability to leverage topological signals from
an adjacency matrix in order to capture and fuse
information from both local and global neighbor
nodes (Chen et al., 2019; Zhu et al., 2021). We find
GIN's sparsity characteristic to align with the induc-
tive biases required to support the TOR task. Fur-
ther, it is important to mention that we discard the
GIN encoder and only use the BERT representation
when fine-tuning models trained with TOR. Since
we deactivate TOR during fine tuning, the edge of
Aw will be fully masked by EM(·, ·). Therefore,
each node will only have access to its immediate
neighbors, which is not suitable for downstream
tasks. However, we empirically found that explic-
itly injecting known neighbor edges over disjoint
w-hops is beneficial for pretraining. It allows us to
generate multiple views of the same graph. Since
the GIN encoders are disjoint, this enforces the
BERT intermediate representations to be compre-
hensive in order to successfully solve the task.

4 Experiments

4.1 Baselines

We conduct experiments on 4 configurations in
order to compare between models pretrained with
MLM and TOR objectives. All models use the
BERT-base configuration of Devlin et al. (2019)
(d=768; b=12) as the encoder. BERT-M, BERT-
T, and BERT-MT are models with BERT encoder
of §3.3.1 pretrained with MLM only, TOR only,
and both MLM and TOR objectives respectively.
BERT+GIN-Ts use the encoder of §3.3.2 where
TOR is the only used pretraining objective.

4.2 Implementation Details

Due to limited computational resources, we define
an experimental pretraining protocol similar to the
one of Yamaguchi et al. (2021). It consists in pre-

training our four baseline models from scratch on 8
V100 GPUs during a maximum of 5 days each with
the BERT-base configuration (Devlin et al., 2019).
The pretraining configurations and implementation
details are listed in Appendix A.1. On the fine tun-
ing side, we conduct extensive experiments on 8
GLUE (Wang et al., 2018) text classification tasks,
and 6 Dependency Parsing (DP) datasets. When
referring to a score, GLUE and DP indicate the
unweighted average scores over benchmark respec-
tive tasks. A detailed description of the datasets,
evaluation metrics, and fine tuning implementation
details are available in Appendix A.3, A.2.

4.3 Results Integrity

Table 1 shows the average GLUE score of the
original BERT-base of Devlin et al. (2019) (BERT-
ORG), the MLM model re-implementation of Ya-
maguchi et al. (2021) (BERT-5D8G), as well as
our BERT-M and BERT-T models. The last three
models are all pretrained during 5 days on 8 V 100
GPUs.

Model GLUE Model GLUE

BERT-ORG 82.9 BERT-M 81.6
BERT-5D8G 77.6 BERT-T 79.4

Table 1: Average GLUE dev scores of MLM models of
(Devlin et al., 2019) (BERT-ORG), (Yamaguchi et al.,
2021) (BERT-5D8G), our re-implementation (BERT-
M), as well as our BERT-T model.

BERT-M is only 1.3% behind BERT-ORG,
while significantly outperforming BERT-5D8G by
4 points, despite using the same computational bud-
get. This is because we are able to fit a larger batch
size (270) on a single GPU compared to the latter
work (32). The above figures confirms the valid-
ity of our pretraining settings, and subsequently
the reliability of our end-task results. It is worth
mentioning that BERT-T (79.4) is not only outper-
forming the MLM implementation of (Yamaguchi
et al., 2021), but also their best model (79.2) pre-
trained with their the Shuffle+Random objective.

4.4 Full vs. Partial Re-order Pretraining

We highlight the importance of partial token re-
ordering by running three pretraining experiments
on the BERT-T model by varying the λ reordering
probability. Table 2 reports the average GLUE
and DP results when BERT-T is pretrained with

170

16 32 64 128 256
CoLA

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

16 32 64 128 256
RTE

56

58

60

62

64

16 32 64 128 256
SST-2

60

65

70

75

80

85

16 32 64 128 256
GLUE

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

BERT-M
BERT-MT
BERT+GIN-T

Figure 3: Models performance on 3 GLUE tasks, as well as average GLUE average score across training set sizes.

different λ values. We notice that values of 0.3 and
0.5 perform similarly, therefore we used the latter
as a default to also pretrain (and report results with)
all three TOR models.

λ GLUE ∆ DP ∆

0.3 78.2 -3.4 90.2 -0.5
0.5 79.4 -2.2 90.4 -0.3
1.0 72.6 -9.0 70.5 -20.2

Table 2: Average GLUE and DP Test score when vary-
ing λ during the pretraining of BERT-T model. ∆
shows absolute performance gap with BERT-M.

Moreover, full token re-ordering (λ=1.0) per-
forms poorly on downstream tasks, 9.0% and
20.2% below BERT-M on GLUE and DP respec-
tively. Interestingly, roughly the same gap on
GLUE is reported between the deshuffling and
MLM objectives in T5 (Raffel et al., 2019) exper-
iments. This pushed the authors to prematurely
dismiss this objective in their experimental stage.
Our work demonstrates that word-order pretraining
is meaningful when performed on partially shuffled
sequences, which is one of the core features (beside
efficiency) supported by TOR.

4.5 Impact of the GIN Module

Figure 4 shows the GLUE and DP average scores
(full results are in Appendix B) of our two models
trained with the TOR objective only. We observe
that BERT+GIN-T always performs better com-
pared to BERT-T across all settings. For instance,
when using 32 and 64 examples we respectively
observe a gap of 5.9% and 5.5% on GLUE av-
eragescore, and 14.2% and 9.5% on DP average.
However, we observe that the gap steadily reduces
when more examples are added. Not shown in Fig-

ure 4, fine-tuning on the full dataset reduce the
gap to +0.5%. Since the GIN is discarded during
fine tuning (no extra parameter), it is reasonable
to conclude that pretraining GIN was a key fac-
tor in forcing BERT to encode representations that
generalize better on downstream tasks.

16 32 64 128 256
GLUE

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

16 32 64 128 256
DP

40

50

60

70

80

BERT-T
BERT+GIN-T

Figure 4: Average GLUE (left) and DP (right) perfor-
mances of BERT-T and BERT+GIN-T models across
training set size (few shot setting).

