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Abstract

Text-based games (TGs) are language-based in-
teractive environments for reinforcement learn-
ing. While language models (LMs) and knowl-
edge graphs (KGs) are commonly used for
handling large action space in TGs, it is un-
clear whether these techniques are necessary
or overused. In this paper, we revisit the chal-
lenge of exploring the action space in TGs and
propose ϵ-admissible exploration, a minimal
approach of utilizing admissible actions, for
training phase. Additionally, we present a text-
based actor-critic (TAC) agent that produces
textual commands for game, solely from game
observations, without requiring any KG or LM.
Our method, on average across 10 games from
Jericho, outperforms strong baselines and state-
of-the-art agents that use LM and KG. Our ap-
proach highlights that a much lighter model
design, with a fresh perspective on utilizing the
information within the environments, suffices
for an effective exploration of exponentially
large action spaces. 1

1 Introduction

An intelligent agent that communicates in natu-
ral language space has been a long goal of artifi-
cial intelligence (Fang et al., 2017). Text-based
games (TGs) best suit this goal, since they allow
the agent to read the textual description of the
world and write the textual command to the world
(Hausknecht et al., 2020; Côté et al., 2018). In TGs,
the agent should perform natural language under-
standing (NLU), sequential reasoning and natural
language generation (NLG) to generate a series of
actions to accomplish the goal of the game, i.e. ad-
venture or puzzle (Hausknecht et al., 2020). The
language perspective of TGs foists environments
partially observable and action space combinatori-
ally large, making the task challenging. Since TGs
alert the player how much the game has proceeded

1The code is available at https://github.com/
ktr0921/tac

with the game score, reinforcement learning (RL)
naturally lends itself as a suitable framework.

Due to its language action space, an RL agent
in TGs typically deals with a combinatorially large
action space, motiving various design choices to
account for it. As two seminal works in this space,
Yao et al. (2020) trained a language model (LM)
to produce admissible actions2 for the given tex-
tual observation and then used, under the predicted
action list, Deep Reinforcement Relevance Net-
work to estimate the Q value. As an alternative,
Ammanabrolu and Hausknecht (2020) constructs a
knowledge graph (KG) to prune down action space
while learning the policy distribution through actor-
critic (AC) method and supervision signal from the
admissible actions. Both paradigms leverage ad-
missible actions at different stages at the cost of
imposing additional modules and increasing model
complexity.

In this paper, we take a fresh perspective on lever-
aging the information available in the TG environ-
ment to explore the action space without relying
on LMs or KGs. We propose a minimal form of
utilizing admissibility of actions to constrain the ac-
tion space during training while allowing the agent
to act independently to access the admissible ac-
tions during testing. More concretely, our proposed
training strategy, ϵ-admissible exploration, lever-
ages the admissible actions via random sampling
during training to acquire diverse and useful data
from the environment. Then, our developed text-
based actor-critic (TAC) agent learns the policy
distribution without any action space constraints.
It is noteworthy that our much lighter proposal is
under the same condition as other aforementioned
methods since all the prior works use admissible
actions in training the LM or the agent.

Our empirical findings, in Jericho, illustrate that

2Admissible actions are grounded actions that are guaran-
teed to change the world state produced by the environment
(Hausknecht et al., 2020; Côté et al., 2018).

https://github.com/ktr0921/tac
https://github.com/ktr0921/tac
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TAC with ϵ-admissible exploration has better or
on-par performance in comparison with the state-
of-the-art agents that use an LM or KG. Through
experiments, we observed that while previous meth-
ods have their action selections largely dependent
on the quality of the LM or KG, sampling admis-
sible actions helps with the action selection and
results in acquiring diverse experiences during ex-
ploration. While showing a significant success on
TGs, we hope our approach encourages alterna-
tive perspectives on leveraging action admissibility
in other domains of applications where the action
space is discrete and combinatorially large.

2 Basic Definitions

Text-based Games. TGs are game simulation
environments that take natural language commands
and return textual description of the world. They
have received significant attention in both NLP and
RL communities in recent years. Côté et al. (2018)
introduced TextWorld, a TG framework that au-
tomatically generates textual observation through
knowledge base in a game engine. It has sev-
eral hyper-parameters to control the variety and
difficulty of the game. Hausknecht et al. (2020)
released Jericho, an open-sourced interface for
human-made TGs, which has become the de-facto
testbed for developments in TG.
Admissible Action. A list of natural language ac-
tions that are guaranteed to be understood by the
game engine and change the environment in TGs
are called Admissible Actions. The term was intro-
duced in TextWorld while a similar concept also ex-
ists in Jericho under a different name, valid actions.
Hausknecht et al. (2020) proposed an algorithm
that detects a set of admissible actions provided by
Jericho suite by constructing a set of natural lan-
guage actions from every template with detectable
objects for a given observation and running them
through the game engine to return those actions
that changed the world object tree.
Template-based Action Space. Natural language
actions are built with template (T) and object (O)
from template-based action space. Each template
takes at most two objects. For instance, a template-
object pair (take OBJ from OBJ, egg, fridge)
produces a natural language action take egg from
fridge while (west,-,-) produces west.
Partially Observable Markov Decision Pro-
cess. TG environments can be formalized as
Partially Observable Markov Decision Processes

(POMDPs). A POMDP is defined as a 7-tuple,
(S,A,P,O,Po,R, γ), where S and A are a set
of state and action, and P is the state transition
probability that maps state-action pair to the next
state, Pr(st+1|st, at). O is a set of observation that
depends on the current state via an emission proba-
bility, Po ≡ Pr(ot|st). R is an immediate reward
signal held between the state and the next state,
r(st, st+1), and γ is the discount factor. The action
selection rule is referred to as the policy π(a|o), in
which the optimal policy acquires the maximum
rewards in the shortest move.
TG Environment as POMDP. Three textual ob-
servations are acquired from the engine, game feed-
back ogame, room description olook, and inventory
description oinv. The game feedback is depen-
dent on the previous action, Pr(ogame,t|st, at−1),
while room and inventory descriptions are not,
Pr(olook,t|st) and Pr(oinv,t|st). Inadmissible ac-
tions do not influence the world state, room and in-
ventory descriptions but change the game feedback
changes. Each action is sampled sequentially from
template-based action space. For template, we di-
rectly sample from observation π(aT|o) while an
object policy is sequentially produced, π(aO|o, â),
where â is previously sampled template-object pair.
The agent ought to find the optimal policy that max-
imizes the expected discounted sum of rewards, or
the return, Rt =

∑∞
k=0 γ

krt+k+1.
Traditional Reinforcement Learning. There are
three traditional algorithms in RL, Q-learning (QL),
policy gradient (PG) and actor-critic (AC). QL esti-
mates the return for a given state-action pair, or Q
value, Q(st, at) = E[

∑∞
k=0 γ

krt+k+1|st, at], then
selects the action of the highest Q value. However,
this requires the action space to be countably fi-
nite. To remedy this, PG directly learns the policy
distribution from the environment such that it max-
imizes the total return through Monte-Carlo (MC)
sampling. AC combines QL and PG, where it re-
moves MC in PG and updates the parameters per
each step with estimated Q value using QL. This
eliminates the high variance of MC as an exchange
of a relatively small bias from QL.