4.6 MLM vs. TOR: Order Insensitive Tasks
Figure 3 shows few shot setting performances on
3 GLUE tasks,3 as well as the average GLUE
score for the best TOR model (BERT+GIN-T),
our MLM only model (BERT-M), as well as our
model using both MLM and TOR (BERT-MT).
We observe that BERT+GIN-T underperforms
models that use MLM (BERT-M and BERT-MT)
across all data sizes. A Similar pattern is observed

3We couldn’t put the full dataset performances in the plot
for visualization purposes (curves will collapse on each other).
We selected RTE because it shows specific results, CoLA since
with MNLI they show similar result patterns, and SST-2 as
a representative of trends observed for tasks MRPC, STS-B,
QQP, MLNI. However, the detailed performances are pre-
sented in table 4 of Appendix B.

171

on MRPC, STS-B, QQP, MLNI order-insensitive
tasks. This observation was expected and is inline
with previous works (Abdou et al., 2022; Hessel
and Schofield, 2021; Sinha et al., 2021a) that state
that most of GLUE tasks can be solved by ignoring
word order.

Pretraining with both MLM and TOR improves
the overall performance of BERT-M up to cer-
tain number of fine tuning examples, especially on
RTE. On very low resource settings, we notice that
BERT-MT performs on par with BERT-M on 16
and 32 examples GLUE average, and significantly
better (55.8% vs 54.7%) on 64 examples. However,
increasing the training data size gradually demol-
ishes gains that come from pretraining with the
TOR objective. For instance, when fine tuning on
128 or more examples, BERT-M consistently out-
performs BERT-MT on SST-2 (and MRPC, STS-
B, QQP, MLNI). Note that BERT-MT has roughly
the same average score performance of BERT-M
trained with 128 examples, which is due to an un-
expected gain of 7.6% on CoLA. While on full
dataset, BERT-MT is only able to retain a gain
of 1.1% and 0.8% on CoLA and RTE respectively
compared to BERT-M. The observations suggest
that word-order pretraining objectives, like TOR,
are useful when the end task requires syntax under-
standing, and the labeled data is not abundant.

4.7 MLM vs. TOR: Order Sensitive Tasks

Nevertheless, we notice that BERT+GIN-T signif-
icantly outperforms BERT-M and BERT-MT on
CoLA (QNLI shows a similar pattern) on all few
shot settings. For instance, BERT+GIN-T reports
a gain of 3.1% and 7.9% on top of BERT-M on
32 and 128 examples respectively. CoLA, which
tests a model’s ability to predict the linguistic ac-
ceptability of sentences, presumably relies on word
order. However, BERT+GIN-T is only able to
maintain top performance on CoLA (and QNLI)
for up to 256 examples, before being outperformed
by BERT-MT on the full dataset.

The results on CoLA motivated us to evaluate on
Dependency Parsing (DP), a task that requires pre-
dicting if the head relationship exists between all
word pairs of a sentence (link prediction), and its
relation type (classification). The arcs prediction
sub-task of DP is inline with the decision making
in TOR. Figure 5 shows the LAS average score on
the test set 4 of 6 dependency parsing benchmarks

4Performances on DEV set show very similar trends.

across various training set sizes. Per dataset dev
and test performances and standard deviation statis-
tics are presented in Table 5 and 6 in Appendix B.

16 32 64 128 256
40

45

50

55

60

65

70

75

80

BERT-M
BERT-MT
BERT+GIN-T

Figure 5: LAS average score on test set of six depen-
dency parsing datasets across training set sizes.

First, it is important to note that our BERT-M
performance on PTB full dataset (94.7) is inline
with that of the BERT-base model of Zhou and
Zhao (2019) (95.4). Second, BERT+GIN-T sys-
tematically outperforms BERT-M and BERT-MT
across all few shot configurations. These observa-
tions were expected as dependency parsing relies
more on word-order indicative bias compared to
GLUE tasks. The results highlight the importance
of order-aware pretraining objective (e.g. TOR)
and encoder (e.g. GIN) when the task comprises
word-word relationships.

However, we observe that the gains of
BERT+GIN-T on top of BERT-M is — again —
inversely proportional to the number of fine tuning
examples. For instance, BERT+GIN-T outper-
forms BERT-M by 12.3%, 7.2% and 2.8% on 16,
32, and 64 examples respectively. Unfortunately,
training on more data (e.g. 40k PTB examples)
steadily decreases this gain.

Based on those extensive experiments, we con-
clude the following. First, pretraining with lan-
guage modelling objectives (MLM and its variants)
is vital for end task NLU performance. Second,
we highlight the importance of labelled data size
as the most critical factor for NLU performance.
For those reasons, new pretraining objectives (like
TOR) should be used as auxiliary objectives when
training a language (e.g. MLM+TOR). The contri-
bution of the novel pretraining objectives we pro-
pose become however less important when enough
fine-tuning data is available. A similar observation

172

is reported in (Ram et al., 2021; Jia et al., 2022),
both proposing new pretraining objectives specif-
ically designed for the Question Answering task.
This also may partially explain why works on ex-
tremely large PLM (Brown et al., 2020b; Du et al.,
2021; Chowdhery et al., 2022) also prefer to report
results on few shot and zero shot settings.

4.8 MLM vs. TOR: Perturbation Probing

Following recent works on probing (Sinha et al.,
2021b,a; Clouâtre et al., 2022; Abdou et al., 2022),
we modify the dev set of GLUE tasks by randomly
shuffling n-grams5, and also by randomly masking
some tokens in the input sequence. Figure 6 shows
the average GLUE score of BERT-M and BERT-T
models on shuffling (left) and masking (right) per-
turbation experiments respectively. Detailed results
can be found in Table 7 and 8 in Appendix B.

1 2 3 4 5
Shuffling (N-Gram)

66

68

70

72

74

76

5040302010
Masking (%)

50

55

60

65

70

75 BERT-M
BERT-T

Figure 6: Average dev GLUE score of n-gram shuffling
(left) and token masking (right) perturbation probing.

We observe that BERT-T outperforms BERT-M
on fully shuffled sequences (n = 1) by 2.1%. We
think that, even after fine-tuning, BERT-T has pre-
served some of its ordering ability induced by the
TOR objective. Increasing n (span-level shuffling)
reduces the gap between models, as results tend to
converge to the pattern saw on full dataset in Ta-
ble 2. Results are inline with the ones of the PLMs
probing literature (Sinha et al., 2021a; Clouâtre
et al., 2022; Abdou et al., 2022), which confirms
that PLMs are insensitive to global language struc-
ture. Expectedly, the performance of BERT-M is
significantly higher (+4.5%) compared to BERT-
T when the range of masking probability is similar
to the one that BERT-M was pretrained with (10-
20%). However, the performances of both models

5We concatenate n-grams before performing shuffling

steadily converge to the one of the random guessing
baseline, when increasing the masking probability
to high values.

4.9 Token Reordering Ability

We leverage the token ordering performance of pre-
trained BERT-T and BERT+GIN-T models by
measuring their token re-ordering abilities on raw
sentences. We do so by partially masking the ab-
solute position (as in §3.1) of GLUE and DP dev
sets input sequences using a λ={0.5, 1.0}. Then,
we measure pairwise ordering accuracy, which is
a binary score indicating if a true subsequent to-
kens pairs are correctly predicted. Table 3 shows
models average pairwise ordering accuracy (binary
score indicating if a true subsequent tokens pairs
are correctly predicted.) on 8 GLUE and 6 DP
datasets with different values of λ applied on input
sequence. Per-task detailed results are presented in
Table 9 and 10 of Appendix B.

GLUE DP
0.5 1.0 0.5 1.0

BERT-T 24% 17% 27% 24%
BERT+GIN-T 32% 19% 37% 26%

Table 3: Average pairwise ordering accuracy on 8
GLUE dev sets, where the position of input sequence
are masked a with probability λ (0.5 and 1.0).

Expectedly, BERT+GIN-T systematically out-
performs BERT-T which showcases the value of
our proposed BERT+GIN architecture. Also, it is
promising to see a positive correlation between the
token ordering and end-task performance, where
improving the first may naturally reflect as an im-
provement on the second. The overall poor perfor-
mances, especially on full re-reordering (λ = 1.0),
is not surprising since TOR is designed for repre-
sentation learning, not for text linearization (Elman,
1990). The latter is out of the scope of this paper, as
its is commonly approached with computationally
expensive search algorithms powered with a LM
scorer (De Gispert et al., 2014; Malkin et al., 2021).
For instance, the IBSB algorithm of (Malkin et al.,
2021) performs 27.8k query per sentence on aver-
age to GPT-small (Radford et al., 2018) to guide
the re-ordering heuristic.

173

5 Conclusion

We revisit word-order pretraining for NLU by
proposing a novel self-supervision task (TOR),
as well as a dedicated encoder architecture. The
goal is to investigate if injecting syntactic biases
into PLM during pretraining would improves their
awareness to language structure. While experi-
ments on TOR show promises in enhancing PLM
understanding of language structure, still many
challenges remain in maintaining performances on
word order insensitive tasks. We thereby highlight
the importance of word-order pretraining objec-
tives as an interesting research direction to explore
in future.

Limitations

Ablations on pretraining hyperparameters, as well
as on GIN architecture design choices (e.g. num-
ber of layers and window sizes) may have further
enhanced the performance or provided informa-
tion on the sensitivity of the architecture to those
choices. The evaluation on syntactic tasks is done
on Dependency parsing only. Extending the experi-
ments to other syntactic tasks such as constituency
parsing or syntax diagnosing benchmarks like Syn-
taxGym (Gauthier et al., 2020) or BLiMP (Warstadt
et al., 2020) could have improved the generality of
the claims on the usefulness of word order pretrain-
ing objective.

Acknowledgements

We thank Mindspore6 for the partial support of
this work, which is a new deep learning computing
framework. We thank the anonymous reviewers for
their insightful comments.

References
Mostafa Abdou, Vinit Ravishankar, Artur Kulmizev, and

Anders Søgaard. 2022. Word order does matter and
shuffled language models know it. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6907–6919.

Lars Ahrenberg. 2007. Lines: An english-swedish par-
allel treebank. In Proceedings of the 16th Nordic
Conference of Computational Linguistics (NODAL-
IDA 2007), pages 270–273.

Ahmed Alajrami and Nikolaos Aletras. 2022. How does
the pre-training objective affect what large language

6https://www.mindspore.cn/

models learn about linguistic properties? In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 131–147.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020a. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020b. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 740–750.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan
Bruna. 2019. On the equivalence between graph iso-
morphism testing and function approximation with
gnns. Advances in neural information processing
systems, 32.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2019. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Louis Clouâtre, Prasanna Parthasarathi, Amal Zouaq,
and Sarath Chandar. 2022. Local structure matters
most: Perturbation study in nlu. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 3712–3731.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
ACL.

Jennifer Culbertson and David Adger. 2014. Language
learners privilege structured meaning over surface
frequency. Proceedings of the National Academy of
Sciences, 111(16):5842–5847.

Adrià De Gispert, Marcus Tomalin, and Bill Byrne.
2014. Word ordering with phrase-based grammars.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 259–268.

https://www.mindspore.cn/

174

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Technical report, Stanford Univer-
sity.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

Nan Du, Yanping Huang, Andrew M. Dai, Simon
Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat,
Barret Zoph, Liam Fedus, Maarten Bosma, Zong-
wei Zhou, Tao Wang, Yu Emma Wang, Kellie Web-
ster, Marie Pellat, Kevin Robinson, Kathy Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,
Quoc V Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2021. Glam: Efficient scaling of language mod-
els with mixture-of-experts.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Richard Futrell, Roger P Levy, and Edward Gibson.
2020. Dependency locality as an explanatory princi-
ple for word order. Language, 96(2):371–412.

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian,
and Roger Levy. 2020. Syntaxgym: An online plat-
form for targeted evaluation of language models. In
Association for Computational Linguistics (ACL).

Goran Glavaš and Ivan Vulić. 2021. Is supervised syn-
tactic parsing beneficial for language understanding
tasks? an empirical investigation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 3090–3104.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Ashim Gupta, Giorgi Kvernadze, and Vivek Srikumar.
2021. Bert & family eat word salad: Experiments
with text understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Md Akmal Haidar, Nithin Anchuri, Mehdi Reza-
gholizadeh, Abbas Ghaddar, Philippe Langlais, and
Pascal Poupart. 2021. Rail-kd: Random intermedi-
ate layer mapping for knowledge distillation. arXiv
preprint arXiv:2109.10164.

John Hale. 2017. Models of human sentence compre-
hension in computational psycholinguistics. Oxford
Research Encyclopedia of Linguistics.

Jack Hessel and Alexandra Schofield. 2021. How effec-
tive is bert without word ordering? implications for
language understanding and data privacy. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 204–211.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. CoRR, abs/2003.11080.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based
dependency parsing with graph neural networks. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2475–
2485, Florence, Italy. Association for Computational
Linguistics.