3 Related Work on TG Agents in RL

We provide a brief overview of widely known TG
agents relevant to the work presented in this paper.
We empirically compare these in the Section 5.1.
Contextual Action LM (CALM)-DRRN (Yao
et al., 2020) uses an LM (CALM) to produce a
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set of actions for a given textual observation from
the TGs. It is trained to map a set of textual ob-
servations to the admissible actions through causal
language modeling. Then, Deep Reinforcement
Relevance Network (DRRN) agent was trained on
the action candidates from CALM. DRRN follows
QL, estimating the Q value per observation-action
pair. As a result, CALM removes the need for the
ground truth while training DRRN.3

Knowledge Graph Advantage Actor Critic (KG-
A2C) (Ammanabrolu and Hausknecht, 2020) uses
the AC method to sequentially sample templates
and objects, and KGs for long-term memory and ac-
tion pruning. Throughout the gameplay, KG-A2C
organizes knowledge triples from textual observa-
tion using Stanford OpenIE (Angeli et al., 2015)
to construct a KG. Then, the KG is used to build
state representation along with encoded game ob-
servations and constrain object space with only the
entities that the agent can reach within KG, i.e. im-
mediate neighbours. They used admissible actions
in the cross entropy supervised loss.
KG-A2C Inspired Agents. Xu et al. (2020) pro-
posed SHA-KG that uses stacked hierarchical at-
tention on KG. Graph attention network (GAT)
was applied to sample sub-graphs of KG to enrich
the state representation on top of KG-A2C. Am-
manabrolu et al. (2020) used techniques inspired
by Question Answering (QA) with LM to construct
the KG. They introduced Q*BERT which uses AL-
BERT (Lan et al., 2020) fine-tuned on a dataset spe-
cific to TGs to perform QA and extract information
from textual observations of the game, i.e. “Where
is my current location?". This improved the qual-
ity of KG, and therefore, constituted better state
representation. Ryu et al. (2022) proposed an explo-
ration technique that injects commonsense directly
into action selection. They used log-likelihood
score from commonsense transformer (Bosselut
et al., 2019) to re-rank actions. Peng et al. (2021) in-
vestigated explainable generative agent (HEX-RL)
and applied hierarchical graph attention to sym-
bolic KG-based state representations. This was to
leverage the graph representation based on its sig-
nificance in action selection. They also employed
intrinsic reward signal towards the expansion of
KG to motivate the agent for exploration (HEX-
RL-IM) (Peng et al., 2021).

3It is noteworthy, orthogonal to the focus of our work, the
recently proposed eXploit-Then-eXplore (Tuyls et al., 2022)
uses LM and admissible actions to resolve another challenge,
exploration-exploitation dilemma in TGs.

All the aforementioned methods utilize admissi-
ble actions in training the LM or agent. Our pro-
posed method, introduced shortly (§4), uses admis-
sible actions as action constraints during training
without relying on KG or LM.

4 Text-based Actor Critic (TAC)

Our agent, Text-based Actor Critic (TAC), follows
the Actor-Critic method with template-object de-
coder. We provide an overview of the system in
Figure 1 and a detailed description in below. We
follow the notation introduced earlier in Section 2.
Encoder. Our design consists of text and state
encoders. Text encoder is a single shared bi-
directional GRU with different initial hidden state
for different input text, (ogame, olook, oinv, aN ). The
state representation only takes encoded textual ob-
servations while the natural language action aN
is encoded to be used by the critic (introduced
shortly). State encoder embeds game scores into
a high dimensional vector and adds it to the en-
coded observation. This is then, passed through a
feed-forward neural network, mapping an instance
of observation to state representation without the
history of the past information.
Actor. The Actor-Critic design is used for our RL
component. We describe our generative actor first.
Our actor network maps from state representation
to action representation. Then, the action repre-
sentation is decoded by GRU-based template and
object decoders (Ammanabrolu and Hausknecht,
2020). Template decoder takes action representa-
tion and produces the template distribution and the
context vector. Object decoder takes action repre-
sentation, semi-completed natural language action
and the context from template decoder to produce
object distribution sequentially.
Critic. Similar to (Haarnoja et al., 2018), we em-
ployed two types of critics for practical purpose,
state critic for state value function and state-action
critic for state-action value function. Both crit-
ics take the state representation as input, but state-
action critic takes encoded natural language action
as an additional input. The textual command pro-
duced by the decoder is encoded with text encoder
and is passed through state-action critic to predict
state-action value, or Q value, for a given command.
A more detailed diagram for Actor and Critic is in
Appendix D. To smooth the training, we introduced
target state critic as an exponentially moving av-
erage of state critic (Mnih et al., 2015). Also, the
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Figure 1: Text-based Actor-Critic (TAC); A blue circle is the input to the encoder, (nscore, ogame, olook, oinv) repre-
senting (game score, game feedback, room description, inventory), while a red circle is the output from actor, aN
representing natural language action. Blue, red and green boxes indicate encoder, actor and critic, respectively.

two state-action critics are independently updated
to mitigate positive bias in the policy improvement
(Fujimoto et al., 2018). We used the minimum of
the two enhanced critic networks outputs as our
estimated state-action value function.

Objective Function. Our objective functions are
largely divided into two, RL and SL. RL objectives
are for reward maximization LR, state value pre-
diction LV, and state-action value prediction LQ.
We overload the notation of θ: for instance, Vθ(o)
signifies parameters from the encoder to the critic,
and πθ(a|o) from the encoder to the actor. Reward
maximization is done as follows,

LR = −E [A(o, a)∇θ lnπθ (a|o)] , (1)

A(o, a) = Qθ(o, a)− Vθ(o), (2)
where A(o, a) is the normalized advantage function
with no gradient flow.

LV = E
[
∇θ

(
Vθ(o)−

(
r + γVθ̄(o

′)
))]

, (3)

LQ = E
[
∇θ

(
Qθ(o, a)−

(
r + γVθ̄(o

′)
))]

, (4)

where o′ is observation in the next time step and θ̄
signifies the parameters containing the target state
critic, updated as moving average with τ ,

θ̄v = τθv + (1− τ)θ̄v. (5)

Our SL updates the networks to produce valid
templates and valid objects,

LT =
1

|T|
∑
aT∈T

(yaT ln (πθ(aT|o))

+ (1− yaT) (1− ln (πθ(aT|o)))),
(6)

LO =
1

|O|
∑
aO∈O

(yaO ln (πθ(aO|o, â))

+ (1− yaO) (1− ln (πθ(aO|o, â)))),
(7)

yaT =

{
1 aT ∈ Ta

0 otherwise
yaO =

{
1 aO ∈ Oa

0 otherwise

where LT and LO are the cross entropy losses over
the templates (T) and objects (O). Template and ob-
ject are defined as aT and aO, while â is the action
constructed by previously sampled template and
object. Positive samples, yaT and yaO , are only if
the corresponding template or object are in the ad-
missible template (Ta) or admissible object (Oa).4

The final loss function is constructed with λ coeffi-
cients to control for trade-offs,

L = λRLR+λVLV+λQLQ+λTLT+λOLO. (8)

Our algorithm is akin to vanilla A2C proposed by
Ammanabrolu and Hausknecht (2020) with some
changes under our observations. A detailed com-
parison and qualitative analysis are in Appendix E
and F.