Robin Jia, Mike Lewis, and Luke Zettlemoyer. 2022.
Question answering infused pre-training of general-
purpose contextualized representations. In Findings
of the Association for Computational Linguistics:
ACL 2022, pages 711–728.

Amirhossein Kazemnejad, Mehdi Rezagholizadeh,
Prasanna Parthasarathi, and Sarath Chandar. 2023.
Measuring the knowledge acquisition-utilization gap
in pretrained language models. arXiv preprint
arXiv:2305.14775.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis lectures on
human language technologies, 1(1):1–127.

Artur Kulmizev and Joakim Nivre. 2021. Schr\"
odinger’s tree–on syntax and neural language models.
arXiv preprint arXiv:2110.08887.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A community
library for natural language processing. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 175–184.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

https://doi.org/10.48550/ARXIV.2112.06905
https://doi.org/10.48550/ARXIV.2112.06905
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237

175

Nikolay Malkin, Sameera Lanka, Pranav Goel, and
Nebojsa Jojic. 2021. Studying word order through
iterative shuffling. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10351–10366.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Os-
car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 92–97.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed precision
training. In In International Conference on Learning
Representations.

Francis Mollica, Matthew Siegelman, Evgeniia Diachek,
Steven T Piantadosi, Zachary Mineroff, Richard
Futrell, Hope Kean, Peng Qian, and Evelina Fe-
dorenko. 2020. Composition is the core driver of the
language-selective network. Neurobiology of Lan-
guage, 1(1):104–134.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 86–95.

Joe O’Connor and Jacob Andreas. 2021. What context
features can transformer language models use? arXiv
preprint arXiv:2106.08367.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8026–
8037.

Thang M Pham, Trung Bui, Long Mai, and Anh Nguyen.
2020. Out of order: How important is the sequential
order of words in a sentence in natural language un-
derstanding tasks? arXiv preprint arXiv:2012.15180.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits

of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know What You Don’t Know: Unanswerable Ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Glober-
son, and Omer Levy. 2021. Few-shot question an-
swering by pretraining span selection. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3066–3079.

Hassan Ramchoun, Youssef Ghanou, Mohamed Et-
taouil, and Mohammed Amine Janati Idrissi. 2016.
Multilayer perceptron: Architecture optimization and
training. International Journal of Interactive Multi-
media and Artificial Intelligence

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Manuela Sanguinetti and Cristina Bosco. 2015. Parttut:
The turin university parallel treebank. In Harmo-
nization and development of resources and tools for
italian natural language processing within the parli
project, pages 51–69. Springer.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE transactions on
neural networks, 20(1):61–80.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Christopher D. Manning. 2014. A gold
standard dependency corpus for English. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014).

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021a.
Masked language modeling and the distributional hy-
pothesis: Order word matters pre-training for little.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2888–2913.

Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau,
and Adina Williams. 2021b. Unnatural language
inference. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 7329–7346.

176

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint
arXiv:1905.02450.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593–4601.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. 2019a. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. arXiv preprint arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia,
Zuyi Bao, Liwei Peng, and Luo Si. 2019b. Structbert:
Incorporating language structures into pre-training
for deep language understanding. In International
Conference on Learning Representations.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. Blimp: The benchmark of linguistic
minimal pairs for english. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2018. How powerful are graph neural net-
works? In International Conference on Learning
Representations.

Atsuki Yamaguchi, George Chrysostomou, Katerina
Margatina, and Nikolaos Aletras. 2021. Frustratingly
simple pretraining alternatives to masked language
modeling. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3116–3125.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in neural informa-
tion processing systems, pages 5754–5764.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. Qa-gnn: Rea-
soning with language models and knowledge graphs
for question answering. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 535–546.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. 2021. Greaselm: Graph reason-
ing enhanced language models. In International Con-
ference on Learning Representations.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on penn treebank. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

Yutao Zhu, Kun Zhou, Jian-Yun Nie, Shengchao Liu,
and Zhicheng Dou. 2021. Neural sentence ordering
based on constraint graphs. In Proceedings of the
AAAI Conference on Artificial Intelligence.

https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x

177

A Experimental Protocol

A.1 Pretraining Implementation Details
Following (Devlin et al., 2019), we use BERT-base-
uncased architecture (12 layers and model and 768
hidden size) as a backbone for all models. Also,
we use the same 32k WordPiece (Wu et al., 2016)
vocabulary and WikiBooks corpus of (Devlin et al.,
2019). More precisely, we use English Wikipedia
and BookCorpus (Zhu et al., 2015), that we obtain
from the datasets library (Lhoest et al., 2021).

Each model is pretrained on a single GPU server
that consists of 8 NVIDIA Tesla V100 cards with
32GB of memory. The pre-training code is based
on the PyTorch (Paszke et al., 2019) version of the
Transformers library (Wolf et al., 2020). We use the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate decay setting the initial learning
rate to 1e-4 with 10,000 warm-up steps.

To speed up the pretraining in our experiments,
we use mixed-precision training (Micikevicius
et al., 2018), and DeepSpeed library (Rasley et al.,
2020). In addition, we train all models on full
sequences (no padding) of 128 of length, and set
the maximum per-GPU batch size for each model,
which is 260 for MLM models and 390 otherwise.
However, all models are fairly pretrained for 35
epochs over the pretraining data. We ensure this
by setting the gradient accumulation step to 2 and
3 when the batch size is set to 390 and 260 re-
spectively. Pretraining experiments took approx-
imately take 5 days for the slowest models (ones
with MLM).

Following (Devlin et al., 2019), we use a proba-
bility of 15% when pretraining with MLM objec-
tive (BERT-M and BERT-MT models). We search
TOR probability lambda from {0.3, 0.5, 1.0} on
the BERT-T model and found 0.5 to work the best.
Therefore, we use a value of lambda = 0.5 with
to the three models using TOR. On top of BERT

encoder, the BERT+GIN-T model uses three GIN
encoders with context windows w={1, 2, 4} and
Lw={2, 3, 5} number of layers respectively. ε(·) are
always set to 0, while layer numbers and window
sizes where selected empirically based trade-off
between performance a pretraining latency, which
is inspired from (Zhu et al., 2021).

A.2 Fine-Tuning Datasets
We experiment on 8 tasks from the GLUE bench-
mark (Wang et al., 2018): 2 single-sentence
(CoLA and SST-2), one regression (STS-B), and

5 sentence-pair (MRPC, RTE, QQP, QNLI, and
MNLI) classification tasks. Following prior works,
we report Pearson correlation on STS-B, Matthews
correlation on CoLA, F1 score on MRPC, and use
the accuracy otherwise. We also report the un-
weighted average sum over the 7 tasks.

For Dependency parsing, we evaluate models
on the well established English Penn Treebank
(PTB) (De Marneffe and Manning, 2008) corpus
using the train/dev/test split of (Chen and Man-
ning, 2014). Also, we run experiments on 5 Uni-
versal Dependency (McDonald et al., 2013) cor-
pora: EWT (Silveira et al., 2014), PARTUT (San-
guinetti and Bosco, 2015), GUM (Zeldes, 2017),
LINES (Ahrenberg, 2007), and ATIS7. We report
the Labeled Attachment Score (LAS) score (Nivre
and Fang, 2017) for each corpus, as well as the un-
weighted average sum over the six corpora. Each
DP corpus is already have its default train/dev/test
splits.

A.3 Fine-Tuning Implementation Details
Following (Devlin et al., 2019), we use the repre-
sentation of the [CLS] token of the last layer as
input for GLUE classification tasks. For depen-
dency parsing, we first use the last layer represen-
tation of the first sub-token of each word as input
for Biaffine classifier (Dozat and Manning, 2016),
which in turn generates the arcs and relation types
between words. Then, we use greedy decoding to
get the final dependency parsing tree.

For full dataset experiments, we set the batch
size to 32, learning rate to 2e-5, and the dropout
rate of 0.1. We train all models under all settings
for a maximum of 20 epochs and use early stopping.
We report the average and standards deviation over
5 runs with different random seed.

We simulate a low resource setting for both
GLUE and Dependency Parsing by randomly sam-
pling tiny subsets of {16, 32, 64, 128, 256} exam-
ples of the training data. We report the average and
standard deviation of 5 randomly selected folds.
We use a batch size of 1 when training on low re-
source setting, as we find it to systematically work
the best across all models.

B Results

7https://github.com/UniversalDependencies/UD_
English-ATIS

https://github.com/UniversalDependencies/UD_English-ATIS
https://github.com/UniversalDependencies/UD_English-ATIS

178

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

16 Examples

BERT-M 6.6±1.4 66.2±0.9 55.9±0.5 57.1±1.8 33.5±1.5 34.2±0.1 57.3±0.4 55.7±0.6 45.9±0.7
BERT-MT 9.0±1.8 64.0±0.8 56.2±0.8 56.6±1.4 31.6±0.0 35.1±0.3 59.7±0.8 55.7±0.1 46.0±0.6
BERT-T 6.9±0.4 56.6±0.4 55.5±0.5 37.2±2.8 42.6±5.4 34.4±0.4 59.1±0.4 56.2±0.3 43.1±1.4
BERT+GIN-T 9.1±0.9 59.5±1.2 56.1±1.0 51.4±3.3 31.6±0.1 34.6±0.1 62.0±1.1 56.4±0.3 45.1±1.1

32 Examples

BERT-M 7.0±0.2 69.8±0.3 59.1±0.2 67.3±0.8 59.6±0.3 39.3±0.3 60.5±0.3 57.0±0.2 52.5±0.5
BERT-MT 9.5±0.9 69.1±0.3 60.7±0.9 68.3±0.5 55.5±1.5 38.8±0.2 59.7±0.6 58.2±1.1 52.6±0.8
BERT-T 8.4±0.8 57.0±2.5 59.8±0.9 45.8±6.1 40.0±5.1 35.4±0.1 61.4±0.5 55.8±0.7 45.5±2.1
BERT+GIN-T 10.1±1.4 62.1±0.7 57.4±1.2 68.5±0.7 51.1±4.7 36.3±0.5 66.0±1.1 56.8±1.1 51.4±1.3

64 Examples

BERT-M 9.8±1.7 77.0±0.6 58.0±0.7 68.6±0.7 63.2±0.9 40.6±0.4 63.3±1.1 57.0±0.5 54.7±0.8
BERT-MT 12.0±2.0 73.7±0.3 61.4±0.8 72.8±0.2 62.2±0.9 41.6±0.3 64.1±0.7 58.8±0.4 55.8±0.7
BERT-T 9.3±0.3 58.2±1.4 60.5±1.3 53.9±7.0 50.5±4.2 35.5±0.0 62.7±0.8 56.6±1.1 48.4±2.0
BERT+GIN-T 12.2±0.5 66.7±1.1 58.7±0.9 70.4±1.1 60.2±0.2 35.5±0.5 69.3±1.0 57.0±0.5 53.7±0.8

128 Examples

BERT-M 11.1±0.9 81.4±0.0 62.1±0.2 74.8±0.3 68.0±0.2 43.3±0.2 72.3±0.5 59.1±0.6 59.0±0.4
BERT-MT 18.7±2.9 78.4±0.7 62.2±0.6 73.4±0.5 65.1±0.5 44.2±0.3 69.8±0.3 60.9±0.6 59.1±0.8
BERT-T 13.7±0.8 68.9±0.9 61.9±0.4 71.5±0.8 64.3±0.7 38.0±0.6 71.0±0.7 58.2±0.7 55.9±0.7
BERT+GIN-T 19.0±2.1 73.1±0.5 61.3±0.3 73.0±1.5 66.1±0.3 41.0±0.3 74.7±0.4 59.3±0.7 58.4±0.8

256 Examples

BERT-M 13.0±1.2 84.0±0.3 68.4±0.3 76.0±1.4 71.6±0.2 52.3±0.5 75.9±0.4 60.0±0.6 62.6±0.6
BERT-MT 20.8±2.1 81.0±0.3 69.5±1.0 72.3±1.6 70.4±0.3 50.0±0.4 74.1±0.3 64.8±1.2 63.2±0.8
BERT-T 15.3±2.5 73.1±0.9 67.8±0.9 71.2±2.1 67.1±0.1 43.4±0.5 75.6±0.4 60.7±0.2 59.0±0.9
BERT+GIN-T 24.5±1.0 77.0±0.4 68.1±0.9 71.6±1.4 69.1±0.4 44.2±0.3 76.1±0.3 61.0±0.4 61.0±0.8