ϵ-admissible Exploration. We use a simple ex-
ploration technique during training, which sam-
ples the next action from admissible actions with
ϵ probability threshold. For a given state s, de-
fine Aa(s) ⊆ AN as an admissible action subset
of all natural language actions set. We sample an
action directly from admissible action set under
uniform distribution, aN ∼ U(Aa(s)). Formally,
we uniformly sample p ∈ [0, 1] per every step,

β(a|s) =

{
U(Aa(s)) p < ϵ

π(a|s) p ≥ ϵ
(9)

This collects diverse experiences from altering the
world with admissible actions. We also tried a
variant where the ϵ is selected adaptively given the
game score the agent has achieved. However, this
variant under-performed the static ϵ. See Appendix
I for more details on this and the results.

4Eq. 7 is calculated separately for two objects in a single
template, where the admissible object space (Oa) is condi-
tioned on the previously sampled template and object.
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LM-BASED KG-BASED

Games CALM-DRRN KG-A2C SHA-KG Q*BERT HEX-RL HEX-RL-IM TAC

BALANCES 9.1 10.0 9.8 10.0 10.0 10.0 10.0 ± 0.1
DEEPHOME 1.0 1.0 1.0 1.0 1.0 1.0 25.4 ± 3.2
DETECTIVE 289.7 207.9 246.1 274.0 276.7 276.9 272.3 ± 23.3
LIBRARY 9.0 14.3 10.0 18.0 15.9 13.8 18.0 ± 1.2
LUDICORP 10.1 17.8 17.6 18.0 14.0 17.6 7.7 ± 2.5
PENTARI 0.0 50.7 48.2 50.0 34.6 44.7 53.2 ± 2.9
TEMPLE 0.0 7.6 7.9 8.0 8.0 8.0 5.8 ± 2.3
ZORK1 30.4 34.0 33.6 35.0 29.8 30.2 46.3 ± 5.0
ZORK3 0.5 0.1 0.7 0.1 − − 1.6 ± 1.2
ZTUU 3.7 5.0 5.0 5.0 5.0 5.1 33.2 ± 26.3

NORMALIZED MEAN 0.1549 0.2475 0.2490 0.2788 0.2722† 0.2834† 0.3307

Table 1: Game score comparison over 10 popular game environments in Jericho, with best results highlighted by
boldface. We only included algorithms that reported the end performance. †HEX-RL and HEX-RL-IM did not
report the performance in ZORK3 and are not open-sourced, so the mean average did not account ZORK3.
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Figure 2: The full learning curve of TAC on five games in Jericho suite. Blue and red plots are training and testing
game score while cyan and yellow star marker line signify CALM-DRRN and KG-A2C.

5 Experiments

In this section, we provide a description of our
experimental details and discuss the results. We
selected a wide variety of agents (introduced in Sec-
tion 3) utilizing the LM or the KG: CALM-DRRN
(Yao et al., 2020) and KG-A2C (Ammanabrolu and
Hausknecht, 2020) as baselines, and SHA-KG (Xu
et al., 2020), Q*BERT (Ammanabrolu et al., 2020),
HEX-RL and HEX-RL-IM (Peng et al., 2021) as
state-of-the-art (SotA).
Experimental Setup. Similar to KG-A2C, we
train our agent on 32 parallel environments with 5
random seeds. We trained TAC on games of Jeri-
cho suite with 100k steps and evaluated with 10
episodes per every 500 training step. During the
training, TAC uses uniformly sampled admissible
action for a probability of ϵ and during the testing,
it follows its policy distribution generated from the
game observations. We used prioritized experience
replay (PER) as our replay buffer (Schaul et al.,
2016). We first fine-tune TAC on ZORK1, then ap-
ply the same hyper-parameters for all the games.
The details of our hyper-parameters can be found
in Appendix A. Our final score is computed as the
average of 30 episodic testing game scores. Addi-
tionally, our model has a parameter size of less than

2M, allowing us to run the majority of our experi-
ments on CPU (Intel Xeon Gold 6150 2.70 GHz).
The full parameter size in ZORK1 and the training
time comparison can be found in Appendices B
and C.

5.1 Main Results
Table 1 reports the results for baselines, SotAs and
TAC on 10 popular Jericho games. TAC attains the
new SotA scores in 5 games. Apart from PENTARI,
TAC surpasses 4 games with a large margin, where
all of the other agents fail to pass the performance
bottleneck (DEEPHOME with 1, ZORK1 with 35,
ZORK3 with 1, and ZTUU with 5). In DETECTIVE,
TAC matches many SotAs, but falls short in LUDI-
CORP and TEMPLE. Nevertheless, TAC achieves
the highest mean score over LM or KG-based meth-
ods.

On a larger set of 29 games in comparison with
the baselines, TAC surpasses CALM-DRRN in
14 out of 29 games and KG-A2C in 16 out of
29 games and achieves more than ∼ 50% higher
score than both CALM-DRRN and KG-A2C with
normalized mean score. Per game, in SORCERER,
SPIRIT, ZORK3 and ZTUU, TAC achieves at least
∼ 200% and at most ∼ 400% higher score.. In
ACORNCOURT, DEEPHOME and DRAGON, both
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Figure 4: The learning curve of TAC for stronger supervised signals where 5-3 signifies λT = 5 and λO = 3. Left
two plots are with ϵ = 0.3 and right two are with ϵ = 0.

CALM-DRRN and KG-A2C fails to achieve any
game score (approximately 0), but TAC achieves
the score of +3.4, +25.4 and +2.81 For detailed
game scores and the full learning curves on 29
games, please refer to Appendix G.

There are a few games that TAC under-performs.
We speculate three reasons for this: over-fitting,
exploration, and catastrophic forgetting. For in-
stance, as illustrated by the learning curves of TAC
in Figure 2, LUDICORP appears to acquire more
reward signals during training, but fails to achieve
them during testing. We believe this is because
the agent is over-fitted to spurious features in spe-
cific observations (Song et al., 2020), producing
inadmissible actions for a given state that are ad-
missible in other states. On the other hand, TAC
in OMNIQUEST cannot achieve a game score more
than 5 in both training and testing. This is due to
the lack of exploration, where the agent is stuck at
certain states because the game score is too far to
reach. This, in fact, occurs in ZORK3 and ZTUU for
some random seeds, where few seeds in ZORK3 do
not achieve any game score while ZTUU achieves
10 or 13 only, resulting in high variance. Finally,
catastrophic forgetting (Kirkpatrick et al., 2016) is
a common phenomenon in TGs (Hausknecht et al.,
2020; Ammanabrolu and Hausknecht, 2020), and
this is also observed in JEWEL with TAC.
Training Score vs. Testing Score. Figure 2 shows
that the game scores during training and testing in
many games are different. There are three inter-

pretations for this: (i) the ϵ-admissible exploration
triggers negative rewards since it is uniformly sam-
pling admissible actions. It is often the case that
negative reward signal triggers termination of the
game, i.e. −10 score in ZORK1, so this results in
episodic score during training below testing. (ii)
the ϵ-admissible exploration sends the agent to the
rarely or never visited state, which is commonly
seen in ZTUU. This induces the agent taking use-
less actions that would not result in rewards since it
does not know what to do. (iii) Over-fitting where
testing score is lower than training score. This
occurs in LUDICORP, where the agent cannot es-
cape certain states with its policy during testing.
ϵ-admissible exploration lets the agent escape from
these state during training, and therefore, achieves
higher game score.