All Examples

BERT-M 57.3±0.5 91.3±0.1 84.5±0.4 88.3±0.1 89.3±0.0 83.2±0.1 90.3±0.1 69.0±0.7 81.6±0.2
BERT-MT 58.4±0.9 90.8±0.3 83.3±0.4 86.9±0.1 89.1±0.1 82.5±0.1 89.7±0.1 69.8±1.3 81.3±0.4
BERT-T 56.1±1.3 88.5±0.3 80.0±0.7 86.1±0.1 88.7±0.0 81.2±0.1 89.3±0.1 65.1±1.0 79.4±1.6
BERT+GIN-T 56.3±0.6 89.2±0.1 80.8±0.4 87.6±0.1 89.2±0.0 81.7±0.1 89.6±0.1 65.1±0.7 79.9±0.3
BERT-ORG 59.5 93.1 86.7 88.4 91.0 84.6 91.5 68.2 82.9
BERT-5D8G 49.6 89.6 81.6 84.7 85.9 80.1 88.2 61.4 77.6

Table 4: Dev GLUE performances across training set sizes. BERT-ORG and BERT-5D8G respectively refer to the
original BERT-base model of (Devlin et al., 2019) and to the MLM one of (Yamaguchi et al., 2021) pretrained
during 5 days with 8 GPUs.

179

Model PTB EWT PARTUT ATIS GUM LINES Avg.

16 Examples

BERT-M 45.1±0.8 33.4±1.2 41.7±1.5 65.6±1.6 31.2±2.1 34.4±0.8 41.9±1.3
BERT-MT 48.6±0.8 33.7±1.7 45.2±1.2 65.6±1.5 32.6±2.5 37.6±0.9 43.9±1.4
BERT-T 36.9±1.0 24.1±1.0 34.7±1.3 56.5±2.6 22.3±1.9 28.8±1.0 33.9±1.5
BERT+GIN-T 56.2±0.8 46.8±0.9 55.0±0.9 69.4±1.5 47.1±2.4 49.5±0.6 54.0±1.2

32 Examples

BERT-M 61.7±1.4 48.1±0.4 59.9±0.5 74.7±0.6 49.5±1.5 50.2±0.9 57.3±0.9
BERT-MT 63.6±1.1 49.4±0.8 62.6±0.7 74.5±0.6 52.1±1.4 52.6±0.9 59.1±0.9
BERT-T 54.1±1.2 40.5±1.0 52.6±0.6 69.0±0.6 41.4±1.5 44.0±1.1 50.3±1.0
BERT+GIN-T 66.5±1.0 58.1±0.5 65.5±0.7 77.6±0.7 60.2±1.0 59.4±0.4 64.5±0.7

64 Examples

BERT-M 73.8±0.7 61.4±0.4 73.8±0.5 79.9±0.6 64.3±1.0 62.8±0.6 69.3±0.6
BERT-MT 74.5±0.4 62.0±0.7 74.8±0.7 79.7±0.5 65.6±0.8 64.0±0.3 70.1±0.6
BERT-T 68.2±0.6 55.6±0.9 67.3±0.9 77.0±0.3 57.4±0.8 57.6±0.3 63.8±0.6
BERT+GIN-T 74.7±0.4 66.4±0.5 75.1±0.7 81.0±0.5 69.2±0.4 67.1±0.4 72.3±0.5

128 Examples

BERT-M 80.5±0.4 71.8±0.5 80.8±0.5 82.9±0.4 74.0±0.8 71.7±0.3 77.0±0.4
BERT-MT 80.4±0.3 72.0±0.3 81.1±0.3 82.9±0.2 74.3±0.5 71.4±0.2 77.0±0.3
BERT-T 76.7±0.3 67.1±0.2 76.9±0.2 81.8±0.2 69.1±0.7 66.6±0.3 73.0±0.3
BERT+GIN-T 80.4±0.3 73.6±0.3 80.3±0.4 84.1±0.2 75.8±0.4 72.9±0.3 77.8±0.3

256 Examples

BERT-M 85.2±0.1 78.1±0.3 84.0±0.4 85.2±0.3 80.3±0.2 77.5±0.3 81.7±0.3
BERT-MT 85.2±0.2 78.1±0.2 84.8±0.3 84.9±0.2 80.6±0.2 77.4±0.2 81.8±0.2
BERT-T 82.9±0.2 74.0±0.4 82.6±0.1 83.7±0.1 77.3±0.2 74.2±0.2 79.1±0.2
BERT+GIN-T 84.8±0.2 78.4±0.2 84.1±0.1 85.9±0.2 80.9±0.2 77.7±0.2 82.0±0.2

Full Dataset Examples

BERT-M 94.2±0.0 90.6±0.0 89.3±0.1 89.8±0.1 91.3±0.0 86.4±0.1 90.3±0.1
BERT-T 94.0±0.0 90.1±0.0 88.3±0.2 89.6±0.1 90.9±0.0 86.2±0.1 89.9±0.1
BERT-MT 94.2±0.0 90.8±0.0 89.6±0.1 89.8±0.1 91.5±0.0 87.2±0.0 90.5±0.1
BERT+GIN-T 94.1±0.0 90.8±0.0 89.4±0.1 90.0±0.1 91.6±0.0 87.2±0.1 90.5±0.1

Table 5: Average Dev performance LAS across 5 dependency parsing datasets and training set sizes.

180

Model PTB EWT PARTUT ATIS GUM LINES Avg.

16 Examples

BERT-M 45.0±0.8 33.8±1.4 42.6±0.9 65.8±1.4 32.4±1.9 36.0±0.7 42.6±1.2
BERT-MT 48.5±0.7 34.2±1.8 46.8±1.6 65.7±1.5 34.2±2.3 39.1±0.8 44.7±1.5
BERT-T 36.9±1.0 24.5±1.1 36.6±1.1 56.4±2.7 23.4±1.9 29.6±1.1 34.6±1.5
BERT+GIN-T 56.0±0.5 46.9±1.0 57.6±1.1 69.7±1.4 48.6±2.4 50.6±0.7 54.9±1.2

32 Examples

BERT-M 61.6±1.4 48.4±0.4 61.8±0.7 76.2±0.6 50.3±1.4 52.6±0.7 58.5±0.9
BERT-MT 63.7±1.1 49.6±0.8 63.9±0.4 75.8±0.8 52.9±1.4 54.6±0.8 60.1±0.9
BERT-T 54.3±1.3 41.0±1.2 55.9±0.8 69.9±0.6 42.5±1.3 45.6±1.1 51.5±1.0
BERT+GIN-T 66.7±1.0 58.5±0.6 68.5±0.7 78.9±0.7 60.9±0.9 60.9±0.6 65.7±0.7

64 Examples

BERT-M 74.0±0.6 61.7±0.4 75.5±0.6 82.5±0.6 65.3±0.9 65.4±0.6 70.7±0.6
BERT-MT 74.8±0.3 62.1±0.8 75.4±0.7 82.1±0.6 66.5±0.8 66.2±0.4 71.2±0.6
BERT-T 68.4±0.4 55.9±0.8 69.7±0.8 79.9±0.4 58.9±0.8 59.7±0.4 65.4±0.6
BERT+GIN-T 75.0±0.3 66.4±0.4 76.6±0.4 83.6±0.9 70.1±0.4 69.2±0.5 73.5±0.5

128 Examples

BERT-M 80.8±0.3 71.8±0.5 82.3±0.2 86.0±0.3 74.9±0.7 74.0±0.3 78.3±0.4
BERT-MT 80.7±0.2 71.7±0.3 81.5±0.3 85.8±0.6 75.4±0.5 73.7±0.3 78.1±0.4
BERT-T 77.2±0.2 67.3±0.3 78.5±0.5 85.3±0.3 70.4±0.7 68.9±0.5 74.6±0.4
BERT+GIN-T 80.9±0.2 73.6±0.3 81.8±0.2 87.5±0.3 77.0±0.4 74.5±0.2 79.2±0.3

256 Examples

BERT-M 85.5±0.1 78.2±0.2 85.3±0.2 88.1±0.2 81.0±0.4 79.5±0.3 82.9±0.2
BERT-MT 85.5±0.3 78.0±0.2 84.7±0.4 88.1±0.1 81.5±0.3 79.3±0.2 82.8±0.3
BERT-T 83.3±0.3 74.4±0.3 83.0±0.5 87.5±0.2 78.2±0.3 76.3±0.1 80.4±0.3
BERT+GIN-T 85.3±0.3 78.2±0.2 84.8±0.3 89.1±0.2 81.8±0.3 79.3±0.2 83.1±0.2

Full Dataset Examples

BERT-M 94.7±0.0 90.0±0.0 89.9±0.1 92.3±0.2 90.3±0.0 86.9±0.0 90.7±0.1
BERT-MT 94.7±0.0 90.4±0.0 90.2±0.2 92.3±0.1 90.7±0.0 87.3±0.0 90.9±0.1
BERT-T 94.6±0.0 89.8±0.0 89.0±0.1 92.5±0.2 89.9±0.1 86.6±0.1 90.4±0.1
BERT+GIN-T 94.7±0.0 90.4±0.0 89.8±0.1 92.6±0.2 90.8±0.0 87.3±0.0 90.9±0.1

Table 6: Average Test performance LAS across 5 dependency parsing datasets and training set sizes.

181

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

1-Gram Shuffle

BERT-M 1.0±1.4 81.4±0.2 66.5±0.5 86.8±0.0 83.1±0.1 69.1±0.1 81.3±0.1 52.6±0.3 65.2±0.3
BERT-MT 1.9±0.8 80.9±0.4 61.5±0.9 85.8±0.1 83.6±0.1 70.4±0.1 80.1±0.2 55.1±0.8 64.9±0.4
BERT-T 2.3±0.9 82.5±0.1 69.7±0.7 85.9±0.1 83.9±0.0 72.8±0.1 83.1±0.1 58.5±0.6 67.3±0.3
BERT+GIN-T 7.4±1.0 82.8±0.3 65.0±1.3 86.7±0.1 84.6±0.1 72.5±0.1 82.2±0.2 60.9±0.8 67.8±0.5

2-Gram Shuffle

BERT-M 20.5±1.3 84.6±0.3 69.6±0.8 87.4±0.1 86.0±0.1 74.0±0.1 83.8±0.2 53.6±0.8 69.9±0.5
BERT-MT 20.6±1.1 83.6±0.2 67.5±1.0 86.2±0.1 86.0±0.0 74.5±0.1 83.0±0.2 58.3±0.7 70.0±0.4
BERT-T 22.1±1.8 84.5±0.5 72.6±0.6 86.2±0.1 85.6±0.0 75.2±0.1 84.5±0.2 58.2±0.8 71.1±0.5
BERT+GIN-T 24.9±1.7 85.6±0.2 68.5±0.5 87.1±0.1 86.2±0.1 75.3±0.1 83.9±0.1 61.4±1.1 71.6±0.5

3-Gram Shuffle

BERT-M 33.0±1.5 85.8±0.5 71.3±1.3 87.4±0.0 86.9±0.0 76.2±0.1 85.3±0.1 58.2±0.4 73.0±0.5
BERT-MT 32.9±0.6 85.2±0.4 70.0±0.7 86.3±0.1 86.9±0.1 76.8±0.1 84.8±0.1 59.6±1.1 72.8±0.4
BERT-T 34.0±0.6 85.6±0.2 74.5±0.9 86.0±0.0 86.3±0.1 76.8±0.0 85.5±0.1 59.3±0.6 73.5±0.3
BERT+GIN-T 36.8±0.5 85.9±0.4 68.9±0.3 86.9±0.1 86.8±0.0 76.7±0.1 84.8±0.1 62.2±0.4 73.6±0.2

4-Gram Shuffle

BERT-M 40.7±1.2 87.1±0.4 72.2±0.9 87.5±0.1 87.5±0.0 78.1±0.1 86.4±0.1 60.1±1.0 74.9±0.5
BERT-MT 43.5±0.5 85.6±0.2 74.0±1.2 86.2±0.1 87.4±0.0 78.3±0.1 85.6±0.2 63.2±0.6 75.5±0.4
BERT-T 40.8±1.3 85.3±0.3 76.7±0.6 85.9±0.1 86.7±0.0 77.8±0.1 86.0±0.0 59.2±0.9 74.8±0.4
BERT+GIN-T 42.5±0.7 86.2±0.3 72.3±0.7 86.9±0.0 87.3±0.0 77.7±0.1 85.4±0.1 63.0±0.9 75.2±0.4

5-Gram Shuffle

BERT-M 46.3±0.5 87.9±0.2 73.3±0.9 87.7±0.1 88.1±0.0 79.3±0.0 87.3±0.1 60.2±0.5 76.3±0.3
BERT-MT 48.6±0.7 87.3±0.2 73.2±0.7 86.6±0.1 87.8±0.1 78.9±0.1 86.6±0.1 59.8±0.8 76.1±0.3
BERT-T 45.2±0.8 85.8±0.3 76.0±0.6 86.4±0.1 87.1±0.0 78.3±0.1 86.1±0.1 62.0±0.9 75.9±0.4
BERT+GIN-T 47.5±0.4 87.3±0.3 72.2±1.3 87.3±0.1 87.7±0.0 78.5±0.1 86.1±0.2 62.6±0.8 76.2±0.4

Table 7: Dev GLUE performances and standards deviation (we run experiments on 5 different seeds) across word
shuffling n-grams.