5.2 Ablation

ϵ-Admissible Exploration. To understand how
ϵ influences the agent, ablations with two ϵ val-
ues, 0.0 and 1.0, on five selective games were
conducted. As shown in Figure 3, in the case
of ϵ = 0.0, the agent simply cannot acquire re-
ward signals. TAC achieves 0 game score in RE-
VERB, ZORK1 and ZORK3 while it struggles to
learn in DETECTIVE and PENTARI. This indicates
that the absence of ϵ-admissible exploration results
in meaningless explorations until admissible ac-
tions are reasonably learned through supervised
signals. With ϵ = 1.0, learning becomes unstable
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since this is equivalent to no exploitation during
training, not capable of observing reward signals
that are far from the initial state. Hence, tuned
ϵ is important to allow the agent to cover wider
range of states (exploration) while acting from its
experiences (exploitation).

Supervised Signals. According to the Figure
3, removing SL negatively affects the game score.
This is consistent with the earlier observations (Am-
manabrolu and Hausknecht, 2020) reporting that
KG-A2C without SL achieves no game score in
ZORK1. However, as we can observe, TAC man-
ages to retain some game score, which could be
reflective of the positive role of ϵ-admissible explo-
ration, inducing similar behaviour to SL.

From the observation that the absence of SL de-
grades the performance, we hypothesize that SL
induces a regularization effect. We ran experiments
with various strengths of supervised signals by in-
creasing λT and λO in LUDICORP and TEMPLE, in
which TAC attains higher scores at training com-
pared with testing. As seen in Figure 4 (left two
plots), higher λT and λO relaxes over-fitting, reach-
ing the score from 7.7 to 15.8 in LUDICORP and
from 5.8 to 8.0 in TEMPLE. Since SL is not directly
related to rewards, this supports that SL acts as reg-
ularization. Further experimental results on ZORK1
is in Appendix H.

To further examine the role of admissible actions
in SL, we hypothesize that SL is responsible for
guiding the agent in the case that the reward sig-
nal is not collected. To verify this, we excluded
ϵ-admissible exploration and ran TAC with differ-
ent λT and λO in REVERB and ZORK1, in which
TAC fails to achieve any score. According to Fig-
ure 4 (right two plots), TAC with stronger SL and
ϵ = 0.0 achieves game scores from 0 to 8.3 in
REVERB, and from 0 to 18.3 in ZORK1, which sug-
gests that SL acts as guidance. However, in the
absence of ϵ-admissible exploration, despite the
stronger supervised signals, TAC cannot match the
scores using ϵ-admissible exploration.

Admissible Action Space During Training. To
examine if constraining the action space to admis-
sible actions during training leads to better uti-
lization, we ran an ablation by masking template
and object with admissible actions at training time.
This leads to only generating admissible actions.
Our plots in Figure 3 show that there is a reduction
in the game score in PENTARI, REVERB and ZORK1
while DETECTIVE and ZORK3 observe slight to

Game Kitchen. On the table is an elongated brown sack, smelling of hot
peppers. A bottle is sitting on the table. The glass bottle contains:
A quantity of water.

Inventory You are carrying: A painting, A brass lantern (providing light)
Room Kitchen. You are in the kitchen of the white house. A table seems

to have been used recently for the preparation of food. A passage
leads to the west and a dark staircase can be seen leading upward.
A dark chimney leads down and to the east is a small window
which is open. On the table is an elongated brown sack, smelling
of hot peppers. A bottle is sitting on the table. The glass bottle
contains: A quantity of water

LM
Actions

‘close bottle’, ‘close door’, ‘down’, ‘drink water’, ‘drop bottle’,
‘drop painting’, ‘east’, ‘empty bottle’, ‘get all’, ‘get bottle’, ‘get
on table’, ‘get painting’, ‘get sack’, ‘north’, ‘open bottle’, ‘out’,
‘pour water on sack’, ‘put candle in sack’, ‘put painting in sack’,
‘put painting on sack’, ‘put water in sack’, ‘south’, ‘take all’,
‘take bottle’, ‘take painting’, ‘take sack’, ‘throw painting’, ‘up’,
‘wait’, ‘west’

KG
Objects

‘a’, ‘all’, ‘antique’, ‘board’, ‘bottle’, ‘brass’, ‘chimney’, ‘dark’,
‘door’, ‘down’, ‘east’, ‘exit’, ‘front’, ‘grue’, ‘house’, ‘is’,
‘kitchen’, ‘lantern’, ‘large’, ‘light’, ‘narrow’, ‘north’, ‘of’,
‘passage’, ‘path’, ‘quantity’, ‘rug’, ‘south’, ‘staircase’, ‘table’,
‘to’, ‘trap’, ‘trophy’, ‘up’, ‘west’, ‘white’, ‘window’, ‘with’

Admiss.
Actions

‘close window’, ‘east’, ‘jump’, ‘open bottle’, ‘open sack’, ‘put
down all’, ‘put down light’, ‘put down painting’, ‘put light on
table’, ‘put out light’, ‘put painting on table’, ‘take all’, ‘take
bottle’, ‘take sack’, ‘throw light at window’, ‘up’, ‘west’

Table 2: Action space for a game observation (top panel)
for CALM (LM), KG-A2C (KG), and the Admissible
Action sets. Red and blue colored actions are the actions
missed by either CALM or KG-A2C. Brown are the
actions missed by both, and blacks are actions covered
by both.

substantial increases, respectively. We speculate
that the performance decay is due to the exposure
bias (Bengio et al., 2015) introduced from fully
constraining the action space to admissible actions
during training. This means the agent does not
learn how to act when it receives observations from
inadmissible actions at test phase. However, for
games like ZORK3, where the agent must navigate
through the game to acquire sparse rewards, this
technique seems to help.

5.3 Qualitative Analysis
In this section, we show how CALM and KG-A2C
restrict their action space. Table 2 shows a snip-
pet of the gameplay in ZORK1. Top three rows
are the textual observations and the bottom three
rows are the actions generated by CALM, the ob-
jects extracted from KG in KG-A2C, and the ad-
missible actions from the environment. CALM
produces 30 different actions, but still misses 10
actions out of 17 admissible actions. Since DRRN
learns to estimate Q value over generated 30 ac-
tions, those missing admissible actions can never
be selected, resulting in a lack of exploration. On
the other hand, KG-generated objects do not in-
clude ‘sack’ and ‘painting’, which means that the
KG-A2C masks these two objects out from their
object space. Then, the agent neglects any action
that includes these two object, which also results
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in a lack of exploration.