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

10%

BERT-M 49.0±1.7 88.4±0.3 80.8±0.3 81.4±0.5 82.2±0.1 74.2±0.1 87.7±0.2 64.0±1.6 76.0±0.6
BERT-MT 49.7±1.0 88.1±0.2 79.7±0.5 79.8±0.6 82.0±0.0 75.7±0.1 86.5±0.2 64.3±0.6 75.7±0.4
BERT-T 33.0±0.6 84.3±0.1 77.8±0.4 74.3±0.5 78.3±0.1 72.0±0.1 84.8±0.2 59.4±0.6 70.5±0.3
BERT+GIN-T 29.3±0.8 86.7±0.3 77.3±0.7 77.7±0.3 80.9±0.1 73.2±0.1 84.8±0.2 62.0±0.9 71.5±0.4

20%

BERT-M 39.3±0.7 85.5±0.6 74.0±0.8 75.3±0.6 74.4±0.1 65.4±0.3 83.8±0.1 60.3±0.7 69.8±0.5
BERT-MT 40.8±1.2 86.1±0.2 73.6±0.7 73.5±0.5 74.4±0.1 69.3±0.3 82.8±0.0 62.9±1.1 70.4±0.5
BERT-T 22.7±1.4 82.2±0.4 72.2±0.8 68.2±0.4 70.6±0.1 65.0±0.3 81.2±0.1 59.9±0.8 65.3±0.6
BERT+GIN-T 20.5±0.9 84.3±0.6 73.5±0.6 72.6±0.3 74.1±0.1 66.4±0.2 80.9±0.1 59.0±0.6 66.4±0.4

30%

BERT-M 31.4±1.3 82.4±0.4 66.4±0.5 67.9±0.6 65.6±0.1 57.7±0.1 79.4±0.2 55.1±0.6 63.2±0.5
BERT-MT 32.4±1.5 82.5±0.3 68.6±0.7 65.4±0.6 66.2±0.1 62.8±0.1 78.5±0.2 58.8±1.4 64.4±0.6
BERT-T 18.5±1.1 78.9±0.8 68.4±0.9 60.0±0.9 61.3±0.1 58.3±0.3 77.1±0.1 55.4±0.8 59.7±0.6
BERT+GIN-T 14.2±1.7 80.6±0.5 68.6±1.0 65.6±0.7 66.1±0.1 60.3±0.1 76.6±0.1 58.0±1.3 61.2±0.7

40%

BERT-M 23.9±1.1 79.0±0.5 55.9±1.0 59.5±0.2 56.9±0.0 51.3±0.1 74.0±0.2 52.4±0.5 56.6±0.5
BERT-MT 24.5±1.4 80.0±0.4 58.5±0.4 57.5±0.4 57.9±0.0 57.0±0.2 73.7±0.3 54.7±0.5 58.0±0.5
BERT-T 12.4±0.5 74.6±0.7 59.4±0.8 51.3±0.3 52.1±0.1 52.8±0.2 72.2±0.2 52.7±1.5 53.4±0.5
BERT+GIN-T 9.9±2.0 77.0±0.7 63.5±0.7 57.3±0.4 57.1±0.2 54.8±0.2 71.2±0.2 54.8±0.7 55.7±0.6

50%

BERT-M 14.5±1.2 76.3±0.3 48.6±0.7 49.6±0.7 48.4±0.0 45.9±0.2 68.5±0.2 50.6±0.3 50.3±0.5
BERT-MT 14.3±1.3 76.6±0.4 51.1±1.5 47.2±1.0 50.0±0.1 51.4±0.2 68.2±0.1 51.0±0.4 51.2±0.6
BERT-T 6.3±1.2 70.7±0.4 55.9±0.7 40.5±1.3 44.7±0.1 47.8±0.2 67.1±0.2 51.0±1.2 48.0±0.7
BERT+GIN-T 3.6±0.7 74.0±0.4 57.2±0.9 46.2±1.0 48.2±0.1 49.4±0.3 66.9±0.2 52.0±1.0 49.7±0.6

Table 8: Dev GLUE performances and standards deviation (we run experiments on 5 different seeds) across masked
sequences.

182

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

50%

BERT-T 27±0.22 30±0.24 24±0.12 21±0.15 23±0.15 21±0.14 22±0.12 23±0.12 24±0.2
BERT+GIN-T 39±0.29 39±0.28 34±0.16 24±0.17 26±0.16 27±0.16 30±0.15 38±0.17 32±0.2

100%

BERT-T 28±0.2 26±0.22 14±0.09 16±0.12 16±0.13 14±0.10 11±0.07 12±0.09 17±0.12
BERT+GIN-T 28±0.2 33±0.24 17±0.10 18±0.12 19±0.14 15±0.11 12±0.08 14±0.09 19±0.14

Table 9: Pairwise token order accuracy and standards deviation on GLUE dev sets. % indicate lambda value applied
on input sequences, we run experiments on 5 different seeds.

Model PTB EWT PARTUT ATIS GUM LINES Avg.

50%

BERT-T 25±0.16 27±0.22 29±0.19 27±0.21 27±0.2 27±0.2 27±0.20
BERT+GIN-T 33±0.23 35±0.26 41±0.25 38±0.27 38±0.26 38±0.26 37±0.31

100%

BERT-T 19±0.16 25±0.2 27±0.19 26±0.19 25±0.2 24±0.19 24±0.19
BERT+GIN-T 20±0.16 27±0.21 27±0.18 28±0.2 26±0.2 25±0.19 26±0.19

Table 10: Pairwise Token order accuracy and standards deviation on Dependency parsing datasets. % indicate
lambda value applied on input sequences, we run experiments on 5 different seeds.