6 Discussion

Supervised Learning Loss. Intuitively, RL is to
teach the agent how to complete the game while
SL is to teach how to play the game. If the agent
never acquired any reward signal, learning is only
guided by SL. This is equivalent to applying imita-
tion learning to the agent to follow more probable
actions, a.k.a. admissible actions in TGs. However,
in the case where the agent has reward signals to
learn from, SL turns into regularization (§5.2), in-
ducing a more uniformly distributed policies. In
this sense, SL could be considered as the means to
introduce the effects similar to entropy regulariza-
tion in Ammanabrolu and Hausknecht (2020).

Exploration as Data Collection. In RL, the al-
gorithm naturally collects and learns from data.
Admissible action prediction from LM is yet to
be accurate enough to replace the true admissi-
ble actions (Ammanabrolu and Riedl, 2021; Yao
et al., 2020). This results in poor exploration and
the agent may potentially never reach a particu-
lar state. On the other hand, KG-based methods
(Ammanabrolu and Hausknecht, 2020; Peng et al.,
2021; Xu et al., 2020, 2021, 2022; Ryu et al., 2022)
must learn admissible actions before exploring the
environment meaningfully. This will waste many
samples since the agent will attempt inadmissible
actions, collecting experiences of the unchanged
states. Additionally, its action selection is largely
dependent on the quality of KG. The missing ob-
jects from KG may provoke the same effects as
LM, potentially obstructing navigating to a particu-
lar state. In this regards, ϵ-admissible exploration
can overcome the issue by promoting behaviour
that the agent would take after learning admissible
actions fully. Under such conditions that a compact
list of actions is either provided the environment or
extracted by algorithm (Hausknecht et al., 2020),
our approach can be employed. Intuitively, this is
similar to playing the game with a game manual
but not a ground truth to complete the game, which
leads to collecting more meaningful data. It also
collects more diverse data due to the stochasticity
of exploration. Hence, TAC with ϵ-admissible ex-
ploration can learn how to complete the game with
minimal knowledge of how to play the game.

Bias in Exploration. Our empirical results from
adaptive ϵ experiments in Appendix I suggest that

reasonable ϵ is required for both under-explored
states and well-explored states. This could indi-
cate that diverse data collection is necessary re-
gardless of how much the agent knows about the
game while ϵ value should not be too high such
that the agent can exploit. Finally, from our abla-
tion, fully constraining action space to admissible
actions degrades performance. This could be a sign
of exposure bias, which is a typical issue in NLG
tasks (He et al., 2019; Mandya et al., 2020) and oc-
curs between the training-testing discrepancy due
to the teacher-forcing done at training (He et al.,
2019). In our setting, this phenomena could poten-
tially occur if the agent only learns from admissible
actions at training time. Since ϵ-admissible explo-
ration allows a collection of experiences of any
actions (i.e., potentially inadmissible actions) with
probability of 1− ϵ, TAC with reasonable ϵ learns
from high quality and unbiased data. Our obser-
vations indicate that both the algorithm that learns
from data, and the exploration to acquire data are
equally important.

7 Conclusion

Text-based Games (TGs) offer a unique frame-
work for developing RL agents for goal-driven
and contextually-aware natural language genera-
tion tasks. In this paper we took a fresh approach
in utilizing the information from the TG environ-
ment, and in particular the admissibility of actions
during the exploration phase of RL agent. We intro-
duced a language-based actor critic method (TAC)
with a simple ϵ-admissible exploration. The core
of our algorithm is the utilization of admissible
actions in training phase to guide the agent explo-
ration towards collecting more informed experi-
ences. Compared to state-of-the-art approaches
with more complex design, our light TAC design
achieves substantially higher game scores across
10-29 games.

We provided insights into the role of action ad-
missibility and supervision signals during training
and the implications at test phase for an RL agent.
Our analysis showed that supervised signals to-
wards admissible actions act as guideline in the
absence of reward signal, while serving a regular-
ization role in the presence of such signal. We
demonstrated that reasonable ϵ probability thresh-
old is required for high quality unbiased experience
collection during the exploration phase.
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Appendices

In this section, we provide the details of TAC, train-
ing, and full experimental results. We also provide
Limitations and Ethical Considerations.

A Hyperparameters

Table 3 shows the hyper-parameters used for our ex-
periments. For 905, ADVENT, ANCHOR, AWAKEN,
DEEPHOME, INHUMANE and MOONLIT, gradi-
ents exploding has been observed with the hyper-
parameters in Table 3, so we reduced learning rate
to 10−5 for these games.

Training
# of parallel environments 32
pva 0.3

Optimization
Batch size 64
Learning rate 10−4

Weight decay 10−6

Clip 5
γ 0.95
τ 0.001

Parameter size
Word embedding dimension 100
Hidden dimension 128

Replay buffer
Memory size 105

α 0.7
β 0.3

Weights for objectives
λR 1.0
λV 1.0
λQ 1.0
λT 1.0
λO 1.0

Table 3: Hyper-parameters for main experiments.

B Parameter Size for ZORK1

The total parameter size of TAC in ZORK1 is
1,783,849 with 49,665 target state critic, which
slightly varies by the size of template and object
space per game. This is much lower than KG-
A2C (4,812,741), but little higher than DRRN
(1,486,081).5

C Training Time

We used Intel Xeon Gold 6150 2.70 GHz for CPU
and Tesla V100-PCIE-16GB for GPU, 8 CPUs
with 25GB memory, to train KG-A2C and TAC
on ZORK1. The results are demonstrated in Ta-
ble 5.6 Our TAC has approximately three times
lesser parameters than KG-A2C in ZORK1, which

5The code for KG-A2C is in https://github.com/
rajammanabrolu/KG-A2C, and DRRN is in https://
github.com/microsoft/tdqn.

6The code for KG-A2C is in https://github.com/
rajammanabrolu/KG-A2C.

Table 4: Parameter size for ZORK1.

Name Size
text_encoder_network.embedding.weight [8000,100]
text_encoder_network.embedding_sa.weight [4,128]
text_encoder_network.encoder.weight_ih_l0 [384,100]
text_encoder_network.encoder.weight_hh_l0 [384,128]
text_encoder_network.encoder.bias_ih_l0 [384]
text_encoder_network.encoder.bias_hh_l0 [384]
state_network.embedding_score.weight [1024,128]
state_network.tf.weight [128,384]
state_network.tf.bias [128]
state_network.fc1.weight [128,128]
state_network.fc1.bias [128]
state_network.fc2.weight [128,128]
state_network.fc2.bias [128]
state_network.fc3.weight [128,128]
state_network.fc3.bias [128]
state_network.s.weight [128,128]
state_network.s.bias [128]
state_critic.fc1.weight [128,128]
state_critic.fc1.bias [128]
state_critic.fc2.weight [128,128]
state_critic.fc2.bias [128]
state_critic.fc3.weight [128,128]
state_critic.fc3.bias [128]
state_critic.v.weight [1,128]
state_critic.v.bias [1]
actor_network.fc1.weight [128,128]
actor_network.fc1.bias [128]
actor_network.fc2.weight [128,128]
actor_network.fc2.bias [128]
actor_network.fc3.weight [128,128]
actor_network.fc3.bias [128]
actor_network.a.weight [128,128]
actor_network.a.bias [128]
state_action_critic_1.fc1.weight [128,256]
state_action_critic_1.fc1.bias [128]
state_action_critic_1.fc2.weight [128,128]
state_action_critic_1.fc2.bias [128]
state_action_critic_1.fc3.weight [128,128]
state_action_critic_1.fc3.bias [128]
state_action_critic_1.q.weight [1,128]
state_action_critic_1.q.bias [1]
state_action_critic_2.fc1.weight [128,256]
state_action_critic_2.fc1.bias [128]
state_action_critic_2.fc2.weight [128,128]
state_action_critic_2.fc2.bias [128]
state_action_critic_2.fc3.weight [128,128]
state_action_critic_2.fc3.bias [128]
state_action_critic_2.q.weight [1,128]
state_action_critic_2.q.bias [1]
target_state_critic.fc1.weight [128,128]
target_state_critic.fc1.bias [128]
target_state_critic.fc2.weight [128,128]
target_state_critic.fc2.bias [128]
target_state_critic.fc3.weight [128,128]
target_state_critic.fc3.bias [128]
target_state_critic.v.weight [1,128]
target_state_critic.v.bias [1]
template_decoder_network.tmpl_gru.weight_ih_l0 [384,128]
template_decoder_network.tmpl_gru.weight_hh_l0 [384,128]
template_decoder_network.tmpl_gru.bias_ih_l0 [384]
template_decoder_network.tmpl_gru.bias_hh_l0 [384]
template_decoder_network.fc2.weight [128,128]
template_decoder_network.fc2.bias [128]
template_decoder_network.tmpl.weight [235,128]
template_decoder_network.tmpl.bias [235]
object_decoder_network.obj_gru.weight_ih_l0 [384,256]
object_decoder_network.obj_gru.weight_hh_l0 [384,128]
object_decoder_network.obj_gru.bias_ih_l0 [384]
object_decoder_network.obj_gru.bias_hh_l0 [384]
object_decoder_network.fc2.weight [128,128]
object_decoder_network.fc2.bias [128]
object_decoder_network.obj.weight [699,128]
object_decoder_network.obj.bias [699]

would be consistent across different games. On
the other hand, for step per second, TAC is twice
faster in GPU and thrice faster in CPU than KG-
A2C. Approximated days for training TAC on CPU
and GPU are 1.2 and 0.8 days while KG-A2C is
4.1 and 1.6 days. TAC still benefits from GPU,
but not as much as KG-A2C as its training time
is more dependent to the game engine than back-
propagation.

Step/second (CPU) Step/second (GPU) Parameter Size
KG-A2C 0.28 0.71 4.8M

TAC 0.99 1.43 1.8M

Table 5: Training time as step per second in CPU and
GPU and total parameter size for ZORK1.

https://github.com/rajammanabrolu/KG-A2C
https://github.com/rajammanabrolu/KG-A2C
https://github.com/microsoft/tdqn
https://github.com/microsoft/tdqn
https://github.com/rajammanabrolu/KG-A2C
https://github.com/rajammanabrolu/KG-A2C
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Figure 5: The details of actor and critic of text-based actor-critic; State representation is the input to actor-critic
while a red circle is the output from actor, aN representing natural language action. Red and green boxes indicate
actor and critic, respectively.

D Details of Actor and Critic
Components

Consider an action example (take OBJ from OBJ,
egg, fridge) as (template, first object, second ob-
ject). Template aT = (take OBJ from OBJ) is
sampled from template decoder and encoded to hT
with text encoder. Object decoder takes action rep-
resentation a and encoded semi-completed action
hT and produces the first object aO1 = (egg). The
template aT = (take OBJ from OBJ) and the first
object aO1 = (egg) are combined to aT,O1 = (take
egg from OBJ), aT ⊗ aO1 = aT,O1. aT,O1 is then,
encoded to hidden state hT,O1 with text encoder.
Similarly, the object decoder takes a and hT,O1 and
produces the second object aO2 = (fridge). aT,O1

and aO2 are combined to be natural language ac-
tion, aT,O1 ⊗ aO2 = aN Finally, aN is encoded to
ha with text encoder and inputted to state-action
critic to predict Q value.

E Comparison with Vanilla A2C in
Ammanabrolu and Hausknecht (2020)

Architecture. Vanilla A2C from Ammanabrolu
and Hausknecht (2020) uses separate gated recur-
rent units (GRUs) to encode textual observations
and previous action, (ogame, olook, oinv, at−1), and
transforms the game score, nscore, into binary en-
coding. Then, they are concatenated and passed
through state network to form state representation.
Their state network is GRU-based to account histor-
ical information. The actor-critic network consists
of actor and state value critic, so the state represen-
tation is used to estimate state value and produce
the policy distribution.

Our TAC uses a single shared GRU to encode
textual observations and previous action with differ-
ent initial state to signify that the text encoder con-

structs the general representation of text while the
game score is embedded to learnable high dimen-
tional vector. However, when constructing state
representation, we only used (ogame, olook, oinv) un-
der our observation that ogame carries semantic in-
formation about at−1. Additionally, we also ob-
served that the learned game score representation
acts as conditional vector in Appendix F, so the
state representation is constructed as an instance
of observation without historical information. Fi-
nally, we included additional modules, state-action
value critic (Haarnoja et al., 2018), target state critic
(Mnih et al., 2015) and two state-action critics (Fu-
jimoto et al., 2018; Haarnoja et al., 2018) for prac-
tical purpose.

Objective Function. Three objectives are em-
ployed in Ammanabrolu and Hausknecht (2020),
reinforcement learning (RL), supervised learning
(SL) and entropy regularization. Both RL and SL
are also used in our objectives with minor changes
in value function update in RL. That is, two state-
action value critics are updated independently to
predict Q value per state-action pair and target state
critic is updated as moving average of state critic
Notable difference is that we excluded entropy reg-
ularization from Ammanabrolu and Hausknecht
(2020). This is because under our ablation in Sec-
tion 5.2, we observed that SL acts as regulariza-
tion.

Replay Buffer Unlike on-policy vanilla A2C
(Ammanabrolu and Hausknecht, 2020), since TAC
utilizes ϵ-admissible exploration, it naturally sits
as off-policy algorithm. We used prioritized expe-
rience replay (PER) as our replay buffer (Schaul
et al., 2016). Standard PER assigns a newly ac-
quired experience with the maximum priority. This
enforces the agent to prioritize not-yet-sampled ex-
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Case 1.1
Step: 4
Game: Kitchen You are in the kitchen of the white house. A table seems to have been used recently for the preparation of food. A passage leads to the
west and a dark staircase can be seen leading upward. A dark chimney leads down and to the east is a small window which is open. On the table is an
elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle contains: A quantity of water
Look: Kitchen You are in the kitchen of the white house. A table seems to have been used recently for the preparation of food. A passage leads to the
west and a dark staircase can be seen leading upward. A dark chimney leads down and to the east is a small window which is open. On the table is an
elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle contains: A quantity of water
Inv: You are empty handed.
Score: 10
Action: west

Case 1.2
Step: 15
Game: Kitchen On the table is an elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle contains: A
quantity of water
Look: Kitchen You are in the kitchen of the white house. A table seems to have been used recently for the preparation of food. A passage leads to the
west and a dark staircase can be seen leading upward. A dark chimney leads down and to the east is a small window which is open. On the table is an
elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle contains: A quantity of water
Inv: You are carrying: A painting A brass lantern (providing light)
Score: 39
Action: west

Case 1.3
Step: 20
Game: Kitchen On the table is an elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle contains: A
quantity of water
Look: Kitchen You are in the kitchen of the white house. A table seems to have been used recently for the preparation of food. A passage leads to the
west and a dark staircase can be seen leading upward. A dark chimney leads down and to the east is a small window which is open. On the table is an
elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle contains: A quantity of water
Inv: You are empty handed.
Score: 45
Action: east

Table 6: Case 1; Game observation and the selected action snippets from ZORK1.

Case 1.1
nscore = 10 nscore = 39 nscore = 45

π(aT|o) Q(o, a) π(aT|o) Q(o, a) π(aT|o) Q(o, a)
west 0.9998 23.7460 0.000 4.1434 0.000 5.0134
east 0.000 18.4385 0.5674 5.1640 0.9996 6.0319

Case 1.2
nscore = 10 nscore = 39 nscore = 45

π(aT|o) Q(o, a) π(aT|o) Q(o, a) π(aT|o) Q(o, a)
west 0.9975 27.6005 0.9819 8.3794 0.8967 8.0586
east 0.000 23.6015 0.0002 6.5284 0.000 6.4848

Case 1.3
nscore = 10 nscore = 39 nscore = 45

π(aT|o) Q(o, a) π(aT|o) Q(o, a) π(aT|o) Q(o, a)
west 0.7872 22.2419 0.0001 4.9664 0.000 5.0169
east 0.0055 19.1751 0.7821 5.7299 0.9999 6.2653

Table 7: Case 1; The changes in policy and Q value based on the score embedding from ZORK1.

periences over others. As we are using 32 parallel
environments and 64 batch size for update, half
of the updates will be directed by newly acquired
experiences, which not all of them may be useful.
Thus, instead, we assign newly acquired experience
with TD errors when they are added to the buffer.
This risks the agent not using some experiences,
but it is more efficient since we sample useful batch
of experiences.

F Qualitative Analysis

It has been repetitively reported that including
game score when constructing state helps in TGs
(Ammanabrolu and Hausknecht, 2020; Jang et al.,
2021). Here, we provide some insights in what
the agent learns from the observations using fully
trained TAC. To illustrate this, we highlight the role
of game score on the action preference of the TAC
for the same observation in ZORK1. Observations
for different cases can be found in Table 6 and Ta-

ble 8 while the policy and Q value are in Table 7
and Table 9.

Case 1 in Table 6 and Table 7 For three differ-
ent cases, Case 1.1, Case 1.2, and Case 1.3,
the agent is at Kitchen location, so many seman-
tic meaning between textual observations are sim-
ilar, i.e. olook or oinv. For each case, the agent
is meant to go west with nscore = 10, go west
with nscore = 39, and go east with nscore = 45,
respectively. In Case 1.1, despite the optimal
choice of action is west, by replacing the score
from nscore = 10 to nscore = 45, the agent chooses
east, which is appropriate for Case 1.3. Another
interesting observation is that replacing game score
decreases Q value from 23.7460 to 5.0134 for west
and from 18.4385 to 6.0319 for east in Case 1.1.
This seems like the agent thinks it has already ac-
quired reward signals between nscore = 10 and
nscore = 45, resulting in a reduction in Q value.
We speculate that this is because the embedding
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Case 2.1
Step: 2
Game: Behind House You are behind the white house. A path leads into the forest to the east. In one corner of the house there is a small window which
is slightly ajar.
Look: Behind House You are behind the white house. A path leads into the forest to the east. In one corner of the house there is a small window which
is slightly ajar.
Inv: You are empty handed.
Score: 0
Action: open window

Case 2.2
Step: 3
Game: With great effort, you open the window far enough to allow entry.
Look: Behind House You are behind the white house. A path leads into the forest to the east. In one corner of the house there is a small window which
is open.
Inv: You are empty handed.
Score: 0
Action: west

Case 2.3
Step: 21
Game: Behind House
Look: Behind House You are behind the white house. A path leads into the forest to the east. In one corner of the house there is a small window which
is open.
Inv: You are empty handed.
Score: 45
Action: north

Table 8: Case 2; Game observation and the selected action snippets from ZORK1.

Case 2.1
nscore = 0 nscore = 45

π(aT|o) Q(o, a) π(aT|o) Q(o, a)
open window 0.9999 29.0205 0.0111 5.9599
west 0.0000 28.6848 0.0893 6.1119
north 0.0000 26.7997 0.8174 6.2819

Case 2.2
nscore = 0 nscore = 45

π(aT|o) Q(o, a) π(aT|o) Q(o, a)
open window 0.0000 30.2154 0.0000 6.1354
west 0.9999 32.0298 0.0000 5.8312
north 0.0000 26.7509 0.9952 6.6669

Case 2.3
nscore = 0 nscore = 45

π(aT|o) Q(o, a) π(aT|o) Q(o, a)
open window 0.0000 30.2184 0.0001 6.0443
west 0.9999 32.0302 0.0000 5.6724
north 0.0000 26.7494 0.9867 6.5545

Table 9: Case 2; The changes in policy and Q value based on the score embedding from ZORK1.

of nscore carries some inductive bias, i.e. temporal,
for the agent to infer the stage of the game. This is
consistently manifested in Case 1.3, but in Case
1.2, the agent is robust to the game score because it
carries painting that is directly related to reward
signals, navigating to pursue that particular reward,
which is put paining in case for reward signal
of +6 in Living Room location.

Case 2 in Table 8 and Table 9 In Case 2, the
agent is at Behind House for three other sets of
game instances, which has action and score pair
as, open window for nscore = 0, west for nscore =
0, and north for nscore = 45. The phenomenon
between Case 1.1 and Case 1.3 occurs the same
for Case 2.2 and Case 2.3. However, unlike Case
1, the score between Case 2.1 and Case 2.2 is the
same. This means that the agent somehow chooses
the optimal action for Case 2.2 over Case 2.1
in the case where nscore = 0 is injected for Case
2.3. This appears to be that the agent can capture
semantic correlation between "In one corner of

the house there is a small window which is
open" from textual observation in Case 2.3 and
open window action. Because a small window is
already opened, open window action is no longer
required, so the agent tends to produce west, which
is appropriate for Case 2.2.

Thus, from our qualitative analysis, we speculate
that the agent captures the semantics of the textual
observations and infers the game stage from game
score embedding to make optimal decision.

G Full Experimental Results

The full learning curve of TAC and game score
comparison are presented in Figure 6 and Table
10.

H Stronger Supervised Signals for
ZORK1

We also explored how stronger supervised signals
can induce better regularization in ZORK1. Similar
to other sets of experiments, we selected variety of
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Figure 6: The full learning curve for TAC, compared with TDQN and KG-A2C
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NAIL DRRN TDQN CALM-DRRN KG-A2C TAC
905 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
ACORNCOURT 0.0 10.0 1.6 0.0 0.3 3.4 ± 1.6
ADVENT † 36.0 36.0 36.0 36.0 36.0 36.0 ± 0.0
ADVENTURELAND 0.0 20.6 0.0 0.0 0.0 0.0 ± 0.0
ANCHOR 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
AWAKEN 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
BALANCES 10.0 10.0 4.8 9.1 10.0 10.0 ± 0.1
DEEPHOME ‡ 13.3 1.0 1.0 1.0 1.0 25.4 ± 3.2
DETECTIVE 136.9 197.8 169.0 289.7 207.9 272.3 ± 23.3
DRAGON 0.6 -3.5 -5.3 0.1 0.0 2.81 ± 0.15
ENCHANTER 0.0 20.0 8.6 19.1 12.1 20.0 ± 0.0
INHUMANE 0.6 0.0 0.7 25.7 3.0 0.0 ± 0.0
JEWEL 1.6 1.6 0.0 0.3 1.8 1.17 ± 1.0
KARN 1.2 2.1 0.7 2.3 0.0 0.0 ± 0.0
LIBRARY 0.9 17.0 6.3 9.0 14.3 18.0 ± 1.2
LUDICORP 8.4 13.8 6.0 10.1 17.8 7.7 ± 2.5
MOONLIT 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
OMNIQUEST 5.6 5.0 16.8 6.9 3.0 4.9 ± 0.1
PENTARI 0.0 27.2 17.4 0.0 50.7 53.2 ± 2.9
REVERB 0.0 8.2 0.3 − 7.4 11 ± 1.4
SNACKTIME 0.0 0.0 9.7 19.4 0.0 18.6 ± 2.0
SORCERER 5.0 20.8 5.0 6.2 5.8 23.2 ± 9.3
SPELLBRKR 40.0 37.8 18.7 40.0 21.3 39.0 ± 1.4
SPIRIT 1.0 0.8 0.6 1.4 1.3 2.91 ± 1.1
TEMPLE 7.3 7.4 7.9 0.0 7.6 5.8 ± 2.3
ZENON 0.0 0.0 0.0 0.0 3.9 0.0 ± 0.0
ZORK1 10.3 32.6 9.9 30.4 34 46.3 ± 5.0
ZORK3 1.8 0.5 0.0 0.5 0.1 1.6 ± 1.2
ZTUU 0.0 21.6 4.9 3.7 9.2 33.2 ± 26.0
MEAN 0.0536 0.1156 0.0665 0.0936 0.1094 0.1560

Table 10: Game score comparison over 29 game environments in Jericho, with best results highlighted by boldface.
NAIL and DRRN are non-generative baselines while TDQN and KG-A2C are generative baselines. The last row is
the mean game score over all the environments. The initial game score of ADVENT † is 36 and DEEPHOME ‡ is 1.
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Figure 7: The learning curve of TAC for regularization
ablation in ZORK1. Stronger supervised signals are used
with ϵ = 0.3, where 5-3 signifies γT = 5 and γO = 3.

λT-λO pair. However, our results show that TAC
starts under-fitting in ZORK1 when larger λT and
λO are applied.

I Adaptive Score-based ϵ

We also designed the epsilon scheduler that dy-
namically assigns ϵ based on the game score that
the agent has achieved; ϵ ∝ e

aϵ
ntst

nscore , where aϵ is
the hyper-parameters and ntst is the average testing
game score. During training, higher nscore exponen-
tially increases ϵ while aϵ controls the slope of the

exponential function. Higher aϵ makes the slope
more steep. Intuitively, as the agent exploits the
well-known states, ϵ is small, encouraging the agent
to follow its own policy, and as the agent reaches
the under-explored states (i.e., similar to test condi-
tion), ϵ increases to encourage more diversely. The
ϵ is normalized and scaled. The example plot is
shown in FIgure 10.

We conducted a set of ablations with dynamic ϵ
value in DETECTIVE, PENTARI, REVERB, ZORK1
and ZORK3. We used ϵmin = {0.0, 0.3}, aϵ =
{3, 9} and ϵmax = {0.7, 1.0}, so total 8 different
hyper-parameters. Figure 8 shows fixed ϵmin = 0.0
with varying aϵ and ϵmax and Figure 8 shows fixed
ϵmin = 0.3. Other than ZORK3, TAC with dy-
namic ϵ matches or underperforms TAC with fixed
ϵ = 0.3. There are two interesting phenomenons.
(i) Too high ϵmax results in more unstable learn-
ing and lower performance. This becomes very
obvious in PENTARI, REVERB and ZORK1, where
regardless of ϵmin and aϵ, if ϵmax = 1.0, the learn-
ing curve is relatively low. In DETECTIVE of Fig-
ure 8, the learning becomes much more unstable
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Figure 8: The learning curve of TAC with dynamic epsilon on five popular games. All the experiments were done
with fixed ϵmin = 0.0, aϵ = {3, 9} and ϵmax = {0.7, 1.0}.
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Figure 9: The learning curve of TAC with dynamic epsilon on five popular games. All the experiments were done
with fixed ϵmin = 0.3, aϵ = {3, 9} and ϵmax = {0.7, 1.0}.
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Figure 10: The exponential probability of ϵ over the
game score. Left is with ϵmin = 0.0, ϵmax = 1.0 and
right is with ϵmin = 0.3, ϵmax = 0.7 between the game
score of 0 to 6. Five different aϵ is drawn per plot.

with ϵmax = 1.0. This indicates that even under-
explored states, exploitation may still be required.
(ii) Too low ϵmin results in more unstable learn-
ing and lower performance. Although PENTARI

benefits from ϵmin = 0.0, the learning curves in
Figure 8 is generally lower and unstable than Fig-
ure 9. This appears to be that despite how much
the agent learned the environment, it still needs to
act stochastically to collect diverse experiences.

J Limitations

Similar to CALM-DRRN (Yao et al., 2020), KG-
A2C (Ammanabrolu and Hausknecht, 2020) and
KG-A2C variants (Ammanabrolu et al., 2020; Xu
et al., 2020; Peng et al., 2021) that use admissi-
ble actions, our method still utilizes admissible
actions. This makes our TAC not suitable for en-
vironments that do not provide admissible action

set. In the absence of admissible actions, our TAC
requires some prior knowledge of a compact set of
more probable actions from LMs or other sources.
This applies to other problems, for instance, ap-
plying our proposed method to language-grounded
robots requires action candidates appropriate per
state that they must be able to sample during train-
ing. The algorithm proposed by Hausknecht et al.
(2020) extracts admissible actions by simulating
thousands of actions per every step in TGs. This
can be used to extract a compact set of actions
in other problems, but it would not be feasible to
apply if running a simulation is computationally
expensive or risky (incorrect action in real-world
robot may result in catastrophic outcomes, such as
breakdown).

K Ethical Considerations

Our proposal may impact other language-based
autonomous agents, such as dialogue systems or
language-grounded robots. In a broader aspect,
it contributes to the automated decision making,
which can be used in corporation and government.
When designing such system, it is important to
bring morals and remove bias to be used as in-
tended.


